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Spin transfer torque and spin pumping are central reciprocal phenomena in spintronics. These phenomena
occur in hybrid systems of normal metals and magnets. Spin transfer is the conversion of spin currents in metals
to a torque on the magnetization of magnets. Spin pumping is the emission of spin currents from precessing
magnets. Here, we demonstrate a general way to understand these effects within a quantum out-of-equilibrium
path-integral model. Our results agree with known expressions for spin transfer and spin pumping in terms of
transverse (mixing) conductances when there are no fluctuations. However, at a finite temperature, frequency, or
spin accumulation, the magnet also experiences fluctuating torques. In the classical regime, when the thermal
energy is larger than the bias voltage and precession frequency, we reproduce the classical Brownian-Langevin
forces associated with spin transfer and spin pumping. At low temperatures, in the quantum regime, we demon-
strate that magnetization fluctuations differ in the elastic and inelastic electron transport regimes. Furthermore,
we show how additional transport coefficients beyond the mixing conductance govern the fluctuations. Some of
these coefficients are related to electron shot noise because of the discrete spin angular momentum of electrons.
We estimate the fluctuation coefficients of clean, tunnel, and disordered junctions and in the case of an insulating
magnet. Our results open a path for exploring low-temperature magnetization dynamics and spin caloritronics.
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I. INTRODUCTION

Spin transfer and spin pumping are central phenomena in
spintronics. Berger proposed the pioneering concept of an
interaction between magnetic textures and electric currents in
the late 1970s [1,2]. The concept of spin transfer torque [3,4]
revitalized the fields of spintronics and magnetoelectronics.
The seminal experiments in Refs. [5–9] amplified its early
recognition. Spin transfer causes a torque on magnets from
spin-polarized currents. This phenomenon excites magnets,
changes the magnetization orientation, and creates dynamic
motion or moving magnetization textures; see the reviews and
concepts in Refs. [10–14].

In the 1970s, researchers also understood that dynamic
magnets emit spin currents [15,16]. Similar to spin transfer
torque, this phenomenon has become essential in spintronics,
with improved measurements [17,18] and the development
of a quantitative theory and wider applicability of the effect,
called spin pumping [19–30].

Most theories describing spin transfer and spin pumping
treat magnetization as a classical variable and use conser-
vation of angular momentum to deduce the spin transfer
torque or spin pumping [19,31–34]. An alternative but also
semiclassical approach is to view the spin transfer torque
as arising from an exchange potential outside of equilibrium
[35]. Finally, a few papers use quantum mechanical language
to discuss spin pumping and spin transfer but are often limited
to tunnel junctions and no fluctuations [36,37].

Foros et al. realized that there are also fluctuating forces
related to spin transfer and spin pumping [38]. For example,
thermal fluctuations of the spin currents in normal-metal–
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ferromagnet junctions give rise to Brownian stochastic forces
on the magnet. The strengths of these forces are exactly in
agreement with the fluctuation-dissipation theorem for spin-
pumping-enhanced Gilbert damping, as should be expected.
These fluctuations are essential ingredients in the field of
ambient temperature spin caloritronics [39–41]. However,
when the spin accumulation in the normal metal exceeds
the thermal energy, the fluctuation-dissipation theorem no
longer holds [38]. In this quantum regime, shot noise caused
by the discrete nature of the spin angular momentum car-
ried by individual electrons enhances magnetic fluctuations
[38]. A similar picture emerges in ferromagnet-ferromagnet
tunnel junctions [42,43]. The latter article introduced path
integrals to compute spin transfer, spin pumping, and
fluctuations.

Traditionally, spin transfer and spin pumping are explored
at ambient temperatures. The thermal energy is larger than
the magnetic resonance frequency and the bias charge or spin
accumulation. However, new developments in measurements
and the prospect of achieving an improved understanding
motivate lower-temperature measurements and theory, where
quantum fluctuations come into play. In ferromagnet–normal-
metal–ferromagnet spin valves, Zholud et al. pioneered the
observation of quantum effects in the anomalous behavior
of magnetization fluctuations at low temperatures [44]. In
such spin valves, there are quantum fluctuations that reduce
the giant magnetoresistance in the presence of a voltage bias
[44,45].

We find rich and complex quantum fluctuations in normal-
metal–ferromagnet systems. Our results are relevant to
measurements of magnetization fluctuations in such systems.
Furthermore, they may be essential in spin transfer controlled
magnonics and Bose-Einstein condensation of magnons [46].
More generally, our results will be central to the development

2469-9950/2022/106(6)/064402(19) 064402-1 ©2022 American Physical Society

https://orcid.org/0000-0003-0867-6323
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.064402&domain=pdf&date_stamp=2022-08-01
https://doi.org/10.1103/PhysRevB.106.064402


ARNE BRATAAS PHYSICAL REVIEW B 106, 064402 (2022)

of an understanding of low-temperature spin caloritronics
[41]. Experimental probing of our results for the quantum
fluctuations requires low-temperature measurements such as
in Ref. [44] carried out at 3.4 K.

This paper describes spin transfer and spin pumping in ar-
bitrary junctions using an out-of-equilibrium quantum picture
that considers quantum and classical fluctuations. We describe
arbitrary contacts between ferromagnets and normal metals.
To this end, we use the scattering theory of electron transport
[47]. We aim to describe the temporal spin dynamics. To do
so, we use the out-of-equilibrium path-integral formulation.
By integrating out the fermions that may be out of equilibrium
with spin and charge accumulations, we find the effective
action for the magnons that we can in turn express as an
effective Landau-Lifshitz-Gilbert-Slonczewski equation with
fluctuating forces.

Our contribution to the field is twofold. We demonstrate
that earlier semiclassical approaches to describing spin trans-
fer and spin pumping in arbitrary junctions agree with a
complete quantum treatment of magnons and electrons to
leading order in the total spin. More importantly, we derive
expressions for the quantum and classical fluctuations that the
magnet experiences in terms of the reflection and transmission
coefficient of the junctions. Each electron carries a discrete
amount of spin angular momentum h̄/2. The discreteness
of the spin angular momentum causes shot noise, as expe-
rienced by the magnet when the bias voltage is larger than
the temperature and precession frequency. In our endeavor,
we merge earlier semiclassical approaches that describe any
junction in terms of the scattering matrix [19,21,32,33] with
the out-of-equilibrium path-integral formalism introduced in
Refs. [42,43,48]

We consider systems in which the spin angular momentum
is conserved for electron transport at the normal-metal–
ferrromagnet junction and within the ferromagnet. Never-
theless, we include spin-orbit interactions within the normal
metals for the electron transport. Additionally, spin-orbit-
induced magnetic anisotropy energies can be included in
straightforward manners. We believe that generalization of
our methods and calculations to spin-orbit torques generated
at junctions [14,49–57] and magnonic charge pumping is fea-
sible and deserves our attention.

We organize the paper as follows. First, Sec. II presents
the system and the assumptions. Then, Sec. III describes the
normal metals with the charge and spin accumulations that
may exist therein. We present our main results for the spin
dynamics in Sec. IV. Section V describes the model of the
system introduced in Sec. II. We use the closed contour path-
integral method in Sec. VI to compute the main results in
Sec. IV resulting from the model in Sec. V. The derivation
of the stochastic Langevin forces is in Sec. VII. We derive
a valuable connection to the scattering formulation of the
electron-magnon interaction in Sec. VIII. Finally, we con-
clude the paper in Sec. IX.

II. SYSTEM AND ASSUMPTIONS

We consider the system shown in Fig. 1. Normal metals
surround a ferromagnet. The accumulation of the out-of-
equilibrium charge (μc) and spin (μs) potentials in normal
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metalFerromagnet
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FIG. 1. Schematic depiction of a normal-metal–magnet–normal-
metal system. Spin accumulations in the normal metals affect the
spin dynamics described by precession of the temporal unit vector
along the order parameter m(t ). The figure shows two normal met-
als. Our results can be straightforwardly generalized to an arbitrary
number of normal metals attached to the ferromagnet.

metals can drive the spin dynamics in the ferromagnet. Fur-
thermore, the spin dynamics can induce spin currents in the
metals. The magnet can be insulating or conducting. In either
case, the electron transport in the normal metals can influence
the spin dynamics.

We will derive how the semiclassical magnetization dy-
namics responds to spin and charge accumulations. We
assume that the total spin of the ferromagnet is large, S � 1.
In this sense, our calculation is semiclassical. However, we
will also consider fluctuations in the magnetization dynamics.
An often-used assumption is that the thermal energy (kBT )
is much larger than all the other energy scales related to the
magnetization dynamics. This scenario represents the classi-
cal regime. While we will cover this classical regime, we will
also consider the quantum regime in which the dynamic fre-
quency (ω) and charge and spin accumulations are larger than
the thermal energy. This generalization results in shot-noise
contributions to the fluctuating forces acting on the magnet.
Reference [38] pioneered the identification of shot-noise con-
tributions to magnetization dynamics and computed some of
the terms in some regimes. Quantum fluctuations dominate
when the frequency or accumulation is larger than the thermal
energy. We will demonstrate that the fluctuations obey a rich
and complex behavior that can reveal the nature of the electron
transport and how the magnet responds to it.

In all situations, we will assume that the Fermi energy is the
largest energy scale in the system. This assumption is valid in
metallic systems since the Fermi energy is approximately 1–
10 eV, whereas the thermal energy, magnetization frequency,
and accumulation are in the meV range. Therefore, consistent
with the large Fermi energy assumption, we consider systems
much larger than the Fermi wavelength in metals. In other
words, the system is much larger than the lattice spacing.

In our explicit calculation, we assume the magnet to be
homogeneous. However, we assert that our results are also
valid for magnetic textures as long as the variation is larger
than the Fermi wavelength, which is always the case except
in extreme cases. The underlying reason why the results have
broader applicability than only to homogeneous ferromagnets
is the significant difference in the length scales of the magnetic
variations and the typical wavelength of the electrons. Hence,
the electrons only see the magnetization in a range near the
Fermi wavelength.

064402-2



QUANTUM SCATTERING THEORY OF SPIN TRANSFER … PHYSICAL REVIEW B 106, 064402 (2022)

III. NORMAL-METAL RESERVOIRS

This section describes the normal metals. Out-of-
equilibrium charge and spin accumulations may exist in the
normal-metal reservoirs. These may arise from currents from
other ferromagnets or normal metals. Alternatively, they may
arise from currents in the normal-metal reservoirs via the
spin Hall effect [58]. We will not repeat such discussions,
which are not central to our development. Instead, we will
assume that some of these mechanisms within the circuit
induce charge and spin accumulations. Furthermore, we will
assume that these accumulations are static and set by external
forces for clarity. Generalizations to consider the influence of
the ferromagnet on the spin and charge accumulations and
temporal evolution can be performed via magnetoelectronic
circuit theory, as described in Refs. [21,32,59–61].

