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Magnon drag induced by magnon-magnon interactions characteristic of noncollinear magnets

Naoya Arakawa *

The Institute of Science and Engineering, Chuo University, Bunkyo, Tokyo, 112-8551, Japan

(Received 4 April 2022; revised 5 August 2022; accepted 17 August 2022; published 26 August 2022)

A noncollinear magnet consists of the magnetic moments forming a noncollinear spin structure. Because of
this structure, the Hamiltonian of magnons acquires the cubic terms. Although the cubic terms are the magnon-
magnon interactions characteristic of noncollinear magnets, their effects on magnon transport have not been
clarified yet. Here we show that in a canted antiferromagnet the cubic terms cause a magnon drag that magnons
drag magnon spin current and heat current, which can be used to enhance these currents by tuning a magnetic
field. For a strong magnetic field, we find that the cubic terms induce low-temperature peaks of a spin-Seebeck
coefficient, a magnon conductivity, and a magnon thermal conductivity, and that each value is one order of
magnitude larger than the noninteracting value. This enhancement is mainly due to the magnetic field dependence
of the coupling constant of the cubic terms through the magnetic-field dependent canting angle. Our magnon drag
offers a way for controlling the magnon currents of noncollinear magnets via the many-body effect.
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I. INTRODUCTION

Drag effects are nonequilibrium many-body effects. In
contrast to electronic and magnetic properties, transport prop-
erties are essentially nonequilibrium because a current makes
a system out of equilibrium. Then, transport properties are
often described by a theory without interactions, but they are
drastically changed by the effects of interactions, many-body
effects. One of such examples is the phonon drag [1,2]. The
total momentum of electrons or phonons is not conserved
with the electron-phonon interaction. As a result, phonons
drag an electron charge current in the Seebeck effect [2–4].
This phonon drag sometimes causes a peak of the See-
beck coefficient [1,3,5]. The other drag effects, including the
Coulomb drag [6,7], the spin-Coulomb drag [8–10], the spin
drag [11–13], and the standard magnon drag [14–17], can be
similarly understood. Since the drag effects change transport
properties qualitatively, understanding their effects is one of
the central issues in condensed-matter physics.

A magnon drag is expected to be realized in noncollinear
magnets, but its possibility and effects have not been clari-
fied yet. Magnets are classified into collinear magnets and
noncollinear magnets. For collinear magnets the magnetic
moments are aligned parallel or antiparallel to each other,
whereas for noncollinear magnets those are not. Typical ex-
amples of collinear and noncollinear magnets are the Néel
state and a canted state, respectively [Figs. 1(a) and 1(b)].
Spintronics or spin-caloritronics phenomena using magnons
were initially studied in collinear magnets [18–22], and they
have been extended to noncollinear magnets [23–30]. Then,
there is another difference between collinear and noncollinear
magnets. The dominant interactions between magnons usu-
ally come from four-magnon scattering processes [Fig. 1(c)].
Meanwhile, three-magnon scattering processes [Fig. 1(d)],
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which are described by the cubic terms in the magnon Hamil-
tonian, appear only for noncollinear magnets [31–33]. By
analogy with the phonon drag, the cubic terms may cause a
magnon drag that magnons drag a magnon current. This is
distinct from the standard magnon drag [14–17] that magnons
drag an electron current; the former works for magnetic metals
and insulators, whereas the latter works only for magnetic
metals. Nevertheless, it is unclear how the cubic terms affect
magnon-transport properties of noncollinear magnets.

Here we demonstrate that the magnon drag induced
by the cubic terms enhances the magnon spin current
and heat current for a noncollinear antiferromagnet. Our
noncollinear magnet is a three-dimensional canted antiferro-
magnet [Fig. 2(a)], such as MnF2, with a magnetic field along
the x axis. We formulate three magnon-transport coefficients
using the linear-response theory [4,34–38] in the presence of
a temperature gradient or a nonthermal external field along
the z axis [Fig. 2(a)]: a spin-Seebeck coefficient Sm, a magnon
conductivity σm, and a magnon thermal conductivity κm. We
show that the cubic terms lead to the drag terms of Sm, σm, and
κm, which are proportional to τ 2, the square of the magnon
lifetime, whereas the noninteracting ones are proportional to
τ . We also show that the drag terms cause low-temperature
peaks of Sm, σm, and κm for a strong magnetic field, at
which the cubic terms become large. The Sm obtained for a
weak magnetic field is consistent with the experiment [24] for
MnF2.

