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In periodically driven quantum systems, resonances can induce exotic nonequilibrium behavior and new
phases of matter without static analog. We report on the emergence of fractional and integer resonances in a
broad class of many-body Hamiltonians with a modulated hopping with a frequency that is either a fraction or
an integer of the on-site interaction. We contend that there is a fundamental difference between these resonances
when interactions bring the system to a Floquet prethermal state. Second-order processes dominate the dynamics
in the fractional resonance case, leading to less entanglement and more localized quantum states than in
the integer resonance case dominated by first-order processes. We demonstrate the dominating emergence of
fractional resonances using the Magnus expansion of the effective Hamiltonian and quantify their effects on the
many-body dynamics via quantum states’ von Neumann entropy and Loschmidt echo. Our findings reveal novel
features of the nonequilibrium quantum many-body system, such as the coexistence of Floquet prethermalization
and localization, that may allow to development of quantum memories for quantum technologies and quantum
information processing.
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I. INTRODUCTION

Resonances are of utmost importance in diverse fields such
as engineering and life sciences [1,2]. In dynamical systems,
when a nonlinear oscillator is strongly driven, it usually phase
locks to the external drive [3]. If one investigates the fre-
quency of the oscillator as a function of the driving frequency,
the resulting curve may consist of an infinite of steps with a
fractal dimension between 0 and 1, which is known as the
Devil’s staircase [4]. In the context of quantum systems a
natural question is: how do the fractional and integer reso-
nances influence the dynamics of many-body systems under
periodic drive? Currently, it is clear that understanding the
nonequilibrium dynamics of a quantum many-body system
poses challenges on moving beyond the standard framework
of statistical mechanics [5–9] and the efficient numerical
simulation on classical computers [10–12]. Advances in ma-
nipulating many-body systems allow us now to prepare exotic
nonequilibrium states of matter using programmable quantum
simulators [13] such as cold atoms [14–17], trapped ions
[18–21], and superconducting circuits [22–27]. In particular,
periodically driven quantum systems [28,29] are an exciting
arena for discovering nonequilibrium states without static ana-
log. Paradigmatic examples are discrete time crystals [30–39],
dynamical many-body freezing [40,41], and Floquet prether-
malization [42–48].

When a high-frequency driving (larger than any frequency
scale of the undriven system) acts upon a quantum system, the

Floquet Hamiltonian ĤF can be defined approximately using
the Magnus expansion [49,50]. Driving a many-body system
on resonance or off-resonance has significant consequences in
the effective Hamiltonian that governs the dynamics [51]. This
is particularly appealing in the Bose-Hubbard model (BHM)
[52,53]. In the strong interaction limit [54], where the on-site
repulsion dominates over the hopping, many-body resonances
appear whenever �E = U [±(ni − n j ) + 1] = m�, with U
being the on-site repulsion, � the driving frequency, m ∈ Z,
while ni(n j ) is the occupation number at site i( j). The upper
(lower) sign means a hopping from site j → i (i → j), respec-
tively. In particular, a resonant high-frequency modulation of
the hopping rate leads to an exponentially low heating rate,
thus producing a prethermal regime [47,54].

In this work, we demonstrate the emergence of a Floquet
prethermal and localized quantum phase in a broad class
of many-body Hamiltonians, when second-order processes
rule the many-body dynamics. This occurs if the condition
±m� = ±(mj − ml ) + 1 is satisfied, where j and l repre-
sent the next-nearest neighbor sites, m� = 2�/U , and mj

is a quantum number that labels the local states of lattice
constituents, for example, it may represent the occupation
number of bosonic systems or spin-1 states. If the maximal
occupation number per site is limited to mj � 2 for bosonic
systems or mj ∈ {−1, 0, 1} for spin-1 lattice systems, the res-
onance condition is satisfied only if m� = 1, which implies
a fractional driving frequency � = U/2. To demonstrate the
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FIG. 1. The diagram represents many-body processes in the driven lattice model. The center panel represents the initial state with one
excitation (full sphere) per site. The left panel represents single-excitation processes dominated by the frequency scale J0, whereas the right
panel virtual two-excitation processes dominated by J2

0 /U . The semitransparent sphere represents an empty state. The wiggle orange curve
represents the modulated hopping rate J (t ).

dominating emergence of fractional resonances, we use the
Magnus expansion of the effective Hamiltonian owing to the
high-frequency driving acting upon many-body systems that
exhibit reflection and U(1) symmetries. In a digital-analog
quantum simulation scheme [55], our findings, put together
with Floquet protocols of unitary gates [48], may provide
alternative paths for discovering new phases of matter out of
equilibrium.

This article is organized as follows. In Sec. II, we present
the generic many-body Hamiltonian exhibiting reflection and
U(1) symmetry. The Hamiltonian is constructed using generic
operators that follow a defined Lie algebra. In Sec. III,
we discuss the emergence of integer and fractional many-
body resonances using the Magnus expansion of the Floquet
Hamiltonian. In particular, we demonstrate that at fractional
resonances the leading term of the Magnus expansion is Ĥ (1)

F
with the frequency scale J2

0 /U dominating the dynamics,
where J0 is the bare hopping rate. In contrast, at integer
resonances, the zeroth order of the Magnus expansion, Ĥ (0)

F ,
plays the dominant role with a frequency scale J0. These fre-
quencies establish two scales for the spreading of excitations
over the lattice. In Sec. IV, we exemplify our findings in a
situation akin to experimental realization in superconducting
circuits; namely, the three-site BHM initialized in a product
state with unit filling, where we find analytical expressions
for Ĥ (0)

F and Ĥ (1)
F and probabilities of accessible states at

stroboscopic times. Then, in Sec. V, we extend our investi-
gation to the many-body case that can be realized in diverse
platforms [17,22–27]. We present numerical simulations of
localization properties of quantum states [56,57], heating rate
[58,59], the half-chain von Neumann entropy [60], Loschmidt
echo [9], and autocorrelation functions [26] to quantify the
critical slowing down characteristic of fractional resonances.
Here, we also demonstrate the stability of the fractional res-
onance under perturbations in the resonance condition. In
Sec. VI, we discuss the emergence of fractional resonance
in the XXZ spin-1 model with anisotropy [61,62] and the
Jaynes-Cummings-Hubbard model [63–65]. In Sec. VII, we
present our concluding remarks.

II. THE MODEL

In quantum mechanics, we deal with symmetries related to
groups that can be compact or not. A typical compact group
is the special group of rotations in three dimensions SO(3).
The Lorentz group turns out to be noncompact. A Lie algebra

G can be interpreted as the tangent space of a Lie group
at the identity element [66]. In this work, we focus on Lie
algebras that admit a decomposition G = H⊕

α Gα , where
H is the Cartan subalgebra. The ladder operators generate the
subspaces Gα .

To keep the discussion as general as possible, without
losing the mathematical rigour, let us consider a Cartan al-
gebra H j for a subsystem at site j with a single generator
that we define as Ô j . Consequently, we consider local ladder
operators Â j and Â†

j such that they satisfy the algebraic rela-

tions [Ôi, Â†
j ] = δi, j Â

†
j and [Ôi, Â j] = −δi, j Â j . Let us suppose

that the local Hermitian operator Ô j satisfies the eigenvalue
equation Ô j |mj〉 = mj |mj〉, where mj is a quantum number
that labels the local states, for example, it may represent the
occupation number of bosonic systems or spin-1 states. Due
to the algebraic structure, we have the relation Ô j Â

†
j |mj〉 =

(Â†
j Ô j + [Ô j, Â†

j ])|mj〉 = (mj + 1)Â†
j |mj〉. Using this algebra

we can build a one-dimensional lattice with open boundary
conditions, see Fig. 1, described by the generic Hamiltonian

Ĥ (t ) = h̄
L∑

j=1

(
ωÔ j + U

2
Ô2

j

)
− h̄J0 cos (�t )

×
L−1∑
j=1

(Â†
j Â j+1 + Â†

j+1Â j ). (1)

The latter is composed of a local energy term Ĥ0 =
h̄

∑L
j=1(ωÔ j + U/2Ô2

j ) that contains a single generator Ô j ,
and a time-dependent hopping term Ĥ1(t ) that represents the
coupling between nearest neighboring sites via local ladder
operators Â j and Â†

j . In the Hamiltonian (1) ω, U , J0, and �

represent the local frequency scale, on-site interaction, bare
hopping rate, and driving frequency, respectively. Since the
Hamiltonian (1) exhibits U(1) symmetry, eiθN̂ Ĥ (t )e−iθN̂ =
Ĥ (t ), where N̂ = ∑L

j=1 Ô j , the term
∑N

j=1 ωÔ j is a constant
of motion and does not play any role in the calculations.
Also, since we consider open boundary conditions, the model
exhibits parity symmetry such that [Ĥ (t ), P̂] = 0, where
P̂|m1, m2 . . . , mL〉 = |mL, . . . , m2, m1〉. Along this work we
consider the strongly interacting regime characterized by
U/J0 � 1 [15], and within the subspace with filling factor
N/L = 1 for bosonic systems and total magnetization 〈Ŝz〉 =
0 for spin-1 systems. For bosonic systems, the above condition
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will allow us to truncate the local Hilbert space to a maximum
occupation number nmax = 2 when working with a large lat-
tice size L > 6.