In the reservoirs, the operator âσβ annihilates an electron
with spin σ in state β. The statistical occupation of the state is

〈â†
sα âσβ〉 = δαβnsσα, (1)

where nsσα is the 2×2 out-of-equilibrium occupation of the
electrons in state α in spin space. The quantum number α

contains lead κ , transverse waveguide mode n, and energy ε.
In general, in isotropic systems, the 2×2 out-of-equilibrium
occupation of the electrons only depends on the energy ε of
the state but can depend on lead κ:

nsσκ (ε) = [ f↑κ (ε) + f↓κ (ε)]1sσ /2

+ [ f↑κ (ε) − f↓κ (ε)]uκ · σsσ /2, (2)

where f↑ ( f↓) is the spin distribution aligned (anti-aligned)
with the spin accumulations directed along the unit vector uκ .
σ is a vector of Pauli matrices.

Electron transport can be inelastic, elastic, or between
these regimes. We will demonstrate that the spin fluctuations
in the magnet differ in these transport regimes at low temper-
atures. In other words, measurements of the spin fluctuations
will reveal the electron transport regime.

A. Inelastic transport

In the inelastic transport regime, the electron distribution
is analogous to that in the equilibrium situation and is deter-
mined by Fermi-Dirac functions, but with out-of-equilibrium
chemical potentials. There is charge accumulation μin

κc and
spin accumulation μin

κs in reservoir κ . The spin accumulation
μin

κs has a direction along the unit vector uκs and an amplitude
μin

κs, with μin
κs = uκsμ

in
s . The inelastic electron spin-up and

-down distributions are

f in
↑κ (ε) = f

(
ε − μin

κc − μin
κs

/
2
)
, (3a)

f in
↓κ (ε) = f

(
ε − μin

κc + μin
κs

/
2
)
, (3b)

where f (ε) is the Fermi-Dirac distribution function that de-
pends on the temperature T .

B. Elastic transport

In contrast to the inelastic transport regime, in elastic
transport, energy is conserved. Let us assume that the elas-
tic transport is a result of transport from two or more large
reservoirs with equilibrium electron distributions f (ε − μ1),

f (ε − μ2), etc. Since the energy is conserved, the components
of the distributions aligned and antialigned with the spin ac-
cumulation must be

f el
↑κ (ε) =

∑
i

R↑κi f (ε − μi ), (4a)

f el
↓κ (ε) =

∑
i

R↓κi f (ε − μi ), (4b)

where R↑κi and R↓κi are transport coefficients that depend on
the materials and geometry. We maintain that the bias voltage
is much smaller than the Fermi energy, so the transport coeffi-
cients R↑κi and R↓κi are constant in the energy range of the bias
voltage. At equilibrium, f el

↑κ (ε) = f el
↓κ (ε) = f (ε − μ0), where

μ0 is the common equilibrium chemical potential. Therefore,∑
i

Rsκi = 1. (5)

In the elastic transport regime, for deterministic transport
properties such as the spin transfer torque, defining the effec-
tive elastic accumulation as follows is convenient:

μel
κc + μel

κs/2 =
∫

dε
[

f el
↑κ (ε) − f (ε − μ0)

]
,

μel
κc − μel

κs/2 =
∫

dε
[

f el
↓κ (ε) − f (ε − μ0)

]
. (6a)

We will demonstrate that the spin transfer torque is the
same in the elastic and inelastic transport regimes provided
that the charge and spin accumulations are the same, i.e.,
μel

κc = μin
κc and μel

κs = μin
κs. The reason is that spin transfer

and spin pumping are governed by electrons at the Fermi
level, which is much larger than the precession frequency and
temperature. Then, how the electrons are distributed within a
small window close to the Fermi level does not matter. How-
ever, we will show that the low-temperature spin fluctuations
differ in the two regimes. This dependence on the transport
regime occurs because the spin accumulation or precession
frequency is much smaller than the Fermi energy and can
reveal the low-energy occupation of the electrons.

IV. MAIN RESULTS: SPIN DYNAMICS

This section presents our main findings. Our main result
is the derivation of a generalized Landau-Lifshitz-Gilbert-
Slonczewski (LLGS) equation with stochastic forces that
reflects electron transport fluctuations valid from the quan-
tum low-temperature regime to the classical, high-temperature
regime. We find that the spin dynamics consists of bulk con-
tributions, spin transfer torque, spin pumping, and electron
transport-induced fluctuations:

∂t m = τb + τstt + τ̃stt + τsp + τ̃sp + τfl. (7)

The bulk torque is conventional and independent of the elec-
tron reservoirs,

τb = −γ m × [Heff + hb(t )] + αbm × ∂t m, (8)

where γ = −g∗μB/h̄ is the gyromagnetic ratio, Heff =
−∂F/∂mMs is the effective magnetic field governed by the
free energy F of the magnet, αb is the bulk Gilbert damping
coefficient, and hb(t ) is the fluctuating field. The average
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of the fluctuating field vanishes, i.e., 〈hb(t )〉 = 0, while the
fluctuations are related to the Gilbert damping coefficient by
the fluctuation-dissipation theorem:

〈γ hbi(t )γ hb j (τ )〉ω = α0
2kBT

S
ζ

(
ω

2kBT

)
, (9)

where S is the total spin of the magnet, the Fourier transform
on the left-hand side of Eq. (9) is defined in Eq. (C1), and

ζ (x) = x/ tanh x. (10)

In the classical high-temperature limit, ζ (x → 0) = 1.
With our alternative approach, we reproduce the estab-

lished result for the spin transfer torques [32,33,60] arising
from spin accumulation in the left (μs) and right (μ̃s) reser-
voirs:

τstt = αrm × m × μs − αim × μs, (11a)

τ̃stt = α̃rm × m × μ̃s − α̃im × μ̃s, (11b)

where α (α̃) is the enhanced Gilbert damping coefficient as-
sociated with spin pumping in the left (right) reservoir. The
superscript r (i) denotes the real (imaginary) part. As pre-
viously stated, the expression for the spin transfer torque is
similar in the elastic and inelastic transport regimes and only
depends on the total amount of out-of-equilibrium spins. We
find agreement with previous works [32,33,60,62] in that the
scattering matrix determines the spin transfer (spin pumping)
coefficients as follows:

α = 1

4πS
Tr[1 − r†

↑r↓ − t†
↑t↓], (12a)

α̃ = 1

4πS
Tr[1 − r̃†

↑r̃↓ − t̃†
↑t̃↓], (12b)

where rs (r̃s) is the reflection amplitude matrix associated with
transport from the left (right) lead for electrons with spin s
along the magnetization direction and ts (t̃) is the transmis-
sion amplitude matrix associated with transport from the left
(right) lead for electrons with spin s along the magnetization

direction. r, r̃, t , and t̃ are elements of the scattering matrix
defined in Eq. (A3).

We also reproduce the established expression for spin
pumping in the left and right leads [19,21,59]:

τsp = (α + α̃)rm × ∂t m − (α + α̃)rm × m × ∂t m. (13a)

The correspondence between the spin transfer torque Eq.
(11) and spin pumping Eq. (13) is a result of Onsager
reciprocity relations [62]. Spin pumping is the reciprocal phe-
nomenon of spin transfer.

Our main result is electron transport-enhanced fluctuations.
We find that there is a fluctuating torque

τ = −γ m × h(t ), (14)

where h(t ) is the fluctuating field.
At equilibrium, in the absence of bias voltages, we find

that the fluctuation-dissipation theorem including the effects
of spin pumping holds, so

〈
γ he

i (t )γ he
j (τ )

〉
ω

= δi j (α
r + α̃r )

2kBT

S
ζ

(
ω

2kBT

)
, (15)

where ζ (x) was defined in Eq. (10). Reference [38] first
obtained the classical limit, in the regime kBT � ω, of this
result. Equation (15) generalizes this equilibrium result to
finite frequencies. As expected, the fluctuations in Eq. (15)
are similar to the bulk fluctuations in Eq. (9). As established
in Ref. [38], this implies that at high temperatures, the LLGS
equation holds with fluctuating forces governed by a total
Gilbert damping coefficient αb + αr + α̃r .

Charge and spin accumulations in the normal metals mod-
ify the fluctuations. Out of equilibrium, the fluctuating field
h(t ) has contributions arising from longitudinal and transverse
components of the spin accumulation with respect to the mag-
netization.

In a right-handed coordinate system where the unit vector
of the magnetization is along the z direction, we find the
general result for the fluctuations:

〈γ hx(t )γ hx(τ )〉ω = − i

4S
[�K (ω) + �K (−ω)] + 1

S
Im[�̃K

↑↓], (16a)

〈γ hy(t )γ hy(τ )〉ω = − i

4S
[�K (ω) + �K (−ω)] − 1

S
Im[�̃K

↑↓], (16b)

〈γ hx(t )γ hy(τ )〉ω = − 1

4S
[�K (ω) − �K (−ω)] + 1

S
Re[�̃↑↓(ω)], (16c)

where �K (ω) and �̃K
↑↓(ω) are Keldysh components of self-

energies. �K (ω) is driven by charge accumulation and spin
accumulation along the magnetization. In contrast, �̃K

↑↓(ω) is
driven by spin accumulation transverse to the magnetization.

The self-energy associated with charge accumulation and
spin accumulation along the magnetization is

�K (ω) = i
∑
κλ

σκλπκλ(ω). (17)

The sums over κ and λ are over the left and right lead
indices, and the noise parameters in the left-right lead basis
are

σ =
(

αr − βr βr

β̃r α̃r − β̃r

)
. (18)

The spin transfer and spin pumping coefficients α and α̃

are introduced in Eq. (12). The shot-noise parameters rel-
evant when the charge accumulation and longitudinal spin
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accumulation exceed the thermal energy and resonance fre-
quency are

βr
↑↓ = 1

8πS
Tr[1 − (r†

↑r↓ + t†
↑t↓)(r†

↓r↑ + t†
↓t↑)], (19a)

β̃r
↑↓ = 1

8πS
Tr[1 − (r̃†

↑r̃↓ + t̃†
↑t̃↓)(r̃†

↓r̃↑ + t̃†
↓ t̃↑)]. (19b)

The fluctuations differ in the elastic and inelastic transport
regimes. This difference facilitates observation of the electron
transport regime by measuring the magnetic fluctuations. At
equilibrium, in the inelastic transport regime, and in the elastic
transport regime, the contributions are as follows:

π
eq
κλ = 4kBT ζ

(
ω

2kBT

)
, (20a)

π in
κλ = 4kBT

∑
σ s

p↑σκ p↓sλζ

(
ω + μσκ − μsλ

2kBT

)
, (20b)

π el
κλ = 4kBT

∑
σ s

∑
i j

p↑σκ p↓sλRσκiRsλ jζ

(
ω + μi − μ j

2kBT

)
,

(20c)

where the function ζ was defined in Eq. (10) and we have in-
troduced the projection factor that depends on the longitudinal
component of the spin accumulation uzκ in the distribution in

Eq. (2):

psσκ = (1 − uzκ )/2 + δsσ uzκ . (21)

The coefficient R that governs the linear response distribution
in the elastic transport regime is defined in Eq. (4).