II. MODEL

A. Magnon Hamiltonian of the canted antiferromagnet

Our noncollinear magnet is described by the spin
Hamiltonian,

H = 2J
∑
〈i, j〉

Si · S j − h
N/2∑
i=1

Sx
i − h

N/2∑
j=1

Sx
j . (1)
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FIG. 1. Spin structures of (a) the Néel state and (b) the canted
state. The arrows represent the magnetic moments. In the Néel state,
the magnetic moments are aligned antiparallel to each other. Mean-
while, in the canted state, the magnetic moments are canting due to
a magnetic field. Examples of (c) the four-magnon and (d) the three-
magnon scattering processes. The incoming and outgoing arrows
represent the annihilations and creations of a magnon, respectively.
The four-magnon scattering processes consist of annihilation and
creation processes for four magnons under momentum conservation
q1 + q3 = q2 + q4, whereas the three-magnon scattering processes
consist of those for three magnons under momentum conservation
q + q′′ = q′. The four-magnon scattering processes are possible for
both collinear and noncollinear magnets, whereas the three-magnon
scattering processes appear only for noncollinear magnets.

Here the first term is the antiferromagnetic Heisenberg inter-
action between nearest-neighbor spins, and the others are the
couplings with the magnetic field h = −gμBB, where g and
μB are the g factor and Bohr magneton, respectively. We have
omitted the dipolar interaction because it may be negligible
for MnF2 (see Appendix A). We consider a three-dimensional
case on the body-centered cubic lattice [Fig. 2(a)]; i’s and j’s
in Eq. (1) are site indices for sublattices A and B, respectively.
In the range of 0 < h < 4JzS, where z = 8, the canted state
for Si = t (S sin φ 0 S cos φ) and S j = t (S sin φ 0 − S cos φ)
with sin φ = h

4JzS is stabilized. For h = 0 or h > 4JzS = hc,
the stabilized state becomes the Néel or the ferromagnetic
state, respectively. (Note that the energy of the canted, the
Néel, or the ferromagnetic state divided by N/2 is given
in the mean-field approximation by εcAF = −2JzS2 − h2

4Jz ,
εAF = −2JzS2, or εFM = 2JzS2 − 2Sh, respectively.) There-
fore, we choose the magnetic field to be 0 < h < hc, in the
range of which low-energy excitations can be described by
magnons for the canted antiferromagnet. Hereafter we set
kB = 1, h̄ = 1, and a = 1, where a is the lattice constant.

To describe magnon properties, we rewrite Eq. (1) us-
ing the Holstein-Primakoff transformation for noncollinear

magnets [39–46]. As derived in Appendix B, the magnon
Hamiltonian of our canted antiferromagnet is written as

H = H0 + Hint, (2)

where the noninteracting part H0 consists of the quadratic
terms,

H0 =
∑

q

(a†
q b†

q a−q b−q)

(
Aq Bq

Bq Aq

)
⎛
⎜⎜⎜⎜⎝

aq

bq

a†
−q

b†
−q

⎞
⎟⎟⎟⎟⎠, (3)

and the interaction part Hint consists of the cubic terms,

Hint =
∑

q,q′,q′′
δq+q′′,q′J3(q)(bqa†

q′aq′′ − aqb†
q′bq′′ ) + (H.c.).

(4)

We have omitted the constant terms and quartic terms for
simplicity. In Eq. (3), aq and bq are the Fourier coefficients
of the magnon operators, the 2 × 2 matrices Aq and Bq are
given by (Aq)11 = (Aq)22 = 1

2 (2Jz cos 2φS + h sin φ) = A,
(Aq)12 = (Aq)21 = − 1

2 J̃ (−)(q)S = A′(q), (Bq)12 = (Bq)21 =
− 1

2 J̃ (+)(q)S = B′(q), and (Bq)11 = (Bq)22 = 0, J̃ (∓)(q) =
(cos 2φ ∓ 1)J (q), and J (q) = 8J cos qx

2 cos qy

2 cos qz

2 . In
Eq. (4),

J3(q) =
√

4S

N
sin 2φJ (q). (5)

Equation (4) is similar to that of the electron-phonon inter-
action because the former and latter describe the creation
and annihilation processes for three magnons and for two
electrons and a phonon, respectively.