In order to gain physical intuition on the processes that may
occur due to hopping events, let us move to a rotating frame
with respect to Ĥ0. The resulting Hamiltonian simply reads

H̃I (t ) = e
i
h̄ Ĥ0t Ĥ (t )e− i

h̄ Ĥ0t

= −h̄J0 cos (�t )
L−1∑
j=1

(eiUt (Ô j+1−Ô j−1)Â†
j Â j+1

+ e−iUt (Ô j+1−Ô j+1)Â†
j+1Â j ). (2)

Notice that there are two characteristic frequencies in the
Hamiltonian (2), the driving frequency � and the on-site
interaction U , which leads to a local anharmonic spectrum,
see Appendix A for a detailed derivation of Eq. (2).

The Hamiltonian (2) is not strictly periodic neither in � nor
U ; however, as we will prove in the next section, the Hamil-
tonian becomes periodic at fractional � = U/2 and integer
� = U driving frequencies. In this case, the Hamiltonian sat-
isfies H̃I (t + T ) = H̃I (t ) with period T = 2π/�, and we can
apply the Floquet theory for time-periodic Hamiltonians [67].
Surprisingly, the fractional frequency � = U/2 is a resonance
condition where second-order hopping processes become the
dominating emergent mechanism displaying a generic slow-
ing down of the many-body dynamics, prethermalization and
localization simultaneously, as we will prove in next section.

If the time-dependent Hamiltonian of a system is pe-
riodic Ĥ (t + T ) = Ĥ (t ) with the period T = 2π/�, the
whole dynamics is captured by the unitary time evolution
operator Û (t, t0) = P̂(t, t0)e− i

h̄ ĤF (t−t0 ), where P̂(t, t0) is the
periodic kick operator and ĤF is the time-independent Floquet
Hamiltonian [67]. Obtaining a closed form of the Floquet
Hamiltonian is not trivial, and particularly difficult for a

quantum many-body system due to the exponential growth
of the Hilbert space. When the driving frequency is much
larger than all natural frequency scales of the undriven sys-
tem, ĤF can be approximated using the Magnus expansion
(ME) ĤF = ∑∞

n=0 Ĥ (n)
F [49,50]. The first two terms of the

series read

Ĥ (0)
F = 1

T

∫ T

0
dtĤ (t ), (3a)

Ĥ (1)
F = 1

2!Ti

∫ T

0
dt1

∫ t1

0
dt2[Ĥ (t1), Ĥ (t2)]. (3b)

We will use the expressions above to study the many-body
quantum dynamics in detail.

III. MANY-BODY RESONANCES

In this section, we provide a detailed demonstration of
integer and fractional resonances starting from the generic
Hamiltonian (2), and discuss about its periodicity under both
resonance conditions. Also, we provide a general demonstra-
tion of the main result of our work, namely, the fractional
resonance becomes the dominating emergent phenomena that
rules the many-body dynamics. The latter is a consequence of
the disappearance of the zeroth-order term Ĥ (0)

F in the Magnus
expansion, which produces the general mechanism of slowing
down in many-body Hamiltonians that exhibit reflection and
U(1) symmetries.

A. Integer resonance

Many-body resonances can be identified when
applying the Hamiltonian H̃I (t ) to the quantum state
|m1, . . . , mj, mj+1, . . . , mL〉. As we stated in the previous
section, mj is a quantum number that labels the local Hilbert
space of lattice constituents. The result simply reads

H̃I (t )|m1, . . . , mj, mj+1, . . . , mL〉 = −h̄J (t )
L−1∑
j=1

[eiUt (mj+1−mj+1)
√

mj (mj+1 + 1)|m1, . . . , mj − 1, mj+1 + 1, . . . , mL〉

+ eiUt (mj−mj+1+1)
√

(mj + 1)mj+1|m1, . . . , mj + 1, mj+1 − 1, . . . , mL〉]. (4)

The first term in Eq. (4) represents a hopping event from
site j → j + 1, whereas the second represents a hopping
event from site j + 1 → j. The hopping processes involve a
change in the on-site interaction �E = U [±(mj − mj+1) +
1], where the upper (lower) sign means a hopping from
site j + 1 → j ( j → j + 1). Many-body resonances appear
whenever �E = U [±(mj − mj+1) + 1] = m� [54], where
m ∈ Z. For instance, the lowest-order available resonance
occurs for m = ±1, which results in the condition ±(mj −
mj+1) + 1 = ±m�, with m� = �/U . The upper (lower) sign
on the right-hand side of the resonance condition represents
an increase (decrease) of energy. If the maximal occupation
number per site is limited to mj � 2 for bosonic systems or
mj ∈ {−1, 0, 1} for spin-1 lattice systems, the resonance con-
dition can be satisfied if m� = 1 which results in the integer

resonance � = U . The above conclusion is supported by the
fact we consider the strongly interacting regime characterized
by U/J0 � 1 [15], and within the subspace with filling factor
N/L = 1 for bosonic systems and total magnetization 〈Ŝz〉 =
0 for spin-1 systems.

It is worth mentioning that Eq. (4) may allow us to
write down matrix elements that involve time-dependent func-
tions of the type f (t ) = e±i�t eiUm̄t , where m̄ ∈ Z. If � =
U/2, then f (t + T ) = f (T ) with period T = 4π/U . Instead,
if � = U , then f (t + T ) = f (T ) with period T = 2π/U ,
thus the periodicity of the time-dependent Hamiltonian un-
der integer and fractional resonances is valid for any lattice
size L.

Another useful way to derive the integer resonance is to
consider the calculation of the time average of the matrix
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FIG. 2. [(a) and (b)] Real and imaginary parts of the function
F (�,U, mj, mk ) defined in Eq. (5) for a hopping processes from
j → k. In the upper (down) panel the configurations are mj = 2
and mk = 0 (mj = 1 and mk = 1). In both cases, the real part of
F (�,U, mj, mk ) is peaked near � = U . In these plots we fixed
U = 1 for simplicity.

elements of Eq. (4). The result is

F (�,U, n j, nk )

= 1

T

∫ T

0
cos(�t )eiUt[±(mk−mj )+1]

= iU�(mk − mj + 1)(1 − e2iπ[±(mk−mj )+1]U/�)

2π (U 2[±(mk − mj ) + 1]2 − �2)
. (5)

In Fig. 2, we plot the function F (�,U, mj, mk ) defined
in Eq. (5) for hopping processes from j → k, and for two
different configurations, namely, mj = 2, mk = 0 [Fig. 2(a)]
and mj = 1, mk = 1 (Fig. 2(b)) for bosonic systems or equiv-
alently mj = 1, mk = −1 and mj = 0, mk = 0 for spin-1
systems. In both cases, the real part of F (�,U, mj, mk ) is
peaked near � = U , thus defining the integer resonance. Also,
the integer resonance can be recognized by imposing the
condition that Eq. (5) becomes an indeterminate form 0/0,
which occurs if U [±(mk − mj ) + 1] = ±�, and we obtain
the integer many-body resonance. Here, the time scale J−1

0
dominates the system dynamics, with nearest-neighbor in-
teractions playing the key role. This way of obtaining the
integer resonance will be useful for recognizing the fractional
resonance.

An important discussion comes in order. Notice that the
matrix elements F (�,U, mj, mk ) = 0 if (±M + 1)U/� =
q, where q ∈ Z \ {0} and we define M = mk − mj ∈ Z. In

other words, the contribution of the zeroth-order term in the
ME (3) is exactly zero if the ratio �/U = (±M + 1)/q is
a rational number. The latter can be seen in Figs. 2(a) and
2(b) where F (�,U, mj, mk ) exhibits zeros at values �/U =
±1/q, where q = ±2,±3, . . ., and q = ±2 corresponding to
the first zero. The disappearance of Ĥ (0)

F allows us to conclude
that higher-order terms in the ME (3) dominate and lead to a
generic slowing down of the many-body dynamics in models
exhibiting U(1) and parity symmetry. The latter corresponds
to the main result of our work.