When spin accumulation is transverse to the magnetization,
there are contributions from the self-energy:

�̃K
↑↓(ω) = −i

∑
κλ

σ̃κλπ̃κλ(ω), (22)

where the noise matrix is

σ̃ K =
(

α − γ↑↓ δ↑↓
˜δ↑↓ α̃ − γ̃↑↓

)
, (23)

where the shot-noise parameters associated with the trans-
verse spin accumulation are

γ↓↑ = 1

16πS
Tr[1 − (r†

↓r↑ + t†
↓t↑)2], (24)

δ↓↑ = 1

8πS
Tr[(r†

↓t̃↑ + t†
↑ r̃↑)(t̃†

↓r↑ + r̃†
↓t↑)]. (25)

At equilibrium, in the inelastic and elastic transport regimes,
we find

π̃
eq
κλ = 0, (26a)

π̃ in
κλ = uκs−uλs−[F (μλ↑ − μκ↑ − ω) + F (μλ↓ − μκ↓ − ω) − F (μλ↑ − μκ↓ − ω) − F (μλ↓ − μκ↑ − ω)], (26b)

π̃ el
κλ = uκs−uλs−

∑
i j

(R↑κi − R↓κi )(R↑λ j − R↓λ j )F (μ j − μi − ω), (26c)

where

F (μ2 − μ1) =
∫ ∞

−∞
dε f (ε − μ1)[1 − f (ε − μ2)]

= [μ2 − μ1]n(μ2 − μ1), (27)

f (ε) is the Fermi-Dirac distribution, and n(μ2 − μ1) is the
Bose-Einstein distribution function at temperature T . At high
temperatures, F → kBT , and π̃ in = 0 = ψ̃el.

We discuss how the spin transfer and spin pumping
and shot-noise coefficients behave in different junctions in
Appendix B. In the following subsection, we discuss three
relevant scenarios for the fluctuations.

A. Charge accumulation-driven spin fluctuations

Let us consider a scenario in which there is no spin ac-
cumulation in the normal metals. In the inelastic transport

regime, the out-of-equilibrium chemical potentials are then
independent of the spins, μσκ → μκ . Hence,

π in
κλ = 4kBT ξ

(
ω + μκ − μλ

2kBT

)
, (28a)

π el
κλ = 4kBT

∑
i j

RκiRλ jξ

(
ω + μi − μ j

2kBT

)
, (28b)

where Rκi = Rσκi and is independent of the spin when there is
no spin accumulation. Furthermore,

π̃κλ = 0. (29)

Consequently, �̃K
↑↓ = 0. In, e.g., the inelastic transport

regime,

i�K = −4kBT

{
[(αr + α̃r ) − (βr + β̃ )]ξ

(
ω

2kBT

)
+ βrξ

(
ω + μL − μR

2kBT

)
+ β̃rξ

(
ω − μL + μR

2kBT

)}
. (30)

From Eq. (30), we see that measurements of the magnetic
fluctuations reveal the shot-noise coefficients βr and β̃ at
finite-bias voltages.

Simple limits of charge-bias-driven magnetic fluctuations
when there is strong dephasing were discussed in Ref. [61].
The more general coefficients βr and β̃r introduced here
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capture the results in the earlier work and are more general
and valid for any degree of spin dephasing.

B. One reservoir

Let us consider a scenario in which there is only one
reservoir, the left, and a spin accumulation therein.

First, we consider a longitudinal spin accumulation, e.g.,
spin accumulation directed along the magnetization. In this
case, π̃κλ = 0, so �̃K = 0. Furthermore, βr = 0, and β̃r = 0.
We also have that α̃ = 0. The fluctuations are then determined
by

�K,in = iα4kBT ξ

(
ω + μs

2kBT

)
, (31)

�K,el = iα4kBT
∑

i j

R↑LiR↓L jξ

(
ω + μi − μ j

2kBT

)
(32)

and differ in the inelastic and elastic transport regimes. When
the spin accumulation or precession frequency exceeds the
energy, quantum fluctuations exceed the classical fluctuations.

Second, we consider transverse spin accumulation. Then,
fluctuations are governed by the coefficient

C↓↓ = 1
2 Tr[1 − (r↓r†

↓)2], (33)

and δ↓↑ = 0. C↓↑ resembles the spin transfer and spin pump-
ing coefficient A↑↓ of Eq. (12) but is not identical to it.
However, when there is strong dephasing, C↓↑ = N/2 = A↑↓,
where N is the number of propagating channels (transverse
waveguide modes). Furthermore, π̃LR = π̃RL = π̃RR = 0. In
the inelastic and elastic transport regimes, we then find in the
case of pure transverse spin accumulation (uzL = 0)

−i�̃K,in
↑↓ = −(α − γ↑↓)u2

L−[2F (−ω) − F (μs − ω) − F (−μs − ω)], (34a)

−i�̃K,el
↑↓ = −(α − γ↑↓)u2

L−
∑

i j

(R↑Li − R↓L j )(R↑L j − R↓L j )F (μ j − μi − ω). (34b)

At zero temperature and frequency, we find that we
can use F (ω) = 0 and F (μs − μ) + F (−μs − ω) = −|μs|
in Eq. (34a) and F (μ j − μi − ω) = (μi − μ j )θ (μi − μ j ) in
Eq. (34b), where �(x) is the Heaviside function.

V. MODEL

This section details the model that we use to describe the
normal-metal–ferromagnet–normal-metal system introduced
in Sec. II. The Hamiltonian is

Ĥ =
∫

dr ψ̂†[H0 + usσ · Ŝ]ψ̂ + Ĥs(Ŝ), (35)

where ψ̂† = (ψ̂†
↑, ψ̂

†
↓ ) is the two-component itinerant electron

field operator, σ is the vector of Pauli matrices in the 2×2
spin space, and the spin operator Ŝ has a total spin angular
momentum S such that Ŝ

2 = S(S + 1). We set h̄ = 1. Ĥs(Ŝ)
describes the transverse dynamics of the magnetization when
it is not interacting with the itinerant electrons. To discuss
the influence of the electrons on the magnetization dynamics,
we consider a simple example in which the magnetization is
subject to an external magnetic field H,

Ĥs = −g∗μBH · Ŝ, (36)

where g∗ is the effective g factor and μB is the Bohr magne-
ton. Our calculations can be straightforwardly generalized to
arbitrary forms of Ĥs including magnetic anisotropy energy
and demagnetization fields. However, such complications are
not the focus of our attention. Our target is the influence of
the electrons on the magnet. Therefore, we keep the Hamil-
tonian Ĥs as simple as possible in our explicit calculations
but assert that the results are valid for arbitrary forms of Ĥs.
Furthermore, we disregard the possible effects of an external
magnetic field on the itinerant electrons since these effects
are typically small in metallic systems, or we can include
them in straightforward generalizations of the spin transport

equations [33]. Such complications are irrelevant to our main
points.

The spin-independent part of the single-particle electron
Hamiltonian is

H0 = − 1

2m
∇2 + Vc(r), (37)

where Vc(r) is the spatially dependent charge potential. In the
Hamiltonian Eq. (35), us(r) represents the spatially dependent
exchange interaction. It is finite only inside the magnet. In the
classical limit of the magnet, the magnitude of the spatially
dependent spin potential experienced by the itinerant electrons
is Vs(r) = Sus(r).

We will derive the semiclassical spin dynamics valid for
any deviation of the magnetization from the equilibrium ori-
entation. To this end, considering the magnon dynamics near
the instantaneous direction of the spin Ŝ and adiabatically
adjusting the evolution of the small deviation of the large
spin from its instantaneous direction are sufficient [42,43].
For simplicity, we consider an instantaneous orientation of the
spin along the z direction. We carry out a Holstein-Primakoff
transformation of the localized spin operator to the second
order in the deviation from the classical ground state:

Ŝ+ = Ŝx + iŜy ≈
√

2Sb̂, (38a)

Ŝ− = Ŝx − iŜy ≈
√

2Sb̂†, (38b)

Ŝz = [S − b̂†b̂], (38c)

where the magnon annihilation and creation operators b̂ and b̂†

satisfy the boson commutation relation [b̂, b̂†] = 1. Employ-
ing σ · Ŝ = σ−Ŝ+ + σ+Ŝ− + σzŜz, where σ± = (σx ± iσy)/2,
by expanding to the second order in the magnon operators,
the Hamiltonian Eq. (35) becomes

Ĥ = Ĥe + Ĥm + Ĥem. (39)

The magnon Hamiltonian Ĥm is directly related to the Hamil-
tonian Ĥs Eq. (36) describing the transverse dynamics of the
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magnetic moments via the Holstein-Primakoff transformation
Eq. (38). Disregarding a constant energy contribution, the
magnon Hamiltonian up to the second order in the magnon
operators is

Ĥm = Ezb̂
†b̂ +

√
S/2(E−b̂ + E+b̂†), (40)

where the magnon energy is

Ez = g∗μBHz. (41)

The magnons are excited via the transverse magnetic field,
governed by

E± = g∗μBH±, (42)

where H± = Hx ± iHy.
The considerable algebra outlined in Sec. VIII demon-

strates how the electronic Hamiltonian He and the electron-
magnon Hamiltonian Hem become particularly transparent in
terms of the scattering states of the itinerant electrons. We find

Ĥe =
∑

sα

εα â†
sα âsα, (43)

where âsα annihilates an electron with spin s (s =↑ or ↓).
The quantum number α = κnε captures the lead (κ = L or
R), the transverse waveguide mode n, and the electron energy
ε. The electron energy consists of a transverse contribution
εn and a longitudinal contribution ε(k) = k2/2m, where k
is the longitudinal momentum such that ε = εn + ε(k). The
eigenenergy is spin degenerate since the leads are paramag-
netic. Furthermore, the eigenenergy is independent of the lead
index since we consider similar left and right leads. In Eq. (43)
and similar expressions to follow, the sum over the states
implies that

∑
α Xsα = ∑

κn

∫ ∞
εn

dε Xsκn(ε). In the scattering
basis, the electron-magnon interaction becomes

Ĥem = Ĥ1 + Ĥ2. (44)

The contribution that is to the first order in the magnon oper-
ators is

Ĥ1 =
√

2

S

∑
αβ

[
b̂â†

↓αW αβ

↓↑ â↑β + b̂†â†
↑αW αβ

↑↓ â↓β

]
. (45)

The matrices W↑↓ and W↓↑ are related. They are gov-
erned by the exchange potential us(r) and the scattering
states. Importantly, we demonstrate in Appendix A that they
are proportional to a generalized inelastic mode-dependent
transverse “mixing” transport property. However, we will
demonstrate that to the lowest order in the large spin limit
S � 1, only the conventional elastic “mixing” conductance
will contribute to the deterministic part of the spin dynamics.
We will derive that new transport coefficients beyond the mix-
ing conductance govern the fluctuations of the spin dynamics.
The contribution to the electron-magnon interaction to the
second order in the magnon operators is

Ĥ2 = −1

S

∑
αβ

b̂†b̂
[
â†

↑αW αβ

↑↑ â↑β − â†
↓αW αβ

↓↓ â↓β

]
. (46)

We will show that Ĥ2 does not contribute to the spin dynamics
when S � 1 and hence can be disregarded.