The coupling constant of the cubic terms depends on the
magnetic field though the magnetic field dependence of the

canting angle φ. Since sin 2φ = 2h
√

(4JzS)2−h2

(4JzS)2 in our canted
antiferromagnet, J3(q) depends on the magnetic field. Fig-
ure 2(b) shows the h/J dependence of [J3(q)/J (q)]2 for S = 5

2

or 3
2 . (Note that hc = 4JzS for S = 5

2 or 3
2 is 80J or 48J ,

respectively.) We see the coupling constant of the cubic terms
for S = 5

2 or 3
2 is maximum at h ∼ 57J or 34J , respectively. In

addition, the coupling constant for S = 5
2 at h = 65J is much

larger than that at h = 20J . This suggests that the effects of the
cubic terms are more considerable for strong magnetic fields
than those for weak magnetic fields. (In fact, we will show in
Sec. III B that the cubic terms cause the huge enhancement
of the magnon-transport coefficients at h = 65J compared
with that at h = 20J .) We emphasize that the magnetic-field
dependent coupling constant is characteristic of canted anti-
ferromagnets. (Such a dependence is absent in the case of the
phonon drag.)
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FIG. 2. (a) The spin structure of the canted antiferromagnet on the body-centered cubic lattice with the x, y, and z axes. The case for S = 5
2

corresponds to MnF2. The circles on the corners of the cube represent the sites on sublattice A, whereas that on the center represents the site
on sublattice B. The arrows in the cube represent the canting spins. The magnetic field h = −gμBB is applied along the x axis, where g is the
g factor and μB is the Bohr magneton. The temperature gradient ∇T or the nonthermal external field ES is applied along the z axis; as a result,
the magnon spin current and heat current along it are induced. (b) The h/J dependence of [J3(q)/J (q)]2 for S = 5

2 or 3
2 with N

2 = 203 and
J = 1. Here J3(q) is the coupling constant of the cubic terms. The red or blue curve represents that dependence for S = 5

2 or 3
2 , respectively.

The magnon-band dispersion relations along the symmetric lines in the momentum space at (c) h = 20J , (d) 40J , and (e) 60J for S = 5
2

with N
2 = 203. The blue and red curves represent the energies divided by J for the β-band and α-band magnon [i.e., εβ (q)/J and εα (q)/J],

respectively. The vertical dashed lines correspond to the values of h.

B. Noninteracting magnon bands

We diagonalize Eq. (3) using the Bogoliubov transforma-
tion, ⎛

⎜⎜⎜⎜⎝
aq

bq

a†
−q

b†
−q

⎞
⎟⎟⎟⎟⎠ = 1√

2

⎛
⎜⎜⎜⎜⎝

cq c′
q sq s′

q

cq −c′
q sq −s′

q

sq s′
q cq c′

q

sq −s′
q cq c′

q

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

αq

βq

α
†
−q

β
†
−q

⎞
⎟⎟⎟⎟⎠, (6)

where cq = cosh θq, sq = sinh θq, c′
q = cosh θ ′

q, and s′
q =

sinh θ ′
q. By substituting Eq. (6) into Eq. (3) and setting

tanh 2θq = − B′(q)
A+A′(q) and tanh 2θ ′

q = B′(q)
A−A′(q) , we obtain

H0 =
∑

q

[εα (q)α†
qαq + εβ (q)β†

qβq], (7)

where εα (q) = 2
√

[A + A′(q)]2 − B′(q)2 and εβ (q) =
2
√

[A − A′(q)]2 − B′(q)2. (Those choices of the hyperbolic
functions are necessary to make the off-diagonal terms zero.)
Figures 2(c)–2(e) show the magnon-band dispersion for
S = 5

2 at h = 20J , 40J , and 60J . The band splitting energy
at q = 0 is equal to h and larger than those at the other q’s.
This property is distinct from the property of a two-sublattice
ferrimagnet [21,38,47], in which the band splitting energies at
q = 0 and the others are the same. Moreover, it indicates that
even for T < h, the upper-branch magnons can contribute to
transport properties. (This is true, as shown in Fig. 3.) Note
that we do not study the interacting magnon-band dispersion
in this paper because the magnon-band energies appearing in
the magnon-transport coefficients are the noninteracting ones
[see Eqs. (15) and (16)].