It is worth mentioning that our driving protocol is compara-
ble to the one presented for the Fermi-Hubbard model (FHM)
in Ref. [51]. There, it has been proven that the FHM exhibits
doublon association and dissociation processes when going on
resonance, namely when the on-site interaction is an integer
multiple of the driving frequency, where the leading order is
Ĥ (0)

F . Also, in the off-resonance case where resonance effects
can be ignored, the FHM exhibits an effective interacting
spin model where the leading order is Ĥ (1)

F . In contrast, our
driving protocol considers fractional resonance conditions,
�/U = (±M + 1)/q, that lead to exactly zero contribution of
Ĥ (0)

F . Therefore, our results provide a novel driving protocol
of Floquet engineering where the effective Hamiltonian is not
equal to the time-averaged Hamiltonian [29]. Our results may
provide new routes for quantum simulation using fractional
resonances in Floquet engineering [68,69].

B. Fractional resonance

In the previous section, we demonstrated that the zeroth-
order term in the ME is exactly zero at fractional driving
frequencies. Here, we focus on the first available fractional
driving with q = 2, and will demonstrate that processes that
involve the virtual excitation of the middle site will be the
leading contribution to the many-body dynamics. In particu-
lar, we will prove the fractional resonance condition ±m� =
±(mj − ml ) + 1, where j and l represent next-nearest neigh-
bor sites and m� = 2�/U , by analyzing the commutator
[ĤI (t1), ĤI (t2)] in the ME (3).

Analyzing the commutator [ĤI (t1), ĤI (t2)], see
Appendix B for a detailed calculation, we recognize several
hopping processes that may involve nearest-neighbor sites via
operators Â†

j Â
†
j ÂkÂk , density-density interactions Â†

j Â j Â
†
kÂk or

two excitation in the middle site Â j Â
†
kÂ†

kÂl , direct next-nearest
neighbor sites Â†

j Âl , and virtual excitation of the middle site

Â j Â
†
kÂkÂ†

l , where the indexes j, k, and l represent left-most,
middle, and right-most lattice sites.

Let us consider, for instance, the following term:

(eiUt2 − 1)eiU (Ô j−Ôk−1)t1 eiU (Ôk−Ôl −1)t2 Â†
j ÂkÂ†

kÂl . (6)

The above operator corresponds to the second term in
the commutator (B1). Let us apply the operator (6) to
the generic state |m1, . . . , mj, mk, ml , . . . , mL〉. The re-
sult involves the matrix element that connects the states
|m1, . . . , mj, mk, ml , . . . , mL〉 and |m1, . . . , mj + 1, mk, ml −
1, . . . , mL〉, that is

eiUt1(mj−mk )(eiUt2 − 1)eiUt2(mk−ml )(mk + 1)
√

(mj + 1)ml

× |m1, . . . , mj + 1, mk, ml − 1, . . . , mL〉. (7)
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Now, let us compute the double integral

1

2!Ti

∫ T

0
dt1

∫ t1

0
dt2J (t1)J (t2)eiUt1(mj−mk )(eiUt2 − 1)eiUt2(mk−ml ), (8)

in analogy with the calculation done in Eq. (5). The integral can be separated into two contributions as follows

F1(�,U, mj, mk, ml ) = 1

2!Ti

∫ T

0
dt1

∫ t1

0
dt2J (t1)J (t2)eiUt1(mj−mk )eiUt2 eiUt2(mk−ml ), (9a)

F2(�,U, mj, mk, ml ) = 1

2!Ti

∫ T

0
dt1

∫ t1

0
dt2(t1)J (t2)eiUt1(mj−mk )eiUt2(mk−ml ). (9b)

In Fig. 3, we plot the function F1(�,U, mj, mk, ml ) defined
in (9a) for hopping process from l → j, and for two different
configurations, namely, mj = 0, mk = 1, ml = 2 [Fig. 2(a)]
and mj = 1, mk = 1, ml = 1 [Fig. 2(b)] for bosonic systems
or equivalently mj = −1, mk = 0, ml = 1 and mj = 0, mk =
0, ml = 0 for spin-1 systems. In both cases, the real part of
F1(�,U, mj, mk, ml ) is peaked near � = U/2, thus defining
the fractional resonance. It is worthwhile mentioning that the
same analysis can be done for a hopping from j → l . In anal-
ogy with the integer resonance, a detailed analysis of Eq. (9a)
demonstrates that it becomes an indeterminate form 0/0 if the
system satisfies the condition

[±(mj − ml ) + 1] = ±m�, (10)

with m� = 2�/U . The upper (lower) sign on the right-hand
side of Eq. (10) represents an increase (decrease) of energy

FIG. 3. [(a) and (b)] Real and imaginary parts of the function
F1(�,U, mj, mk, ml ) defined in Eq. (9a) for a hopping process from
l → j. In the upper (lower) panel, the configurations are mj = 0,
mk = 1, and ml = 2 (mj = 1, mk = 1 and ml = 1). In both cases, the
real part of F1(�,U, mj, mk, ml ) is peaked near � = U/2. In these
plots we fixed U = 1 for simplicity.

respectively. If the maximal occupation number per site is
limited to mj � 2 for bosonic systems or mj ∈ {−1, 0, 1} for
spin-1 lattice systems, the resonance condition is satisfied
only if m� = 1, which implies a fractional driving frequency
� = U/2.

We stress that at the fractional resonance � = U/2
and using MATHEMATICA [70], it can be shown that
lim�→U/2 F2(�,U, mj, mk, ml ) → 0, but also other
higher-order processes such as the creation of two
particles/excitations at the intermediate site, so virtual
excitations govern the system dynamics. Notice that
density-density interactions such as Â†

j Â j Â
†
kÂk , contribute

only to the diagonal part of the effective Floquet Hamiltonian.

IV. STROBOSCOPIC DYNAMICS
IN THE BOSE-HUBBARD TRIMER

Here, we present the quantum dynamics of a three-site
lattice, see Fig. 1, in the high-frequency regime of a peri-
odically modulated hopping scenario. We will discuss the
integer (� = U ) and fractional (� = U/2) driving and their
effects on the system dynamics. As initial condition we con-
sider a product state with one excitation per site for a fixed
value U/J0 = 40, that is, |ψ (0)〉 = ⊗L

j=1 |1〉 j where L corre-
sponds to the system size. Then, at t = 0, we switch on the
modulated hopping rate and let the system evolve under the
Bose-Hubbard Hamiltonian

Ĥ (t ) = h̄
L∑

j=1

(
ωâ†

j â j + U

2
â†

j â
†
j â j â j

)
− h̄J (t )

×
L−1∑
j=1

(â†
j â j+1 + H.c). (11)

The number of states, here referred to as configura-
tions, that may participate in the dynamics correspond to all
possible configurations of N particles distributed in L lat-
tice sites DN = (N + L − 1)!/N!(L − 1)!. In the trimer case
at unit filling N/L = 1, there are D3 = 10 configurations.
The initial state |ψ0〉 = |111〉 has parity p = +1. Since the
BHM preserves U(1) and parity symmetries, the dynamics
will only involve states within the positive parity subspace
|ψ0〉, |ψ1〉 = 1√

2
(|021〉 + |120〉), |ψ2〉 = 1√

2
(|201〉 + |102〉),

|ψ3〉 = 1√
2
(|012〉 + |210〉), |ψ4〉 = |030〉, |ψ5〉 = 1√

2
(|300〉 +

|003〉. In this basis the BHM, in the rotating frame with respect
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to H0 = h̄
∑L

j=1(ωâ†
j â j + U

2 â†
j â

†
j â j â j ), reads

ĤI (t ) = −2h̄J0 cos (�t )|ψ3〉〈ψ1| −
√

6h̄J0 cos (�t )e2iUt |ψ4〉

× 〈ψ1| − h̄J0 cos (�t )|ψ3〉〈ψ2| −
√

3h̄J0 cos (�t )

× e2iUt |ψ5〉〈ψ3| − 2h̄J0 cos (�t )eiUt (|ψ1〉〈ψ0|

+ |ψ2〉〈ψ0|) + H.c. (12)

As we discussed in Sec. III, the Hamiltonian (12) is not
strictly periodic. However, it becomes periodic in the case of
an integer � = U and fractional � = U/2 resonances, and
we can use the Floquet theory for describing the quantum
dynamics.