VI. CLOSED CONTOUR ACTION

This section first presents the out-of-equilibrium path-
integral method used to find the influence of electron transport
on spin dynamics. Subsequently, we compute the specific
form of the effective action from the electrons on the spin
dynamics. To this end, we introduce the closed contour action
S and partition function Z ,

Z =
∫

D[ψ̄↑ψ↑ψ̄↓ψ↓φ̄φ]eiS. (47)

In action S, the integral over time is along the closed contour
forward from t = −∞ to +∞ and backward from t = +∞
to −∞. From the partition function, we can find how the
electrons influence the spin dynamics. Action S consists of
contributions from the electrons, magnons, and first- and
second-order electron-magnon interactions:

S = Se + Sm + S1 + S2. (48)

The electron contribution corresponding to the Hamiltonian
Eq. (43) is

Se =
∫ ∞

−∞
dt[ψ̄+

↑ (i∂t − ε)ψ+
↑ − ψ̄−

↑ (∂t − ε)ψ−
↑ ]

+
∫ ∞

−∞
dt[ψ̄+

↓ (i∂t − ε)ψ+
↓ − ψ̄−

↓ (∂t − ε)ψ−
↓ ], (49)

where ψσ (σ =↑ or ↓) is a vector consisting of all Grass-
mann variables representing the electronic states. The lead,
transverse waveguide mode, and electron energy for spin σ

electrons span the vector. The superscript + (−) denotes the
forward (backward) path variables. In Eq. (49), ε is a diagonal
matrix containing all single-particle energies spanned by the
electronic states.

The magnon contribution to the action corresponding to the
magnon Hamiltonian Eq. (40) is

Sm =
∫ ∞

−∞
dt[φ̄+(i∂t − Ez )φ+ − φ̄−(i∂t − Ez )φ−]

−
√

S/2
∫ ∞

−∞
dt[E−(φ+ − φ−) + E+(φ̄+ − φ̄−)], (50)

where φ is a complex number and φ̄ is its conjugate num-
ber. The electron-magnon interaction to the first order in the
magnon operators corresponding to the Hamiltonian Eq. (45)
is

S1 = −
√

2

S

∫ ∞

−∞
dt[ψ̄+

↓ W↓↑ψ+
↑ φ+ − ψ̄−

↓ W↓↑ψ−
↑ φ−]

−
√

2

S

∫ ∞

−∞
dt[ψ̄+

↑ W↑↓ψ+
↓ φ̄+ − ψ̄−

↑ W↑↓ψ−
↓ φ̄−]. (51)

The electron-magnon interaction to the second order in the
magnon operators representing the Hamiltonian Eq. (46) is

S2 = 1

S

∫ ∞

−∞
dt[ψ̄+

↑ W↑↑ψ+
↑ − ψ̄+

↓ W↓↓ψ+
↓ ]φ̄+φ+

− 1

S

∫ ∞

−∞
dt[ψ̄−

↑ W↑↑ψ↑ − ψ̄−
↓ W↓↓ψ↓]φ̄−φ−. (52)

Introducing classical and quantum fields for the bosons and
1-2 fields for the fermions instead of the + and − fields on the
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forward and backward paths is convenient and conventional
[63].

A. Classical quantum and 1-2 quantum fields

For the bosons, we use the classical and quantum fields

φc,q = (φ+ ± φ−)/
√

2, (53a)

φ̄c,q = (φ̄+ ± φ̄−)/
√

2. (53b)

The upper sign is for the classical (c) field, and the lower
sign is for the quantum field (q). The structure of the boson
Green function is therefore

D =
(

DK DR

DA 0

)
. (54)

In the representation of Eqs. (53) and (54), the magnon con-
tribution to the action in Eq. (50) becomes

Sm =
∫

dt
∫

dτ (φ̄c, φ̄q)D−1
0

(
φc

φq

)

−
√

S
∫

dt[E−φq + E+φ̄q], (55)

where [D−1
0 ]R(A) = δ(t − τ )(i∂t − Ez ± i0+).

For the fermions, we use a different notation of 1-2 fields:

ψ1,2 = (ψ+ ± ψ−)/
√

2, (56a)

ψ̄1,2 = (ψ̄+ ∓ ψ̄−)/
√

2. (56b)

The structure of the fermion Green function is then

G =
(

GR GK

0 GA

)
. (57)

The occupations at the initial time t → −∞ are included via
a standard regularization of the Green functions for bosons
and fermions. This procedure results in the Keldysh compo-
nents for the bosons and fermions. In the Keldysh (classical
quantum for bosons and 1-2 for fermions) space, we use the
matrices

γ c =
(

1 0
0 1

)
(58)

and

γ q =
(

0 1
1 0

)
. (59)

The contributions to the action involving the electrons, i.e., the
electron contribution and the electron-magnon contributions
Se,tot = Se + S1 + S2 are then

Se,tot =
∫

dt
∫

dτ (ψ1, ψ2)G−1

(
ψ1

ψ2

)
, (60)

where the inverse Green function for the fermions is

G−1 = G−1
0 + [W̃1 + W̃2], (61)

[G−1
0 ]R(A) = δ(t − τ )(i∂t − ε ± i0+), W̃1 = δ(t − τ )W1, W̃2 =

δ(t − τ )W2,

W1 = − 1√
S

∑
x

[ψ̄↓W↓↑γ xψ↑φx + ψ̄↑W↑↓γ xψ↓φ̄x], (62)

and

W2 = 1

2S

∑
x

[ψ̄↑W↑↑γ xψ↑ − ψ̄↓W↓↓γ xψ↓]φ̄γ xφ. (63)

In Eqs. (62) and (63), x = c, q. In the partition function
Eq. (47), we can now integrate over the fermions to find the
effective contribution to the boson action

Seff = −i Tr ln[1 + G0(W̃1 + W̃2)]. (64)

In the following sections, we will expand Eq. (64) to the
second order in the magnon operators, but first, we need to
discuss the unperturbed Green functions of the electrons that
contain information about the charge and spin accumulations
in the reservoirs discussed in Sec. III.

B. Unperturbed electron Green function

The unperturbed electron Green function is the Green
function in the absence of the electron-magnon interactions
in Eqs. (45) and (46) or, alternatively, the electron-magnon
interactions in Eqs. (51) and (52). The retarded and advanced
parts of the zeroth-order Green function G0 are diagonal in
spin space and all other quantum variables (lead, transverse
mode, and energy). In the Fourier representation Eq. (C1),

GR/A
0αβ (ω) = 1

ω ± i0+ − εα

δαβ. (65)

However, the zeroth-order Keldysh component of the Green
function G0 has off-diagonal components in spin space since
there is a noncollinear spin accumulation in the leads. This
out-of-equilibrium noncollinear spin accumulation is what
couples to the localized spins.

There are charge and spin accumulations in the reservoirs,
as described in Sec. III. Consequently, the Keldysh component
of the Green function is

GK
0sασβ (ω) = −2π iδαβδ(ω − εα )[δsσ − 2nsσα], (66)

where nsσα is the 2×2 out-of-equilibrium occupation of the
electrons introduced in Eq. (2).

At equilibrium, nsσα = δsσ f (ε − μ0), where μ0 is the
equilibrium chemical potential, ε is the energy of state α with
spin s, and f (ε − μ0) is the Fermi-Dirac distribution function.
The fluctuation-dissipation theorem for fermions holds:

GK,eq
0sασβ = tanh

ε − μ0

2kBT
δsσ

[
GR

0αβ − GA
0αβ

]
. (67)

Naturally, we will subsequently find that an analogous relation
holds for the (boson) magnon self-energy at equilibrium with
a magnon chemical potential of zero.

C. First-order corrections to the magnon actions

By expanding the effective action Eq. (64) in the electron-
magnon coupling, we find the contribution to the action of the
fermions to the first order in the magnon operators:

S1 = − i Tr
[
G0W̃1

]
= − 2√

S

∑
α

W↓↑ααn↑↓α

∫
dt φq

− 2√
S

∑
α

W↑↓ααn↓↑α

∫
dt φ̄q. (68)
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By comparing the electron-induced action in Eq. (68) with
the contribution to the magnetic action from the transverse
magnetic field in Eq. (55), we find that the spin accumulation
gives rise to an effective transverse magnetic field repre-
sented by the effective energies E+e = 2

∑
α W↑↓n↓↑αα/S and

E−e = 2
∑

α W↓↑n↑↓αα/S. In other words, the action Eq. (68)
corresponds to a transverse magnetic field where the x and y
components are Hxe = (E+e + E−e)/2g∗μB and Hye = (E+e −
E−e)/2ig∗μB. We observe that the effective spin transfer mag-
netic fields are inversely proportional to the total spin S.