A. Integer resonance

Using the ME (3), the Floquet Hamiltonian to zeroth-order
reads Ĥ (0)

F = −h̄J0(|ψ0〉〈ψ1| + |ψ0〉〈ψ2| + H.c.), whereas the
matrix elements of Ĥ (1)

F are of order J2
0 /U , so we neglect

its contribution to the dynamics. Here, the time scale J−1
0

dominates the system dynamics, with nearest-neighbor inter-
actions playing the key role. The Schrödinger equation can
be solved by diagonalizing Ĥ (0)

F . Figure 4(a) shows the pop-
ulations of states |ψ0〉, |ψ1〉 and |ψ2〉 predicted from the
Hamiltonian Ĥ (0)

F , and the stroboscopic evolution |ψ (nT )〉 =
[Û (T, 0)]n|ψ0〉, where Û (T, 0) is the evolution operator in
one period. The latter has been numerically computed from
the Hamiltonian (11) using exact diagonalization. We see a
good agreement between the analytical (see Appendix C)
and numerical predictions using the stroboscopic dynamics.
Notice that after seven periods of the evolution, the initial
population is fully transferred to states |ψ1〉 and |ψ2〉. Notice
that the resonance condition � = U reduces the number of
configurations that participate in the effective dynamics from
10 to 5.

B. Fractional resonance

At the fractional driving � = U/2 and using the ME (3),
one can show that Ĥ (0)

F = 0, whereas Ĥ (1)
F reduces to a 2 × 2

matrix in within the subspace {|ψ0〉, |ψ3〉}, namely, Ĥ (1)
F =

16h̄J2
0

3U |ψ0〉〈ψ0| + 4h̄J2
0

5U |ψ3〉〈ψ3| + 3h̄J2
0

U (|ψ0〉〈ψ3| + |ψ3〉〈ψ0|).
Here, the frequency scale 3J2

0 /U rules the system dynamics,
with next-nearest-neighbor interactions playing the key role.
The latter results of the adiabatic elimination of states |ψ1〉
and |ψ2〉, thus producing a slower dynamics as compared with
the integer resonance. The Schrödinger equation can be solved
by diagonalizing Ĥ (1)

F . Figure 4(b) shows the populations of
states |ψ0〉 and |ψ3〉 predicted from the Hamiltonian Ĥ (1)

F , and
the stroboscopic evolution |ψ (nT )〉 = [Û (T, 0)]n|ψ0〉. We see
a good agreement between the analytical (see Appendix C)
and numerical predictions using the stroboscopic dynamics.
In contrast with the integer resonance, the initial population
is not completely transferred to the state |ψ3〉 and the state
|ψ (t )〉 shows a strong overlap with the initial state. Also, the
highest occupation probability of the state |ψ3〉 occurs after
t ≈ 50T , which is a consequence of the slow dynamics. It is

FIG. 4. [(a) and (b)] Populations of the states |ψi〉 with i =
0, 1, 2, 3 for the integer � = U and fractional � = U/2 resonances,
respectively. In (a) and (b), PA

0 (t ), PA
1 (t ), and PA

3 (t ) are populations
analytically obtained from Ĥ (0)

F and Ĥ (1)
F , while PS

i (t ) stand for the
stroboscopic dynamics. The initial state is |ψ0〉 = |111〉, and the
parameters are J0 = 0.01ω, U = 40J0. We consider up to nmax = 3
particles per site with local Hilbert space dimension dim(H
) = 4.

worth noticing that the fractional resonance � = U/2 reduces
further the number of configurations that participate in the
effective dynamics from 10 to 3.

The previously exposed integer and fractional resonances
have different time scales for spreading of bosonic particles
with varying configurations. Their particular dynamical fea-
tures also manifest in the bipartite entanglement dynamics.
Figures 5(a) and 5(b) show the von Neumann entropy of the
lattice bipartition 1|23 as a function of time, where the upper
(lower) panel stands for the integer (fractional) resonance. No-
tice the fast bipartite entanglement production in the integer
resonance since the population of the initial state is completely
transferred to states |ψ1〉 and |ψ2〉. The latter is opposite to
the fractional resonance due to the slower dynamics and the
substantial overlap between the state at time t and the initial
state [cf. Fig. 4(b)].

V. MANY-BODY QUANTUM DYNAMICS

In this section, we quantify the effects of the fractional
resonance � = U/2 in the many-body context.
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FIG. 5. [(a) and (b)] Von Neumann entropy of the bipartition
1|23 as a function of time for integer � = U and fractional � = U/2
resonances, respectively. We compare the full (solid lines) and stro-
boscopic (circles) dynamics. The lower inset shows the behavior of
the von Neumann entropy after few periods of evolution. The initial
state is |ψ0〉 = |111〉, and the parameters are J0 = 0.01ω, U = 40J0.
We consider up to nmax = 3 particles per site with local Hilbert space
dimension dim(H
) = 4.

A. Localization properties of the quantum states

Let us consider the BHM in finite lattice of L = 5 sites
initialized in the quantum state |ψ (0)〉 = ⊗L

j=1 |1〉 j . At the
unit filling condition, we work with a basis |l〉 of all possible
D5 = 126 configurations. In general, the time evolution of a
given state can be written as a linear combination of the basis
states |ψ (t )〉 = ∑DN

l=1 cl (t )|l〉 with time dependent amplitudes
cl (t ). Now one may ask how many configurations participate
in the dynamics. To measure this, we consider the participa-
tion ratio [56,57]

PR(t ) = 1∑DN
l=1 |cl (t )|4 . (13)

Since the dimension of the Hilbert space is DN , when a state
is fully delocalized the participation ratio is PR(t ) = DN .
Besides, if the state is localized, only a single configuration
participates in the superposition and PR(t ) = 1.

Figure 6 shows the localization properties of quantum
states at stroboscopic times by means of the population of the
lth configuration |cl (nT )|2 (left column), and the participation
ratio PR(nT ) (right column). For the integer resonance (upper
panel), the system visits up to 20 configurations over time,

FIG. 6. Localization properties of quantum states. Here, we plot
the distribution of populations associated to each configuration
|cl (nT )|2 (left column) and the participation ratio PR(nT ) (right
column), where T = 2π/�. The upper panel shows the results of
the integer case � = U , whereas the lower panel stands for the
fractional case � = U/2. In this simulation, we have numerically
computed the effective Hamiltonian within the subspace with unit
filling factor which contains D5 = 126 configurations, starting from
the Hamiltonian (11). The parameters are J0 = 0.01ω, U = 40J0, and
we consider up to nmax = 5 particles per site with local Hilbert space
dimension dim(H
) = 6.

unlike the fractional resonance (lower panel), where the sys-
tem visits up to 10 configurations. Thus, the quantum state in
the fractional resonance is more localized than in the integer
resonance. We may also analyze the localization of quantum
states by looking at the probability distribution |cl (nT )|2 of
configurations |l〉 at stroboscopic times. The evolution is given
by the repeated action of the unitary evolution operator in one
period of the drive on the system’s initial state |ψ (0)〉. As
shown in the left column of Fig. 6, the probability distribution
is more spread over a greater number of configurations in the
integer resonance. In contrast, the fractional resonance regime
is concentrated in a few configurations. In this context, the
fractional resonance leads to less uncertainty in the quantum
state than the integer resonance.

B. Heating rate

The accurate calculation of the heating rate in our system is
a subtle problem. The reason is that the system’s response un-
der the integer (� = U ) and fractional (� = U/2) resonances
is quite different. In the integer resonance case, analytical and
numerical evidence show that the time-averaged Hamiltonian
may describe the system dynamics with nearest-neighbor in-
teractions playing the relevant role. In this case, one can use
linear response theory for computing the heating rate [54].
However, there is a dressing effect in the fractional resonance
case. The Floquet Hamiltonian differs from the time-averaged
Hamiltonian, leading to second-order processes dominating
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FIG. 7. The heating rate in semi-log scale as a function of the
number of periods n. In this simulation we consider parameters J0 =
0.01ω, U = 40J0, L = 5 sites, and we truncate the local Hilbert space
up to nmax = 5 particles per site with local Hilbert space dimension
dim(H
) = 6.

the system dynamics. Only recently, an accurate way of
computing the heating rate in concrete systems, particularly
with large-amplitude and high-frequency drivings, has been
presented in Refs. [58,59]. Here, we present the numerical
calculation of the heating rate in a small lattice of L = 5
sites. Intuitively, we expect the integer resonance to generate a
larger heating rate than the fractional case since the latter gen-
erates a slower system response. In Fig. 7, we plot the heating
rate calculated through the stroboscopic quantum evolution
|ψ (nT )〉 = [Û (T, 0)]n|ψ0〉 with initial condition |ψ0〉, and
the average energy density εn = 〈ψ (nT )|Ĥ0|ψ (nT )〉 where
Ĥ0 = h̄

∑L
j=1(ωâ†

j â j + U
2 â†

j â
†
j â j â j ) is the undriven Hamilto-

nian. We compute the heating rate as the energy change in
one period (εn+1 − εn)/T [58].

We see the effect of many-body resonances on the heating
rate. The fractional and integer resonances produce a low heat-
ing rate in the system, which signatures the prethermal regime
of our system. Also, notice that the fractional resonance has
a smoother heating rate than the integer resonance, reflecting
the slower system’s response under hopping driving. Here, we
also identify an exciting problem of computing the heating
rate for lattice sizes L � 10 that will be presented in a future
work following the references [58,59].