We now use Eqs. (A13) and (A17) to find∑
α

W↑↓ααn↓↑α = iS
∫

dε[αn↓↑L(ε) + α̃n↓↑R(ε)], (69)

where n↓↑L (n↓↑R) is a transverse component of the 2×2 spin
distribution in the left (right) reservoir in Eq. (2) and we have
defined the energy-dependent spin transfer coefficients α and
α̃ in Eq. (12). Furthermore, in metallic systems, the out-of-
equilibrium distribution peaks at the Fermi energy, and∑

α

W↑↓ααn↑↓α = iS[αμ↓↑ + α̃μ̃↓↑], (70)

where the spin transfer coefficients α and α̃ should be evalu-
ated at the Fermi energy and the effective chemical potentials
are

μ↓↑ =
∫

dεnkn↓↑L, (71a)

μ̃↓↑ =
∫

dεnkn↓↑R (71b)

in the left and right reservoirs. We find similar results for∑
α W↓↑ααn↑↓α . With the definition of the effective chemi-

cal potential in Eqs. (71), (6) and (3), we see that μin
↓↑ =

μ↓↑ = μel
↓↑ and μ̃in

↓↑ = μ̃↓↑ = μ̃el
↓↑. Therefore, the spin trans-

fer torques are the same in the elastic and inelastic transport
regimes. This is because spin transfer arises from the transport
of electrons around the Fermi energy, where the transport
coefficients are constant in a metallic system since the out-of-
equilibrium accumulations are much smaller than the Fermi
energy.

A more transparent representation of the effect of action S1

on the spin dynamics is in terms of the charge accumulation
μc = Tr[μ̌]/2 and spin accumulation vector μs = Tr[σμ̌]/2,
where μ̌ is the 2×2 distribution function in spin space. Then,

μ↑↓ = μs,x − iμs,y, and μ↓↑ = μs,x + iμs,y; thus, the spin
transfer effective field is Hstt = He + H̃e, where

He = 1

g∗μB
[αrm × μs + αim × m × μs]. (72a)

H̃e = 1

g∗μB
[α̃rm × μ̃s + α̃im × m × μ̃s]. (72b)

Using the gyromagnetic ratio γ = −g∗μB/h̄ while main-
taining h̄ = 1, we can also express the action of the effective
fields in Eq. (72a) on the spin dynamics as the spin transfer
torques in Eq. (11).

In Eqs. (72a) and (72b) and what follows, the superscript r
denotes the real part, and the superscript i denotes the imag-
inary part. The spin transfer and spin pumping efficiencies
associated with the left and right reservoirs introduced in
Eq. (12) are related to the mixing conductances A↑↓ and Ã↑↓
defined in Eqs. (A17a) and (A17b) as follows:

α = A↑↓
4πS

, (73a)

α̃ = Ã↑↓
4πS

. (73b)

Since the mixing conductances A↑↓ and Ã↑↓ in Eqs. (A17a)
and (A17b) are normal metal-ferromagnet interface proper-
ties proportional to the cross section and the total spin S
is proportional to the volume of the ferromagnet, the spin
transfer efficiencies Eq. (12) are inversely proportional to the
ferromagnet thickness.

Additionally, we will soon see the well-known fact that
spin pumping gives rise to enhanced damping that acquires
contributions from the left and right interfaces governed by
the spin transfer and spin pumping efficiencies α and α̃ in
Eq. (12).

D. Second-order corrections to the magnon action

The contribution to the action of the fermions to the second
order in the magnon operators is S2 = S2a + S2b, where

S2a = −i Tr[G0W2], (74a)

S2b = i

2
Tr[G0W1G0W1]. (74b)

We will compute these contributions separately. First, we
compute

S2a = − 1

2S

∑
α

[(1 − 2n↑↑α )W↑↑α − (1 − 2n↓↓α )W↓↓α]
∫

dt φ̄γ qφ. (75)

Action S2a therefore renormalizes the magnon energy Ez, as
it appears in the magnon action Eq. (55) and corresponds to
a longitudinal magnetic field driven by the longitudinal spin
accumulation represented by n↑↑α and n↓↓α . Ez → Ez + Eze.
Eze is finite even at equilibrium due to the exchange cou-
pling between the itinerant electrons and the localized spins.
Furthermore, the renormalized magnon energy can change

due to the out-of-equilibrium longitudinal spin accumulation
Eez = Eez,eq + Eez,ne. However, longitudinal magnetic fields
have no consequences for the spin dynamics since, in the
instantaneous reference frame, such contributions correspond
to a total free energy of the form aŜ

2
, where a is a constant

[42,43]. Hence, we will not discuss action S2a in Eq. (75)
further.
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Next, we consider the second term S2b in Eq. (74b). There are four contributions to this term:

S2b = i

2S

∫
dt

∫
dτ

∑
xy

Tr[G0↑↓(τ, t )W↓↑γ xG0↑↓(t, τ )W↓↑γ y]φx(t )φy(τ )

+ i

2S

∫
dt

∫
dτ

∑
xy

Tr[G0↑↑(τ, t )W↑↓γ xG0↓↓(t, τ )W↓↑γ y]φ̄x(t )φy(τ )

+ i

2S

∫
dt

∫
dτ

∑
xy

Tr[G0↓↓(τ, t )W↓↑γ xG0↑↑(t, τ )W↑↓γ y]φx(t )φ̄y(τ )

+ i

2S

∫
dt

∫
dτ

∑
xy

Tr[Go↓↑(t, τ )W↑↓γ xGo↓↑(t, τ )W↑↓γ y]φ̄x(t )φ̄y(τ ). (76)

We will now discuss the contributions to S2b line by line. The first line of Eq. (76) becomes

Sqq
2b =

∫
dt

∫
dτ φq(t )�̃K

↑↓(t, τ )φq(τ ), (77)

where we have introduced the out-of-equilibrium transverse spin accumulation-induced Keldysh component

�̃K
↑↓(t, τ ) = i

2S

∑
αβ

GK
0↑↓αα (τ, t )W↓↑αβGK

0↑↓ββ (t, τ )W↓↑βα. (78)

Inserting the electron Green functions given by Eqs. (65) and (66), we compute

�̃K
↑↓(t − τ ) = −2i

S

∑
αβ

n↑↓αW↓↑αβn↑↓βW↓↑βαe−i(εα−εβ )(τ−t ). (79)

Importantly, inspecting the self-energy �̃K
↑↓(t − τ ) in Eq. (79) demonstrates that it is an even function of the relative time t − τ :

�̃K
↑↓(t − τ ) = �̃K

↑↓(τ − t ). (80)

This symmetry is essential in its contribution to the fluctuating field experienced by the ferromagnet.
Similarly, the fourth line of Eq. (76) becomes

Sq̄q̄
2b =

∫
dt

∫
dτ φ̄q(t )�̃K

↓↑(t, τ )φ̄q(τ ), (81)

where �̃K
↓↑ is similar to �̃K

↑↓ in Eq. (79) by flipping both spin indices, i.e.,

�̃K
↓↑(t − τ ) = −2i

S

∑
αβ

n↓↑αW↑↓αn↓↑βW↓↑βαe−i(εα−εβ )(t−τ ). (82)

By using the properties of the complex conjugate of the out-of-equilibrium distribution in Eq. (2), n∗
↓↑ = n↑↓, we can relate �̃K

↑↓
in Eq. (82) to �̃K

↓↑ in Eq. (79):

�̃K
↓↑(t − τ ) = −[

�̃K
↑↓(t − τ )

]∗
, (83)

where the superscript ∗ implies the complex conjugate. We will demonstrate that this relation Eq. (83) is essential in ensuring
that the fluctuations of the effective transverse fields are real numbers.

From Eq. (79), we see that �̃K
↑↓ vanishes at equilibrium. �̃K

↑↓ is quadratic in the out-of-equilibrium transverse spin accumula-
tion in the classical limit when the thermal energy is much larger than the spin accumulation, kBT � μs. Therefore, actions Sqq

2b

and Sq̄q̄
2b can be disregarded in the classical limit.

Interestingly, there are contributions from �̃K
↑↓ related to quantum shot noise in the quantum limit at low temperatures when

kBT � μs. We find the general expression for �̃K
↑↓ valid for arbitrary ratios between the spin accumulation and thermal energy

by Fourier transforming Eq. (79):

�̃K
↑↓(ω) = −4π i

S

∑
αβ

n↑↓αW↓↑αβn↑↓βW↓↑βαδ[ω + (εα − εβ )]. (84)

Subsequently, we disregard small terms of the order μs/εF and kBT/εF and define the transverse spin accumulation-driven
parameters

π̃κλ(ω) = −4
∫ ∞

−∞
dε n↑↓κ (ε)n↑↓λ(ε + ω) (85)
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so that the Fourier transform of �̃K
↑↓ becomes Eq. (22), where

σ̃↑↓κλ = −π

S

∑
nm

W↓↑κnλmW↓↑λmκn (86)

and all energy arguments of the matrix elements are at the Fermi energy. To evaluate π̃κλ(ω) in Eq. (85), we use distribution
Eq. (2) and uκ · σ↑↓/2 = (uκx − iuκy)/2 ≡ uκ−/2 to find

π̃κλ(ω) = −uκs−uλs−
∫ ∞

−∞
dε[ f↑κ (ε) − f↓κ (ε)][ f↑λ(ε + ω) − f↓λ(ε + ω)]. (87)

We compute π̃K at equilibrium and in the inelastic and elastic transport regimes and find the result in Eq. (26). When the system is
at equilibrium, we find π̃κλ(ω) = 0. Furthermore, we observe that �̃K

↑↓ = 0 in the classical limit when kBT � μs, as anticipated
above.

Next, we can see that the second and third lines in Eq. (76) are identical by interchanging x ↔ y and t ↔ τ and using the
cyclic properties of the trace. Furthermore, the cc components vanish because they are combinations of products of retarded
Green functions with positive and negative time and products of advanced Green functions with positive and negative time. The
second and third lines in Eq. (76) give a contribution to the qc component of

Sqc
2b =

∫
dt

∫
dτ φ̄q(t )�R(t, τ )φc(τ ), (88)

where the retarded self-energy is

�R(t, τ ) = i

S
Tr

[
GK

0↑↑(τ, t )W↑↓GR
0↓↓(t, τ )W↓↑

]
+ i

S
Tr

[
GA

0↑↑(τ, t )W↑↓GK
0↓↓(t, τ )W↑↓

]
. (89)

We then compute that the retarded self-energy is

�R(t − τ ) = iθ (t − τ )
2

S

∑
αβ

(n↑↑α − n↓↓β )|W↑↓αβ |2ei(εα−εβ )(t−τ ), (90)

where W ∗
↑↓αβ = W↓↑βα . Similarly, we find that the contribution to the cq component from the second and third terms of Eq. (76)

is

Scq
2b =

∫
dt

∫
dτ φc(t )DA(t, τ )φq(τ ), (91)

where the advanced self-energy is

�A(t − τ ) = −iθ (τ − t )
2

S

∑
αβ

(n↑↑α − n↓↓β )|W↑↓αβ |2ei(εα−εβ )(t−τ ). (92)

Finally, the contribution to the qq component from the second and third terms of Eq. (76) is

Sqq
2b =

∫
dt

∫
dτ φ̄q(t )�K (t, τ )φq(τ ), (93)

where the Keldysh self-energy is

�K (t, τ ) = 2i

S

∑
αβ

(−2n↑↑αn↓↓β + n↑↑α + n↓↓β )|W↑↓αβ |2ei(εα−εβ )(t−τ ). (94)

We note that the sum i�K (t − τ ) + i�K (τ − t ) and the
difference �K (t − τ ) − �K (τ − t ) are real numbers. These
properties are crucial in ensuring that the fluctuating trans-
verse fields acting on the magnetization are real numbers.