C. Half-chain von Neumann entropy, Loschmidt echo,
and autocorrelation functions

Let us now consider the nonequilibrium features of lo-
calization properties of quantum states characterized via the
half-chain von Neumann entropy [60], Loschmidt echo [9],
and autocorrelation functions [26]. Due to two different time
scales and physical processes, localization properties of quan-
tum states in the integer and fractional resonances quantify
how the information is spread over the Hilbert space. Suppose
we want to extend the system size and make predictions for
comparing with state-of-the-art quantum simulators. In that
case, trustful numerical algorithms must consider information
spreading and bipartite entanglement production. Here, we ex-
plore the scalability of the prethermalized and localized phase

FIG. 8. Half-chain von Neumann entropy as a function of time
for a lattice of L = 12 sites. [(a) and (b)] Results for integer � = U
and fractional � = U/2 resonances, respectively. The insets show
the Loschmidt echo |〈ψ (0)|ψ (t )〉|2. Autocorrelation functions C j (t )
(see the main text) per site as a function of time are shown in (c) and
(d) for integer � = U and fractional � = U/2 resonances. For the
integer resonance, autocorrelations C j (t ) experience fluctuations ow-
ing to the large uncertainty of the quantum state, as shown in (a). In
the fractional resonance, fluctuations in C j (t ) are moderate owing to
the large overlap between the initial state |ψ (0)〉 and the quantum
state |ψ (t )〉, see the inset of (b). The parameters are J0 = 0.01ω,
U = 40J0, and up to nmax = 2 particles per site.

by considering a lattice of L = 12 sites that has an immedi-
ate physical realization in superconducting circuits [25–27].
At unit filling with the initial state |ψ (0)〉 = ⊗L

j=1 |1〉 j , the
Hilbert space configurations number is huge D12 = 1352078,
so, in order to study the nonequilibrium dynamics of the
lattice, we use the time-evolving block decimation (TEBD)
algorithm [71] implemented in TENPY [72]. We consider
the second-order Suzuki-Trotter decomposition of the unitary
evolution operator and time step dt = 0.02ω−1. We compute
relevant quantities for describing the dynamics of each 10dt
time step. In the strongly interacting limit U/J0 � 1, we
truncate the local Hilbert space to a maximum of nmax = 2
particles per site. It is worthwhile noticing that the case nmax =
3 provides the same results, see Appendix D.

Figures 8(a) and 8(b) shows the half-chain von Neumann
entropy for the integer (left panel) and fractional (right panel)
resonances as a function of time. At the integer resonance,
where first-order processes at a time scale J−1

0 dominate the
dynamics, the TEBD algorithm needs a large bond dimension
χ = 520 to reach convergence within the simulating time,
owing to the fast production of bipartite entanglement over
the dynamics. In contrast, the TEBD algorithm needs a mod-
erate bond dimension χ = 120 to reach convergence in the
fractional resonance due to the slow production of bipartite
entanglement. The resulting uncertainty of each regime is a
consequence of the localization properties of the quantum
states. We stress the truncation error εtrunc � 10−8 at t ≈ 50T
in both resonance regimes, which implies the TEBD algorithm
has an excellent performance within the simulating time. See
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Appendix D for a detailed discussion on the truncation error
as one increases the lattice size.

The dynamical features of the half-chain von Neumann
entropy may allow us to characterize each prethermal state ob-
tained from the fractional and integer resonances. Also, these
prethermal states may be characterized by the Loschmidt echo
L(t ) = |〈ψ (0)|ψ (t )〉|2, see the insets of Figs. 8(a) and 8(b).
At the integer resonance, the quantum state quickly departs
from the initial condition. In contrast, the fractional reso-
nance leads to a strong overlap with the initial state at short
times. These dynamical features reflect in the dynamics of
local observables such as autocorrelation functions C j (t ) =
(2〈nj (t )〉 − 1)(2〈n j (0)〉 − 1) [26], where 〈n j〉 stands for the
average occupation number at the jth lattice site. Figures 8(c)
and 8(d) show the autocorrelations for each lattice site as a
function of time. The left (right) panel represents the integer
(fractional) resonances. The integer resonance exhibits more
fluctuations of the local number of particles (excitations) than
the fractional resonance owing to the larger uncertainty of
the quantum many-body state. We state that autocorrelation
functions that can be measured in superconducting circuit
lattices [26] may be considered a hallmark for identifying each
prethermal state.

D. Stability of the fractional resonance under perturbations

Our work shows that fractional many-body resonances
occur with an effective hopping rate J2

0 /U , which is slow
compared to the integer many-body resonance. One may ask
about the stability of the fractional resonance if the resonance
frequency shifts � + δ� with δ�/� � (J0/U )2. We have per-
formed numerical simulations for various values of δ�/�.
Figures 9(a) and 9(b) shows half-chain von Neumann entropy
for a lattice of L = 4 and 12 sites, respectively. The character-
istic slowing down accompanying the fractional resonance is
a stable phenomenon for perturbations δ�/� � 10(J0/U )2.
However, we observe a strong suppression of the fractional
resonance for values δ�/� > 10(J0/U )2, thus establishing a
threshold value for the phenomenon’s stability. We conclude
that fractional resonance is a robust phenomenon for δ�/� �
10(J0/U )2 independently of the lattice size.

VI. UNIVERSALITY OF THE FRACTIONAL
MANY-BODY RESONANCE

As we demonstrated in Sec. III, the fractional resonance
and its characteristic slowing down of the many-body dy-
namics is not particular to the BHM. Instead, it can appear
in several models that exhibit U(1) and parity symmetries
such as the XXZ spin-1 model with anisotropy [61,62], the
Jaynes-Cummings-Hubbard model [63–65], and spin ladders
(see Appendix E) as we will prove next

A. Integer and fractional resonances in the XXZ
spin-1 model with anisotropy

In this section, we prove the appearance of the integer and
fractional resonance in the XXZ spin-1 model with anisotropy

(a)

(b)

FIG. 9. Half-chain von Neumann entropy for a lattice size L =
4 (a) and 12 (b) sites and for various values of the perturbation
δ�/�. All curves have been calculated using parameters J0 = 0.01ω

and U = 40J0. In (a), we consider a maximum occupation number
nmax = 4 per site. In (b), we truncate to a maximum occupation
number nmax = 2 per site.

described by the Hamiltonian [61,62]

Ĥ = h̄U

2

L∑
j=1

(
Ŝz

j

)2 + h̄J0 cos(�t )
L−1∑
j=1

(Ŝ+
j Ŝ−

j+1 + Ŝ+
j+1Ŝ−

j ),

(14)

where Ŝz, Ŝ± are spin-1 operators that satisfy the commu-
tation relations [Ŝz, Ŝ±] = ±Ŝ±, [Ŝ+, Ŝ−] = Ŝz. This model
also considers the competition between an anharmonic local
spectrum and nearest-neighbor hopping. In order to prove the
appearance of integer and fractional resonances, we consider
the numerical simulation of a trimer with initial state with
zero magnetization along the z direction, namely, |ψ (0)〉 =
|0〉|0〉|0〉, and parameters U = 40J0. Notice that we use the
local orthonormal basis for each spin as {|mj〉} with mj =
−1, 0, 1. Since the lattice exhibits reflection symmetry, and
the total magnetization along the z axis is conserved, the
system will evolve within the positive parity sector whose
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FIG. 10. Integer resonance case � = U . The upper panel shows
the populations of accesible states within the positive parity sector
using the full and stroboscopic dynamics (markers). The lower panel
shows the von Neumann entropy of the bipartition 1|23.

states are

|ψ0〉 = |0〉|0〉|0〉,

|ψ1〉 = 1√
2

(|1〉| − 1〉|0〉 + |0〉| − 1〉|1〉),

|ψ2〉 = 1√
2

(| − 1〉|1〉|0〉 + |0〉|1〉| − 1〉),

|ψ3〉 = 1√
2

(|1〉|0〉| − 1〉 + | − 1〉|0〉|1〉).

At the integer resonance condition � = U , in Fig. 10,
we plot the probabilities of accessible states and the von
Neumann entropy of the bipartition 1|23. In analogy with
the Bose-Hubbard model described previously, the integer
resonance condition activates first-order processes where the
initial population is transferred to states |ψ1〉 and |ψ2〉. In
contrast, state |ψ3〉 is not populated (not shown in the figure).
Here, the populations are defined as Pj (t ) = |〈ψ j |ψ (t )〉|2.
Markers correspond to the stroboscopic evolution. At the
fractional resonance � = U/2, in Fig. 11, we plot the prob-
abilities of accessible states and the von Neumann entropy
of the bipartition 1|23. The fractional resonance condition
activates second-order processes where the initial popula-
tion is transferred to state |ψ3〉, whereas state |ψ1〉 and
|ψ2〉 are not populated (not shown in the figure). Here,
the populations are defined as Pj (t ) = |〈ψ j |ψ (t )〉|2. Mark-
ers correspond to the stroboscopic evolution. It is clear the
slowing down accompanying the fractional resonance condi-
tion.

B. Integer and fractional resonances in the
Jaynes-Cummings-Hubbard model

Another Hamiltonian that exhibits integer and fractional
resonances is the Jaynes-Cummings-Hubbard model [63–65],

FIG. 11. Fractional resonance � = U/2. The upper panel shows
the populations of accessible states within the positive parity sector
using the full and stroboscopic dynamics (markers). The lower panel
shows the von Neumann entropy of the bipartition 1|23.

which describes strongly interacting light-matter systems via
the Hamiltonian

ĤJCH = h̄
L∑

j=1

ωâ†
j â j + ω0σ̂

+
j σ̂−

j + g(σ̂+
j â j + σ̂−

j â†
j )

− h̄J0 cos(�t )
L−1∑
j=1

(â†
j â j+1 + â j â

†
j+1), (15)

where â j (â
†
j ) is the annihilation (creation) bosonic operator

at the jth lattice site, σ̂+
j (σ̂−

j ) is the raising (lowering) op-
erator acting on the jth two-level system (TLS) eigenbasis
{|↓〉 j, |↑〉 j}, and ω, ω0, and g are the resonator frequency,
TLS frequency, and light-matter coupling strength, respec-
tively. In order to prove the appearance of integer and
fractional resonances, we consider the numerical simula-
tion of a trimer whose initial state has one excitation per
site, namely, |ψ (0)〉 = |1,−〉|1,−〉|1,−〉, and parameters
g = 40J0. Notice that the JCH Hamiltonian exhibits the com-
petition between the local anharmonic spectrum provided
by the Jaynes-Cummings interaction, and the photon-photon
hopping interaction. Also, the local spectrum is described
by hybrid light-matter states termed as polaritons defined
by the upper (+) and lower (−) polaritonic basis |n,±〉i =
γn±|↓, n〉i + ρn±|↑, n − 1〉i with energies E±

n = nω + �/2 ±
χ (n). Here, χ (n) =

√
�2/4 + g2n, ρn+ = cos(θn/2), γn+ =

sin(θn/2), ρn− = −γn+, γn− = ρn+, tan θn = 2g
√

n/�, and
the detuning parameter � = ω0 − ω. Also, one introduces the
jth polaritonic creation operators as P†(n,α)

j = |n, α〉 j〈0,−|,
where α = ± and we identify |0,−〉 ≡ | ↓, 0〉 and |0,+〉 ≡
|∅〉 being a ket with all entries equal to zero, that is, it repre-
sents an unphysical state. These identifications imply γ0− =
1 and γ0+ = ρ0± = 0. Using the above defined polaritonic
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basis, the Hamiltonian (15) can be rewritten as [65,73–75].

Ĥ = h̄
L∑

j=1

∞∑
n=1

∑
α=±

Eα
n P̂†(n,α)

j P̂(n,α)
j P̂†(n,α)

j P̂(n,α)
j − h̄J (t )

L−1∑
j=1

[ ∞∑
n,m=1

∑
α,α′,β,β ′=±

tαα′
n tββ ′

m P̂†(n−1,α)
j P̂(n,α′ )

j P̂†(m,β )
j+1 P̂(m−1,β ′ )

j+1 + H.c.

]
,

(16)

where the matrix elements tαα′
n = √

nγ(n−1)αγnα′ +√
n − 1ρ(n−1)αρnα′ . The first term in Eq. (16) stands for

the local polaritonic energy with an anharmonic spectrum and
gives rise to an effective on-site polaritonic repulsion. This is
analog to the on-site photon repulsion in the Bose-Hubbard
model [52,53]. The last term in Eq. (16) represents the
polariton hopping between resonators. The JCH Hamiltonian
preserves the total number excitations described by the
operator N̂ = ∑L

j=1(â†
j â j + σ̂+

j σ̂−
j ), and it exhibits reflection

symmetry. Also, we work in the regime g > 4J0 which
allows us neglecting the interchange of the upper and lower
polaritonic branches [73–75]. In this case, the system will
evolve within the positive parity sector whose states are

|ψ0〉 = |1,−〉|1,−〉|1,−〉,

|ψ1〉 = 1√
2

(|2,−〉|0,−〉|1,−〉 + |1,−〉|0,−〉|2,−〉),

|ψ2〉 = 1√
2

(|0,−〉|2,−〉|1,−〉 + |1,−〉|2,−〉|0,−〉),

|ψ3〉 = 1√
2

(|2,−〉|1,−〉|0,−〉 + |0,−〉|1,−〉|2,−〉).

Here we consider � = ω0 − ω = 0, which provides the
largest anharmonic local spectrum. In this case, the inte-
ger many-body resonance condition reads � = (2 − √

2)g.
In Fig. 12, we plot the probabilities of accessible states and
the von Neumann entropy of the bipartition 1|23. The integer

FIG. 12. Integer resonance case � = (2 − √
2)g. The upper

panel shows the populations of accessible states within the positive
parity sector using the full and stroboscopic dynamics. The lower
panel shows the von Neumann entropy of the bipartition 1|23.

resonance condition activates first-order processes where the
initial population is transferred to states |ψ1〉 and |ψ2〉. In
contrast, state |ψ3〉 is negligibly populated (not shown in the
figure). Nonetheless, the leakage from states |ψ1〉 and |ψ2〉 to
the state |ψ3〉 is not symmetric, which explains the asymme-
try in the populations P1 and P2. Here, the populations are
defined as Pj (t ) = |〈ψ j |ψ (t )〉|2. Markers correspond to the
stroboscopic evolution.

At the fractional resonance � = (2 − √
2)g/2, in Fig. 13,

we plot the probabilities of accessible states and the von
Neumann entropy of the bipartition 1|23. In analogy with
the previous models, the fractional resonance condition ac-
tivates second-order processes where the initial population is
transferred to state |ψ3〉, whereas state |ψ1〉 and |ψ2〉 are not
populated (not shown in the figure). Here, the populations are
defined as Pj (t ) = |〈ψ j |ψ (t )〉|2. Markers correspond to the
stroboscopic evolution. Again, it is clear the slowing down
accompanying the fractional resonance condition.

VII. CONCLUSIONS

We have provided robust evidence of the universality of
our results by generalizing the fractional resonance to a broad
class of many-body systems, all displaying more robust lo-
calization and slower heating rate compared with the integer
resonance. We demonstrated the disappearance of the zeroth-
order term in the Magnus expansion for fractional frequency
drivings, so that higher-order terms become the leading

FIG. 13. Fractional resonance case � = (2 − √
2)g/2. The up-

per panel shows the populations of accessible states within the
positive parity sector using the full and stroboscopic dynamics. The
lower panel shows the von Neumann entropy of the bipartition 1|23.
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contribution and explain the slowing down of the many-body
dynamics in models that exhibit U(1) and parity symmetries.
Also, the effect of the fractional resonance in many-body
dynamics has been quantified through the von Neumann en-
tropy, Loschmidt echo, and heating rate, thus proving clear
evidence of less entanglement creation, more localized quan-
tum states, and the slower system’s response in contrast at
the integer resonances. In this way, fractional resonances and
their dynamical features emerge as a collective phenomenon
independent of the microscopic nature of each model, and
present themselves as a general physical principle that can be
used to develop quantum memories [76] for quantum tech-
nologies, provide a new route of quantum simulation with
Floquet engineering where the higher-order terms dominate,
the discovery of new phases of matter in periodically driven
systems, a deeper understanding of the prethermal regime be-
yond the linear response [58,59], and applications in quantum
sensing [77].
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APPENDIX A: GENERIC HAMILTONIAN
IN THE INTERACTION PICTURE

Here, we show how to transform the generic Hamiltonian
(1) into the interaction picture. Here, we find expressions like

Â†
i (t ) = e

i
h̄ Ĥ0t Â†

i e− i
h̄ Ĥ0t . (A1)

By taking the derivative of this expression, we end up with
terms like

dÂ†
j (t )

dt
= iU

2

[
Ô2

j (t ), Â†
j (t )

] = iU

2
(2Ô j (t ) − 1)Â†

j (t ). (A2)