Collecting the qc, cq, and qq components of S2b, we see
that the contributions from the second and third terms of
Eq. (76) can be expressed as

Sc̄q
2b + Sq̄c

2b + Sq̄q
2b =

∫
dt

∫
dτ (φ̄cφ̄q)�

(
φc

φq

)
, (95)

where the self-energy is

� =
(

0 �A

�R �K

)
. (96)

Using the Fourier transform of Eq. (C1), we find that the
Fourier transforms of the retarded and advanced self-energies
are

�R/A = −2

S

∑
αβ

n↑↑α − n↓↓β

ω + εα − εβ ± i0+ |W↑↓αβ |2. (97)
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The Fourier transform of the Keldysh component of the self-
energy is

�K = i
4π

S

∑
αβ

δ(ω + εα − εβ )(−2n↑↑αn↓↓β

+ n↑↑α + n↓↓β )|W↑↓αβ |2. (98)

As we see, �K is purely imaginary:

�K (ω) = i Im[�K (ω)], (99)

which is important because i�K (ω) controls magnetiza-
tion fluctuations. Furthermore, the imaginary part is positive
definite. This feature is important because the self-energy
appears as exp[−Im�(ω)|φq(ω)|2] in the partition function of
Eq. (47). Consequently, the partition function is well defined.

Disregarding small terms of the order ω/εF , we compute
from Eq. (97) that

�R − �A = iω
1

4πS
2
[
Ar

↑↓ + Ãr
↑↓

]
(100a)

= iω2[αr + α̃r], (100b)

where A↑↓ and Ã↑↓ are defined in Eq. (A17) and the spin trans-
fer coefficients α and α̃ are defined in Eq. (12). Additionally,
we have the symmetry

�K (ω) = [�K (−ω)]↑↑↔↓↓. (101)

In other words, Eq. (101) describes that flipping the spin accu-
mulation along the magnetization and reversing the frequency
have the same effect on the self-energy �K (ω).

In general, we disregard small terms of the order kBT/εF

and (μ↑ − μ↓)/εF and find from Eq. (98) that the self-energy
can be expressed as Eq. (17), where the noise matrix is defined
as

σκλ = 2π

S

∑
nm

|W↑↓κnλm|2, (102)

and the matrix element W↑↓κnλm should be evaluated at the
Fermi energy. We can relate σκλ to the scattering matrix, as
shown in Appendix A. On the basis of the lead (left or right),
we find from Eq. (A21) that σ can be expressed as in Eq. (18),
where the spin transfer and spin pumping coefficients α and α̃

are defined in Eq. (12) and the shot-noise parameters βr and
β̃r are defined in Eq. (19).

In the expression for the Keldysh component of the self-
energy in Eq. (17), the matrix elements of π depend on the
temperature, spin accumulation, and frequency as follows:

πκλ(ω) = − 2
∫

dε[2n↑↑κ (ε)n↓↓λ(ε + ω)

− n↑↑κ (ε) − n↓↓λ(ε + ω)], (103)

where the distributions n↑↑ and n↓↓ are defined in Eq. (2). We
compute πK at equilibrium, in the inelastic transport regime,
and in the elastic transport regime and find Eq. (20).

At high temperatures, kBT � |μ↑ − μ↓| and kBT � ω,
π

eq
κλ = π in

κλ = π el
κλ = 4kBT , and we see from Eqs. (17) and

(18) that the self-energy approaches its classical value, �K →
�Kcl,

�Kcl = 4kBTi
(
αr

↑↓ + α̃r
↑↓

)
. (104)

The advanced and retarded components of the self-energy
Eq. (96) can be expanded in terms of frequency ω. To the
zeroth order in frequency, the retarded and advanced com-
ponents of the self-energy in Eq. (96) appearing in action
Eq. (95) only renormalize the magnon energy Ez, as discussed
above for action S2a. We disregard such terms since they have
no consequences for the spin dynamics [42,43]. Expanding
the retarded and advanced self-energies in Eq. (97) to the first
order in frequency and maintaining the limit μ↑ − μ↓ � εF ,
we find

�R/A(ω) − �R/A(ω = 0)

≈ ±iπω
2

S

∑
αβ

(
−∂ f

∂ε

)
ε=εα

δ(εα − εβ )|W↑↓αβ |2

= ±iω[αr + α̃r], (105)

where we used the relation Eq. (A25) and the definition of the
spin transfer and spin pumping efficiency Eq. (12).

Summarizing this section, we find that the effective action
that determines the spin dynamics is

S̃m = Sm + S1 + Sd
2b + S f

2b, (106)

where S1 governs the spin transfer torque,

Sd
2b = Sq̄c

2b + Sc̄q
2b (107)

governs the spin-pumping-enhanced dissipation (Gilbert
damping), and

S f
2b = Sq̄q̄

2b + Sqq
2b + Sq̄q

2b (108)

governs the fluctuations.
In the low-frequency limit, we use Eq. (105) and can

collect the dissipative contributions to the spin dynamics as
follows1:

Sc̄q
2b + Scq̄

2b = (α + α̃)
∫

dt φq∂t φ̄
c

+ (α∗ + α̃∗)
∫

dt φ̄q∂tφ
c. (109)

In analogy with the magnon action Sm in Eq. (55), we see that
actions Sc̄q

2b + Scq̄
2b contribute to the spin dynamics similar to an

effective dissipative transverse field of the form

E+
d = −(α + α̃)∂t S+/S, (110a)

E−
d = −(α + α̃)∂t S

−/S, (110b)

where we have used φc = S+/
√

S in the semiclassical limit.
Consequently, we find the spin pumping torques in Eq. (13).

VII. STOCHASTIC LANGEVIN FORCES

This section derives the stochastic Langevin forces from
the effective action derived in the previous Sec. VI. We will
find that fluctuating magnetic fields describe the Langevin
forces.

1We generalize to a complex spin pumping coefficient that is con-
sistent with our finding for the spin transfer torque.
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To see the effects of the actions that are quadratic in the quantum components of the boson fields φq and φ̄q, we use the
Gaussian integral over the real variables hi:

exp

[
−1

2

∑
i j

φi(a)i jφ j

]
= 1√

det(a)

∫
� j

(
dh j√

2π

)
exp

[∑
i

ihiφi − 1

2

∑
i j

hi(a
−1)i jh j

]
, (111)

assuming that the integral converges. Additionally, we use the Gaussian integral over the complex variable z = zr + izi:

exp

[
−

∑
i j

φibi jφ j

]
= 1

det(b)

∫
� jD[z̄ j, z j] exp

[∑
i

iz̄iφi + ziφ̄i −
∑

i j

z̄i(b
−1)i j z j

]
, (112)

assuming that the integral converges and where D[z̄, z] = dzRdz I/π .
We will also use the results for the expectation value and fluctuations of the real variables h with the distribution determined

by matrix a as in the right-hand side of Eq. (111) with φ = 0, for example,

〈hl〉 = 0, (113a)

〈hl hm〉 = aml . (113b)

We note that although the variables hi appearing in Eq. (111) are real, the variance in Eq. (113) governed by complex
distribution a in Eq. (111) can be complex.

Similarly, the expectation value and fluctuations of the complex variables z with the distribution as in the right-hand side of
Eq. (112) with φ = 0 are

〈z̄l〉 = 0, (114a)

〈zl zm〉 = 0, (114b)

〈z̄l zm〉 = bml . (114c)

By using the Gaussian integral over the real variables Eq. (111), which is a Hubbard-Stratonovich decoupling scheme, we
separately remove the quadratic terms in actions Sq̄q̄

sb and Sqq
2b with two independent and real auxiliary fields hq̄q̄(t ) and hqq(t ).

For example, we use

exp iSqq
2b = exp i

∫
dt

∫
dτ φq(t )�̃K

↑↓(t − τ )φq(τ ) (115)

= 1√
det[−2i�̃K

↑↓]

∫
� j

dhqq(t j )√
2π

exp
∑

i

ihqq(ti)φ
q(ti ) − 1

2

∑
i j

hqq(ti )(−2i�̃K
↑↓)−1(ti, t j )hqq(t j ), (116)

and we treat the effect of the contribution exp iSq̄q̄
2b to the partition function in a similar manner. Then, the expectation values and

correlations of the auxiliary fields in our action satisfy

〈hqq(t )〉 = 0, (117a)

〈hqq(t )hqq(τ )〉 = −2i�̃K
↑↓(t − τ ) (117b)

and

〈hq̄q̄(t )〉 = 0, (118a)

〈hq̄q̄(t )hq̄q̄(τ )〉 = −2i�̃K
↓↑(t − τ ). (118b)

Similarly, by using the Gaussian integral over complex variables Eq. (112), we remove the quadratic terms in action Sq̄q
2b :

exp iSq̄q
2b = exp i

∫
dt

∫
dτ φ̄q(t )�K

↑↓(t − τ )φq(τ ) (119)

= 1

det[−i�K ]

∫
� j

dhqq(t j )√
2π

exp
∑

i

ih̄q̄q(ti )φ
q(ti ) + ihq̄q(ti )φ̄

q(ti ) −
∑

i j

h̄q̄q(ti )(−i�K )−1(ti, t j )hq̄q(t j ). (120)

The complex auxiliary field hq̄q(t ) obeys the statistics

〈hq̄q(t )〉 = 0, (121a)

〈hq̄q(t )hq̄q(τ )〉 = 0, (121b)

〈h̄q̄q(t )hq̄q(τ )〉 = −i�K (t − τ ). (121c)
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Note the essential difference of a factor of 2 in the correlations between Eqs. (118) and (121), which is essential in fulfilling
the fluctuation-dissipation theorem for the magnetic fluctuations at equilibrium.

As a result of the Hubbard-Stratonovich decoupling scheme, we obtain an effective action that is linear in the boson fields φq

and φ̄q and depends on the auxiliary and stochastic temporal fields hq̄q̄, hqq, and hq̄q.
The fluctuating fields then effectively contribute to the action as follows:

S f
2b =

∫
dt[h̄q̄q(t ) + hqq(t )]φq(t )

+
∫

dt[hq̄q(t ) + hq̄q̄(t )]φ̄q(t ). (122)

From Eq. (55), we see that the fluctuating fields correspond to transverse magnetic fields represented by effective energies

E f
− = − 1√

S
[h̄q̄q(t ) + hqq(t )], (123a)

E f
+ = − 1√

S
[hq̄q(t ) + hq̄q̄(t )]. (123b)

Using the relation between effective energies and effective transverse magnetic fields, as we introduced in Eq. (42), the
effective transverse fluctuating fields are

Hx = 1

2
√

Sg∗μB

[hq̄q + h̄q̄q + hqq + hq̄q̄], (124a)

Hy = 1

i2
√

Sg∗μB

[hq̄q − h̄q̄q − hqq + hq̄q̄]. (124b)

By using the correlations of the auxiliary fields in Eqs. (118) and (121) and the symmetries of the self-energies in Eqs. (80)
and (99), we find that the correlations between the fluctuating fields are

〈γ Hx(t )γ Hx(τ )〉 = − i

4S
[�K (t − τ ) + �K (τ − t )] + 1

S
Im�̃K

↑↓(t − τ ), (125a)

〈γ Hy(t )γ Hy(τ )〉 = − i

4S
[�K (t − τ ) + �K (τ − t )] − 1

S
Im�̃K

↑↓(t − τ ), (125b)

〈γ Hx(t )γ Hy(τ )〉 = − 1

4S
[�K (t − τ ) − �K (τ − t )] + 1

S
Re�̃K

↑↓(t − τ ). (125c)

From the earlier derived relations in this section that i[�K (t − τ ) + �K (τ − t )] and [�K (t − τ ) − �K (τ − t )] are real
numbers and �̃K

↑↓(t − τ ) is an even function of time, we see that all correlations between the fluctuating fields are real numbers
and that the correlations Eq. (125) are even functions of the time difference t − τ , as should be expected. Furthermore, we see
from Eq. (94) that −�K (t − τ ) � 0, as expected for the equal time correlations.

By Fourier transforming Eq. (125), we find the correlations introduced in Eq. (16).

VIII. SCATTERING FORMULATION OF THE
ELECTRON-MAGNON INTERACTION

This section presents how the electron-magnon interaction
can be expressed in terms of scattering matrices of electron
transport. In the classical ground state of the magnet, the
itinerant electron contribution to the Hamiltonian Eq. (35) is

Ĥe =
∫

dr ψ̂†[H0 + Vsσz]ψ̂. (126)

From the Hamiltonian Eq. (35), by using the Holstein-
Primakoff transformation Eq. (38), the electron-magnon
coupling is

Hem = b†

√
2

S

∫
dr ψ̂↑Vsψ̂↓ + b

√
2

S

∫
dr ψ̂↓Vsψ̂↑

− b̂†b̂
1

S

[∫
dr ψ̂↑Vsψ̂↑ −

∫
dr ψ̂↓Vsψ̂↓

]
. (127)

We use scattering states to express the itinerant electron field
operators. As a first representation, the field operators can be
expressed as

ψ̂s =
∫ ∞

0

dk√
2π

∑
κn

ψsκnk (xρ)âsκnk, (128)

where l̂sκnk annihilates an electron with spin s in reservoir
κ (κ = L or κ = R) with transverse waveguide mode n and
longitudinal momentum k. The associated spatially dependent
wave function is ψsκnk (xρ), where x is the longitudinal co-
ordinate and ρ denotes the transverse coordinates. The field
operators satisfy the anticommutation relations

{âsκnk, â†
tλmp} = δstδκλδnmδ(k − p). (129)

From Eq. (126), we identify the spin-dependent single-
particle electron Hamiltonian Hs, where H↑ = H0 + Vs and
H↓ = H0 − Vs. In general, in the lead and the scattering re-
gion, the Schrödinger equation associated with an incoming
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electron from the left or right is Hsψsκnk (xρ) = εnkψsκnk (xρ).
In the following, it is essential that the single-particle energy
εnk is spin degenerate because the leads are paramagnetic, i.e.,
the potential Vs vanishes in the leads.

Expressing the field operator Eq. (128) and the scat-
tering states in terms of the total energy of the states
ε = εn + εk by substituting dk → dε(∂ε/dk)−1, ψsκnk →
ψsκn(ε)(∂ε/dk)1/2, and âsκnk → âsκn(ε)(∂ε/dk)1/2 is more
convenient. A second representation of the field operator is
therefore

ψ̂s = 1√
2π

∑
κn

∫ ∞

εn

dε ψsκn(εxρ)âsκn(ε). (130)

On the basis of the scattering states in the total-energy
representation Eq. (130), using the orthogonality of the single-
particle states and assuming that the system size is much
larger than the Fermi wavelength, the electronic Hamilton
operator becomes Eq. (43).

In terms of scattering states Eq. (130), the electron-
magnon interaction contains first- and second-order terms in
the magnon operators, Ĥem = Ĥ1 + Ĥ2. Using Eq. (127), we
see that the first-order terms in the magnon operators are
expressed as in Eq. (45) and the second-order terms in the
magnon operators are given by Eq. (46), where the matrix
elements are

W↑↓αβ = 1

2π

∫
dr ψ∗

↑αVsψ↓β, (131)

W↓↑βα = (W↑↓αβ )∗, and

Wσσαβ = 1

2π

∫
dr ψ∗

σαVsψσβ. (132)

We will demonstrate in Appendix A that the matrix elements
W↑↓αβ and W↓↑βα are related to a generalized inelastic (since
the energy is not conserved) 2×2 transverse (mixing) con-
ductance. However, the final results for the spin dynamics
demonstrate that they nevertheless only relate to the elastic
2×2 transverse (mixing) conductance, as expected since the
magnon frequency is tiny compared to the Fermi energy. Fur-
thermore, we have demonstrated in the previous sections that
the matrix elements Wσσαβ diagonal in the spin indices are
irrelevant to the spin dynamics. Only spin-flip events are rele-
vant in the semiclassical limit S � 1.

IX. CONCLUSION

We have presented a quantum scattering theory for spin
transport and magnetization dynamics in normal-metal–
ferromagnet systems. The path-integral formalism generalizes
earlier semiclassical results to the quantum low-temperature
regime and provides a valuable connection to the scattering
formalism of electron transport. At low temperatures, the
chemical potential in the normal metals controls quantum con-
tributions to the magnetic noise. Some of these contributions
are related to shot noise because of the discrete spin angular
momentum of electrons. These quantum contributions dom-
inate when the temperature is lower than the spin or charge
chemical potentials.
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APPENDIX A: EVALUATION OF SPIN-FLIP
MATRIX ELEMENTS

In this Appendix, we demonstrate how the matrix elements
W↑↓αβ Eq. (131) are governed by the scattering matrix, i.e., the
reflection and transmission amplitudes. This implies that the
matrix elements are proportional to the surface area between
the ferromagnet and the normal metal instead of the volume
of the ferromagnet, as one might naively expect from the
definition Eq. (131).

In the lead, Vs vanishes, and H0 decomposes into longitu-
dinal and transverse parts as follows:

H0 = − 1

2m

∂2

∂x2
+ H⊥(ρ), (A1)

so the transverse wave function φn obeys the Schrödinger
equation

H⊥(ρ)φn(ρ) = εnφn(ρ), (A2)

where εn is the transverse component of the single-particle
energy εnk = εk + εn, where εk = k2/2m.

We introduce the energy ε-dependent reflection and trans-
mission matrices r, t , r̃, and t̃ that constitute the S matrix:

S =
(

r t̃
t r̃

)
, (A3)

which should not be confused with the total spin of the magnet
S. The S matrix obeys the unitarity relations

SS† = 1, (A4a)

S†S = 1. (A4b)

In the left lead, when x < xL, the scattering states at energy
ε are

ψsLn =
∑

m

φm(ρ)√
vm

[
δmneiknx̃L + rmn

s e−ikmx̃L
]
, (A5a)

ψsRn =
∑

m

φm(ρ)√
km

t̃mn
s e−ikx̃L , (A5b)

where vm = h̄km/m, the longitudinal wave vector km is de-
termined by h̄2k2

n/2m + εn = ε, and x̃L = x − xL is a local
coordinate relative to the scattering region containing the
ferromagnet that originates at x = xL and ends at x = xR.
Similarly, in the right lead, when x > xR, the scattering states
are

ψsLn =
∑

m

φm(ρ)√
km

tmn
s eikx̃R , (A6a)

ψsRn =
∑

m

φm(ρ)√
km

[δmne−ikx̃R + r̃mn
s eikx̃R ], (A6b)

where x̃R = x − xR is the local coordinate in the right lead.
Using Vs = (H↑ − H↓)/2, partial integration of the kinetic

energy along the transport direction, and the fact that the
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single-particle scattering state energies are spin degenerate,
we find that

W↑↓αβ = 1

4π

∫ xR

xL

dx
∫

dρ(ψ∗
↑αH↑ψ↓β − ψ∗

↑αH↓ψ↓β )

= 1

4π i
[ j↑↓αβ (x = xR) − j↑↓αβ (x = xL )]. (A7)

We have introduced the off-diagonal component of the spin
current in the transport direction:

j↑↓αβ (x) = 1

2mi

∫
dρ

[
ψ∗

↑αβ

∂ψ↓β

∂x
− ∂ψ∗

↑α

∂x
ψ↓β

]
. (A8)

The transverse component of the spin current with respect to
the equilibrium orientation of the magnetization flowing in
the transport direction Eq. (A8) can be computed from the
asymptotic behavior of the wave functions in Eqs. (A5) and
(A6).

We can now evaluate the spin current in terms of the
scattering matrix. In the final results for the effective magnon
action, only matrix elements at the Fermi energy are needed.
For RR components, we find

jnnm
↑↓RR(xR) = −(1 − r̃†

↑r̃↓)nm, (A9a)

jnnm
↑↓RR(xL ) = −(t̃†

↑kt̃↓)nm, (A9b)

the LL components are

jnm
↑↓LL(xR) = (t†

↑kt↓k )nm, (A10a)

jnm
↑↓LL(xL ) = (1 − r†

↑r↓)nm, (A10b)

the LR components are

jnm
↑↓LR(xR) = (t†

↑ r̃↓)nm, (A11a)

jnm
↑↓LR(xL ) = −(r†

↑t̃↓)nm, (A11b)

and the RL components are

jnn
↑↓RL(xR) = (r̃†

↑t↓)nm, (A12a)

jnn
↑↓RL(xL ) = −(t̃†

↑r↓)nm. (A12b)

In the expressions Eqs. (A9)–(A12), the superscript nm
denotes the matrix element, and matrix multiplication of the
reflection and transmission coefficients is implied.