From this, we can get the time evolution Â†
j (t ) =

exp[ iUt
2 (2Ô j − 1)]Â†

j . Similarly, we can proof that Â j (t ) =
exp[− iUt

2 (2Ô j + 1)]Â j . By using this, we obtain the explicit
form for the Hamiltonian in the rotating frame [cf. Eq. (2)]

H̃I (t ) = e
i
h̄ Ĥ0t Ĥ (t )e− i

h̄ Ĥ0t

= −h̄J0 cos (�t )
L−1∑
j=1

(eiUt (Ô j+1−Ô j−1)Â†
j Â j+1

+ e−iUt (Ô j+1−Ô j+1)Â†
j+1Â j ). (A3)

APPENDIX B: THE COMMUTATOR [ĤI (t1), ĤI (t2 )] IN THE MAGNUS EXPANSION

Here, we show the calculation of the commutator [ĤI (t1), ĤI (t2)] in the Magnus expansion. The commutator reads

[ĤI (t1), ĤI (t2)] = J (t1)J (t2)
∑

j

[
eiU (Ô j−Ô j+1−1)t1 eiU (Ô j−Ô j+1−2)t2 (e−iUt2 − 1)Â†

j Â
†
j Â j+1Â j+1 + eiU (Ô j−Ô j+1−1)t1 eiU (Ô j+1−Ô j+2−1)t2

× (eiUt2 − 1)Â†
j Â j+1Â†

j+1Â j+2 + eiU (Ô j−Ô j+1−1)t1 eiU (Ô j+1−Ô j+2−1)t2 Â j+2Â†
j + eiU (Ô j−Ô j+1−1)t1 eiU (Ô j−Ô j+1−1)t2

× (e−iUt2 − 1)Â†
j Â

†
j Â j+1Â j+1 + eiU (Ô j−Ô j+1−1)t1 eiU (Ô j−1−Ô j−1)t2 (eiUt2 − 1)Â†

j+1Â j−1Â†
j Â j − e−iU (Ô j−1−Ô j−1)t2

× eiU (Ô j−Ô j+1−1)t1 Â†
j−1Â j+1 + eiU (Ô j−Ô j+1−1)t2 eiU (Ô j−Ô j+1−1)t1 (1 − e−iUt1 )Â†

j Â
†
j Â j+1Â j+1

+ eiU (Ô j+1−Ô j+2−1)t2 eiU (Ô j−Ô j+1−1)t1 (1 − eiUt1 )Â†
j+1Â j+1Â j+2Â†

j + eiU (Ô j−Ô j+1−1)t2 eiU (Ô j−Ô j+1−2)t1 (1 − eiUt1 )

× Â†
j Â

†
j Â j+1Â j+1 + eiU (Ô j−1−Ô j−1)t2 eiU (Ô j−Ô j+1−1)t1 (1 − eiUt1 )Â†

j−1Â j Â
†
j Â j+1 + eiU (Ô j+1−Ô j−1)t1 eiU (Ô j+1−Ô j−2)t2

× (e−iUt2 − 1)Â j Â j Â
†
j+1Â†

j+1 + eiU (Ô j+1−Ô j−1)t1 eiU (Ô j+2−Ô j+1−1)t2 (eiUt2 − 1)Â j Â
†
j+1Â j+1Â†

j+2

− eiU (Ô j+1−Ô j−1)t1 eiU (Ô j+2−Ô j+1−1)t2 Â j Â
†
j+2 + eiU (Ô j+1−Ô j−1)t1 eiU (Ô j+1−Ô j−1)t2 (e−iUt2 − 1)Â j Â j Â

†
j+1Â†

j+1

+ eiU (Ô j+1−Ô j−1)t1 eiU (Ô j−Ô j−1−1)t2 (eiUt2 − 1)Â j−1Â j Â
†
j Â

†
j+1 + eiU (Ô j−Ô j−1−1)t2 eiU (Ô j+1−Ô j−1)t1 Â j−1Â†

j+1

+ eiU (Ô j+1−Ô j−1)t2 eiU (Ô j+1−Ô j−1)t1 (1 − e−iUt1 )Â j Â j Â
†
j+1Â†

j+1 + eiU (Ô j+2−Ô j+1−1)t2 eiU (Ô j+1−Ô j−1)t1 (1 − eiUt1 )

× Â†
j+2Â j Â j+1Â†

j+1 + eiU (Ô j+1−Ô j−1)t2 eiU (Ô j+1−Ô j−2)t1 (1 − e−iUt1 )Â†
j+1Â†

j+1Â j Â j + eiU (Ô j−Ô j−1−1)t2

× eiU (Ô j+1−Ô j−1)t1 (1 − eiUt1 )Â j−1Â†
j Â j Â j+1 + eiU (Ô j−Ô j+1−1)t1 eiU (Ô j+1−Ô j )t2 (eiUt2 − 1)Â†

j Â j Â j+1Â†
j+1

+ eiU (Ô j−Ô j+1−1)t1 eiU (Ô j+2−Ô j+1−1)t2 (e−iUt2 − 1)Â†
j Â j+1Â j+1Â†

j+2eiU (Ô j−Ô j+1−1)t1 eiU (Ô j+1−Ô j )t2 Â†
j Â j

+ eiU (Ô j−Ô j+1−1)t1 eiU (Ô j+1−Ô j−1)t2 (eiUt2 − 1)Â†
j Â j Â

†
j+1Â j+1 + eiU (Ô j−Ô j+1−1)t1 eiU (Ô j−Ô j−1−1)t2 (e−iUt2 − 1)
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× Â j−1Â†
j Â

†
j Â j+1 − eiU (Ô j+1−Ô j−1)t2 eiU (Ô j−Ô j+1−1)t1 Â†

j+1Â j+1 + eiU (Ô j+1−Ô j−1)t2 eiU (Ô j−Ô j+1+2)t1 (1 − e−iUt1 )

× Â†
j+1Â j+1Â j Â

†
j + eiU (Ô j+2−Ô j+1−1)t2 eiU (Ô j−Ô j+1−1)t1 (1 − e−iUt1 )Â†

j Â j+1Â j+1Â†
j+2

+ eiU (Ô j+1−Ô j−1)t1 eiU (Ô j−Ô j+1 )t2 (eiUt2 − 1)Â j Â
†
j Â

†
j+1Â j+1 + eiU (Ô j+1−Ô j−1)t2 eiU (Ô j+1−Ô j+2−1)t2 (e−iUt2 − 1)

× Â j Â
†
j+1Â†

j+1Â j+2 − eiU (Ô j+1−Ô j−1)t1 eiU (Ô j−Oj+1 )t2 Â j Â
†
j + eiU (Ô j+1−Ô j−1)t1 eiU (Ô j−Ô j+1−1)t2 (eiUt2 − 1)Â j Â

†
j Â j+1

× Â†
j+1 + eiU (Ô j−Ô j+1−1)t2 eiU (Ô j+1−Ô j−1)t1 Â j+1Â†

j+1 + eiU (Ô j−Ô j+1−1)t2 eiU (Ô j+1−Ô j )t1 (eiUt1 − 1)Â†
j Â j Â j+1Â†

j+1

+ eiU (Ô j+1−Ô j+2−1)t2 eiU (Ô j+1−Ô j−2)t1 (eiUt1 − 1)Â j+2Â j Â
†
j+1Â†

j+1 + eiU (Ô j−1−Ô j−1)t2 eiU (Ô j+1−Ô j−2)t1 (eiUt1 − 1)

× Â†
j−1Â j Â j Â

†
j+1

]
. (B1)

APPENDIX C: ANALYTICAL EXPRESSIONS
FOR THE TRIMER

The trimer dynamics allows us to compute analytical
expressions for effective Hamiltonians and populations of
quantum states. At the integer resonance � = U , the wave
function at time t can be analytically computed by diago-
nalizing the effective Hamiltonian Ĥ (0)

F = −h̄J0(|ψ0〉〈ψ1| +
|ψ0〉〈ψ2| + H.c.). The quantum state can be written as

|ψ (t )〉 = cos (
√

2J0t )|ψ0〉 + i sin (
√

2J0t )√
2

(|ψ1〉 + |ψ2〉),

(C1)
and the corresponding probabilities read

PA
0 (t ) = cos2 (

√
2J0t ),

PA
1 (t ) = sin2 (

√
2J0t )/2 = PA

2 (t ). (C2)

The main text plots these populations in Fig. 4(a).
At the fractional resonance, � = U/2, second-order pro-

cesses dominate the quantum dynamics via the effective

2 × 2 Hamiltonian Ĥ (1)
F = 16h̄J2

0
3U |ψ0〉〈ψ0| + 4h̄J2

0
5U |ψ3〉〈ψ3| +

3h̄J2
0

U (|ψ0〉〈ψ3| + |ψ3〉〈ψ0|). The quantum state at time t reads

|ψ (t )〉 = c0(t )|ψ0〉 + c1(t )|ψ3〉, (C3)

where the probability amplitudes are

c0(t ) = 1

4λ
[(2λ + a − c)e− 1

2 it (2λ+a+c)

+(2λ − a + c)e
1
2 it (2λ−a−c)]

c1(t ) = − ibe− 1
2 it (a+c) sin λt

λ
, (C4)

with λ =
√

(a − c)2 + 4b2/2, a = 16J2
0 /3U , b = 3J2

0 /U , and
c = 4J2

0 /5U . The analytical populations simply read

PA
0 (t ) = 2b2 cos (2λt ) + (a − c)2 + 2b2

4λ2
,

PA
3 (t ) = b2(1 − cos (2λt ))

2λ2
. (C5)

The main text plots these populations in Fig. 4(b).

APPENDIX D: PERFORMANCE OF THE TIME-EVOLVING
BLOCK DECIMATION ALGORITHM

Here, we analyze the performance of the TEBD algorithm
as we increase the system size. In particular, we consider
the convergence of half-chain von Neumann entropy and the
associated truncation error. In Fig. 14, we plot the half-chain
von Neumann entropy (upper panel) and the truncation er-
ror (lower panel) in the integer resonance case, � = U , for
L = 12 and L = 16 lattice sites. In these simulations, we have
checked the convergence of the half-chain von Neumann en-
tropy for a large bond dimension of χ = 520. Notice that the
truncation error remains very low within the simulating time,
owing to the strongly interacting regime of the Bose-Hubbard
model with parameters U/J0 = 40. As we increase the lat-
tice size, we see higher creation of bipartite entanglement
over time due to the first-order processes that dominate the
dynamics.

FIG. 14. Integer resonance case � = U . The upper panel shows
the half-chain von Neumann entropy for L = 12 and L = 16 lattice
sites. The lower panel shows the truncation error ε in the logarithmic
scale computed from the TEBD algorithm. In our numerical calcu-
lations we consider parameters ω = 1, J0 = 0.01ω, and U = 40J0.
We have truncated up to a maximum occupation number per site
nmax = 2. We stress that increasing the maximum occupation number
to nmax = 3 provides the same results, see Fig. 16.
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FIG. 15. Fractional resonance case � = U/2. The upper panel
shows the half-chain von Neumann entropy for L = 12, L = 16, and
L = 24 lattice sites. The lower panel shows the truncation error ε

computed from the TEBD algorithm. In our numerical calculations
we consider parameters ω = 1, J0 = 0.01ω, and U = 40J0. We have
truncated up to a maximum occupation number per site nmax = 2. We
stress that increasing the maximum occupation number to nmax = 3
provides the same results, see Fig. 16.

In the fractional resonance, � = U/2, we plot the half-
chain von Neumann entropy (upper panel) and the truncation
error (lower panel) for L = 12, L = 16, and L = 24 lattice
sites, see Fig. 15. These simulations confirmed the conver-
gence of half-chain von Neumann entropy for moderate bond
dimensions of χ = 120, 140, and 180, respectively. Notice
that the truncation error remains low during the simulation
due to the Bose-Hubbard model’s strongly interacting regime
with U/J0 = 40 and the strong localization of the many-body
quantum state.

As we increase the lattice size, our results in Fig. 15 pro-
vide clear evidence of the fractional resonance robustness.
The robust localization of the many-body quantum state and
the slowing down of the many-body quantum dynamics are
still present. We observe the same increase in the half-chain
von Neumann entropy over time.

In the main text, we also state that numerical simulations
using nmax = 2 and 3 provide the same results as we increase
the lattice size. Figure 16 offers clear evidence of our state-
ment. Here, we show the half-chain von Neumann entropy as
a function of time for a lattice size L = 12 considering the
integer resonance (upper panel) and the fractional resonance
(lower panel). The right column shows their absolute relative
errors.

APPENDIX E: TENSOR PRODUCT OF ALGEBRAS
AND LADDER SYSTEMS

As a next category of models that exhibit integer and
fractional resonances, we consider spin ladder systems. For
simplicity, let’s consider the tensor product G⊗ G where
G = H⊕

α Gα , where H is the Cartan subalgebra that we
discussed in Sec. II.

FIG. 16. (Top) We consider the integer resonance to compute the
half-chain von Neumann entropy for a lattice of L = 12 sites using
a truncated local Hilbert space of nmax = 2 and nmax = 3, and their
absolute relative error. (Bottom) We consider the fractional reso-
nance to compute the half-chain von Neumann entropy for a lattice
of L = 12 sites using a truncated local Hilbert space of nmax = 2 and
3, and their absolute relative error. It is clear that truncating the local
Hilbert space to nmax = 2 is enough to obtain trustful results.

Now, let us consider two generators of the Cartan algebra
that we call Ôi,a and Ôi,b. Consequently, we consider local
ladder operators Â j,a and Â†

j,b such that they satisfy the al-

gebraic relations [Ôi,a, Â†
j,b] = αδi, jδa,bÂ†

j,b, and [Ôi,a, Â j,b] =
−αδi, jδa,bÂ j,b, where α is a real constant. Here the indices a
and b act as ”flavors” and allows us to distinguish the different
algebras. By using this notation, we can write the generic
ladder Hamiltonian

Ĥ = h̄
L∑

j=1,θ=a,b

ωÔ j,θ + h̄U
L∑

j=1

Ô j,aÔ j,b

− h̄J0 cos �t
L−1∑

j=1,θ=a,b

(Â†
j,θ Â j+1,θ + Â†

j+1,θ Â j,θ ). (E1)

This Hamiltonian describes the dynamics of a two-leg ladder.
Each leg is labeled by an index θ = a, b. The coupling be-
tween the legs is Ô j,aÔ j,b. Now we follow similar steps as
before, but now we go to the rotating frame with the Hamil-
tonian Ĥ0 = U

∑N
j=1 Ô j,aÔ j,b. In the rotating frame, we will

find expressions like

Â†
j,b(t ) = e

i
h̄ Ĥ0t Â†

j,be− i
h̄ Ĥ0t . (E2)

Again, by taking the derivative of this expression, we end up
with terms like

dÂ†
j,b(t )

dt
= iU [Ô j,aÔ j,b, Â†

j,b(t )] = iUαÔ j,aÂ†
j,b(t ). (E3)

From this we can get the time evolution Â†
j (t ) =

exp(iUαt Ô j,a)Â†
j . Similarly, we can proof that Â j (t ) =

exp(−iUαt Ô j,a)Â j . By using this, we obtain the explicit form
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for the Hamiltonian in the rotating frame

ĤI (t ) = e
i
h̄ Ĥ0t Ĥe− i

h̄ Ĥ0t

= −h̄J0 cos �t
L−1∑
j=1

(eiUαt (Ô j+1,b−Ô j,b)Â†
j,aÂ j+1,a + H.c

−h̄J0 cos �t
L−1∑
j=1

(eiUαt (Ô j+1,a−Ô j,a )Â†
j,bÂ j+1,b + H.c.

(E4)

Here let us define ±m� = ±(mj+1,θ − mj,θ ). Fractional res-
onances will occur whenever the condition m� = 2�/Uα is
satisfied. This depends intimately on the relation between
the consecutive quantum numbers mj+1 and mj and the na-
ture of the local Hilbert space at the jth site. Note that
here the local Hermitian operator Ô j,θ satisfies the eigenvalue
equation Ô j,θ |mj,θ 〉 = αmj,θ |mj,θ 〉, where mj,θ is an integer
number and θ = a, b denotes the two “flavors.”

1. Spin ladders and relation to Fermi-Hubbard model

Now it is to consider an example of the general theory.
With this aim, let us consider diagonal spin operators σ̂ z

i,θ with

“two flavors” θ = a, b denoting a given spin chain labeled by
a or b. Using this construction, we can define the local oper-
ator Ôi,θ = σ̂ z

i,θ . Based on the general algebraic construction,
we can define the ladder Hamiltonian

Ĥ = h̄
L∑
j,θ

ωσ̂ z
i,θ + h̄U

2

L∑
j

σ̂ z
i,aσ̂

z
i,b

− h̄J0 cos �t
∑

j,θ

(σ̂+
i,θ σ̂

−
i+1,θ + H.c.). (E5)

After a Jordan Wigner transformation, this model maps to the
Fermi-Hubbard Hamiltonian.

Ĥ = h̄
L∑
j,θ

ω̃ f̂ †
i,θ f̂i,θ + h̄U

2

L∑
j

f̂ †
i,a f̂i,a f̂ †

i,b f̂i,b

− h̄J0 cos �t
∑

j,θ

( f̂ †
i,θ f̂i+1,θ + H.c.), (E6)

where ω̃ = ω − U .
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