Consequently, we find from Eqs. (A7), (A9)–(A12)

W nm
↑↓LL = i

1

4π
Anm

↑↓, (A13a)

W nm
↑↓RR = i

1

4π
Ãnm

↑↓, (A13b)

where

Anm
↑↓ = gnm

r − gnm
t , (A14)

Ãnm
↑↓ = gnm

r̃ − gnm
t̃ , (A15)

and we have introduced the dimensionless partial conductance
matrix elements

gnm
r = (1 − r†

↑r↓)nm, (A16a)

gnm
r̃ = (1 − r̃†

↑r̃↓)nm, (A16b)

gnm
t = (t†

↑t↓)nm, (A16c)

gnm
t̃ = (t̃†

↑t̃↓)nm. (A16d)

We also define [19]

A↑↓ =
∑

nn

W nn
↑↓LL = gr − gt , (A17a)

Ã↑↓ =
∑

nn

W nn
↑↓RR = gr̃ − gt̃ , (A17b)

where the dimensionless transverse (mixing) conductances
are

gr = Tr(1 − r†
↑r↓), (A18a)

gr̃ = Tr(1 − r̃†
↑r̃↓), (A18b)

gt = Tr(t†
↑t↓), (A18c)

gt̃ = Tr(t̃†
↑t̃↓). (A18d)

The spin transfer and spin pumping coefficients are defined
as

α = A↑↓
4πS

, (A19a)

α̃ = Ã↑↓
4πS

, (A19b)

which can be expressed as in Eq. (12).
Additionally, we find that

W nm
↑↓LR = −i

1

4π
(r†

↑t̃↓ + t†
↑ r̃↓)nm, (A20a)

W nm
↑↓RL = −i

1

4π
(t̃†

↑r↓ + r̃†
↑t↓)nm. (A20b)

By using Eq. (A13), Eq. (A20), and the unitarity of the S
matrix Eq. (A4), we also find that

∑
nm

∣∣W nm
↑↓LL

∣∣2 =
(

1

4π

)2

2(Ar
↑↓ − Br

↑↓), (A21a)

∑
nm

∣∣W nm
↑↓RR

∣∣2 =
(

1

4π

)2

2(Ãr
↑↓ − B̃r

↑↓), (A21b)

∑
nm

∣∣W nm
↑↓LR

∣∣2 =
(

1

4π

)2

2Br
↑↓, (A21c)

∑
nm

∣∣W nm
↑↓RL

∣∣2 =
(

1

4π

)2

2B̃r
↑↓, (A21d)

where the shot-noise parameters are

Br
↑↓ = 1

2
Tr[1 − (r†

↑r↓ + t†
↑t↓)(r†

↓r↑ + t†
↓t↑)], (A22a)

B̃r
↑↓ = 1

2
Tr[1 − (r̃†

↑r̃↓ + t̃†
↑t̃↓)(r̃†

↓r̃↑ + t̃†
↓t̃↑)] (A22b)

and A↑↓ was introduced in Eq. (A15).
The noise matrix parameters are

σ = 1

4πS

(
Ar

↑↓ − Br
↑↓ Br

↑↓
B̃r

↑↓ Ãr
↑↓ − B̃r

↑↓

)
, (A23)
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which can be expressed as in Eq. (18).
From the definition of the absolute squares of the matrix

elements Eq. (A21), we see that the following conditions are
fulfilled:

Ar
↑↓ � 0, Ãr

↑↓ � 0, (A24a)

Br
↑↓ � 0, B̃r

↑↓ � 0, (A24b)

Ar
↑↓ � Br

↑↓, Ãr
↑↓ � B̃r

↑↓. (A24c)

Hence, all the matrix elements in Eq. (19) are positive
definite, as expected for fluctuations.

We can also find the sum rule

∑
nm

[∣∣W nm
↑↓LL

∣∣2 + ∣∣W nm
↑↓LR

∣∣2] =
(

1

4π

)2

2Ar
↑↓, (A25a)

∑
nm

[∣∣W nm
↑↓RR

∣∣2 + ∣∣W nm
↑↓RL

∣∣2] =
(

1

4π

)2

2ÃR
↑↓, (A25b)

which we classify as an optical theorem for the transport of
spins transverse to the magnetization direction. The optical
theorem Eq. (A25) relates sums of reflection and transmission
probabilities to the real part of the reflection and transmission
amplitudes.

We also evaluate

∑
nm

W nm
↓↑LLW mn

↓↑LL = −
(

1

4π

)2

2(A↓↑ − C↓↑), (A26)

where

A↓↑ = A∗
↑↓, (A27)

A↑↓ was defined in Eq. (A17a), and

C↓↑ = 1

2
Tr[1 − (r†

↓r↑ + t†
↓t↑)2]. (A28)

We note that in general, C↓↑ �= B↓↑. Furthermore, we find

∑
nm

W nm
↓↑LRW mn

↓↑RL = −
(

1

4π

)2

2D↓↑, (A29)

where

D↓↑ = Tr[(r†
↓t̃↑ + t†

↑ r̃↑)(t̃†
↓r↑ + r̃†

↓t↑)]. (A30)

We also find

∑
nm

W nm
↓↑RLW mn

↓↑LR = −
(

1

4π

)2

2D↓↑ (A31)

and

∑
nm

W nm
↓↑RRW mn

↓↑RR = −
(

1

4π

)2

2(Ã↓↑ − C̃↓↑). (A32)

We use these results to compute the transverse spin accumu-
lation noise matrix elements as defined in Eq. (86):

σ̃ = 1

8πS

(
A↓↑ − C↓↑ D↓↑

D↓↑ Ã↓↑ − C̃↓↑

)
, (A33)

which can be expressed as in Eq. (23).

APPENDIX B: TRANSPORT COEFFICIENTS

The transport coefficients can be computed by ab initio
band-structure calculations. This has been carried out for the
spin transfer and spin pumping efficiencies reflected in the
mixing conductances in Eq. (12) in Ref. [64].

Here, we consider some scenarios for electron transport.

1. Magnetic insulator

In the case of a magnetic insulator, t = 0 and t̃ = 0; thus,
that we find from Eq. (A17) that the spin transfer and spin
pumping parameters are determined by the reflection coeffi-
cients:

A↑↓ = gr, (B1a)

Ã↑↓ = g̃r . (B1b)

The spin transfer and spin pumping efficiencies are de-
termined by the mixing conductance associated with the
reflection of the incoming waveguide modes.

We also find that

C↓↑ = 1

2
Tr[1 − (r†

↑r↑)2], (B2)

C̃↓↑ = 1

2
Tr[1 − (r̃†

↑r̃↑)2], (B3)

D↓↑ = 0, (B4)

D̃↓↑ = 0. (B5)

In the simplest case of complete dephasing, gr = N = g̃r ,
where N is the number of transverse waveguide modes. Fur-
thermore, from Eq. (A22), we find that

B↑↓ = 0, (B6a)

B̃↑↓ = 0, (B6b)

and C↓↑ = N/2 = C↑↓. The latter implies that there is noise
associated with transverse spin accumulation transport. This
is due to the discrete angular momentum carried by each
electron that may be flipped inside the magnet.

In contrast, there are no shot-noise contributions arising
from B↑↓ due to the fluctuations of magnetic insulators. This
is because B↑↓ governs the transport of longitudinal spins that
is absent in magnetic insulators.

2. Clean junctions

In a simple model of a clean junction, the reflection and
transmission coefficients are diagonal in the transverse mode
basis. To illustrate the main physics, let us furthermore as-
sume that only the phases of the reflection and transmission
coefficients differ. Then, for each mode, the spin-dependent
scattering coefficients are

rs = √
1 − T exp iφrs, (B7a)

ts =
√

T exp iφrt , (B7b)

r̃s = √
1 − T exp iφr̃s, (B7c)

t̃s =
√

T exp iφt̃ s. (B7d)
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Then, we find for a single mode

A↑↓(1) = 1

4πS

(
1 − (1 − T )ei(φr↑−φr↓ ) − T i(φt↑−φt↓ )), (B8a)

Ã↑↓(1) = 1

4πS

(
1 − (1 − T )ei(φr↑−φr↓ ) − T i(φt↑−φt↓ )

)
, (B8b)

B↑↓(1) = T (1 − T )
[
1 − e−i(φr↑−φr↓ )e−i(φt↑−φt↓ )

]
, (B9a)

B̃↑↓(1) = T (1 − T )
[
1 − e−i(φr̃↑−φr̃↓ )e−i(φt̃↑−φt̃↓ )

]
, (B9b)

C↓↑ = 1

2

[
1 − Re−i(φr↑−φr↓ ) + Te−i(φt↑−φt↓ )

]
, (B10)

D↓↑ = 0. (B11)

As is common in the shot-noise characteristics for fermions,
the shot-noise parameter B↑↓ is proportional to the factor
T (1 − T ) due to the Fermi exclusion principle ensuring that
only one particle can propagate at the same time. Furthermore,
when we have many channels and average over all of them
with different scattering phases, dephasing results in

A↑↓(N ) = N, (B12a)

Ã↑↓(N ) = N, (B12b)

B↑↓(N ) = NT (1 − T ), (B13a)

B̃↑↓(N ) = NT (1 − T ), (B13b)

C↓↑ = N/2, (B14)

and

D↓↑ = 0, (B15)

where N is the number of transverse waveguide modes.
Equation (B12) is the well-known result that the mixing con-
ductance roughly equals the Sharvin conductance.

3. Disordered junctions

Let us consider a random potential scatter in the magnet
and normal metals. Furthermore, we assume that the random
impurity scattering differs for spin-up and -down electrons
and that these scatterings are uncorrelated. The statistical aver-
ages of the spin-up and -down electrons are then independent.
When the number of transverse modes N is large, we use the
averages

〈|tnm|2〉 = g/N2, (B16)

〈|rnm|2〉 = 1 − g/N

N
, (B17)

where g is the dimensionless conductance. We then find that
B↑↓ = g↑+g↓

N2 →N→∞ 0, so

Adis
↑↓ = N, (B18a)

Ãdis
↑↓ = N, (B18b)

Bdis
↑↓ = 0, (B19a)

B̃dis
↑↓ = 0, (B19b)

C↓↑ = N/2, (B20a)

C̃↓↑ = N/2, (B20b)

D↓↑ = 0, (B21a)

D̃↓↑ = 0. (B21b)

APPENDIX C: FOURIER TRANSFORM

We define the Fourier transform of the Green functions as

G0(ω) =
∫ ∞

−∞
d (t − τ )G(t − τ )eiω(t−τ ), (C1a)

G0(t − τ ) = 1

2π

∫ ∞

−∞
dω G0(ω)e−iω(t−τ ). (C1b)
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