III. MAGNON-TRANSPORT COEFFICIENTS

A. Magnon-drag terms of Sm, σm, and κm

The magnon-transport coefficients Sm, σm, and κm are con-
nected with jS and jQ, magnon spin and heat current densities:

(
jS

jQ

)
=
(

L11 L12

L21 L22

)( ES

−∇T
T

)
, (8)

where L11 = σm, L12(= L21) = Sm, L22 = κm, ES is a nonther-
mal external field, such as a magnetic-field gradient [48], and
∇T is a temperature gradient. (Note that our definition of κm

is enough to analyze its property at low temperatures at which
the magnon picture remains valid [38].) Due to zero magnon
chemical potential in equilibrium, jQ = jE holds, where jE
is a magnon energy current density. By using the continuity
equations, we can express Jk = N jk (k = S, E ) as follows
[38,45,49] (see Appendix C):

Jk =
∑

q

4∑
l,l ′=1

vk
ll ′ (q)x†

ql xql ′ , (9)

where xq1 = aq, xq2 = bq, xq3 = a†
−q, xq4 = b†

−q,
vS

ll ′ (q) = vll ′ (q) = vl ′l (q), and vE
ll ′ (q) = ell ′ (q) = el ′l (q);

the finite terms of vll ′ (q) and ell ′ (q) are given by
v23(q) = −v14(q) = ∂B′(q)

∂q , v12(q) = −v34(q) = ∂A′(q)
∂q ,

e12(q) = −e34(q) = −2A ∂A′(q)
∂q , and e11(q) = e22(q) =

−e33(q) = −e44(q) = 2B′(q) ∂B′(q)
∂q − 2A′(q) ∂A′(q)

∂q . Hereafter
we concentrate on the magnon transport with ES or (−∇T/T )
applied along the z axis [Fig. 2(a)].

Since the magnon lifetime τ is supposed to be long enough
to regard magnons as quasiparticles, we derive L12, L11, and
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FIG. 3. The temperature dependences of (a) Sm, (b) σm, and (c) κm obtained in the numerical calculations for S = 5
2 with N

2 = 203 and
J = 1 at a weak magnetic field h = 20J . The red curves represent the T/J dependences of Sm = L0

12β , σm = L0
11β , and κm = L0

22β ; the yellow
curves represent those of Sm = L0

12, σm = L0
11, and κm = L0

22; the light blue curves represent those of Sm = L12β , σm = L11β , and κm = L22β ;
and the blue curves represent those of Sm = L12, σm = L11, and κm = L22. L0

μη = L0
μηβ + L0

μηα , where L0
μηβ and L0

μηα are the contributions from
the lower-branch and higher-branch magnons (i.e., the β-band and α-band magnons), respectively. Lμηβ = L0

μη + L′
μηβ , where L′

μηβ is part
of the drag term, the contribution from the term for (ν, ν ′, ν ′′) = (β, β, β ) in Eq. (16). The temperature dependences of (d) Sm, (e) σm, and
(f) κm obtained in the numerical calculations for S = 5

2 with N
2 = 203 and J = 1 at a strong magnetic field h = 65J . The same notations as

those at h = 20J are used.

L22 using the linear-response theory [4,10,34–38,50,51] in the
limit τ → ∞. In the linear-response theory, Lμη (μ, η = 1, 2)
is given by

Lμη = lim
ω→0

�R
μη(ω) − �R

μη(0)

iω
, (10)

where �R
μη(ω) = �μη(i�n → ω + iδ) (δ = 0+), �n =

2πT n (n > 0),

�12(i�n) =
∫ T −1

0
dτei�nτ

1

N

〈
Tτ Jz

S (τ )Jz
E

〉
, (11)

�11(i�n) =
∫ T −1

0
dτei�nτ

1

N

〈
Tτ Jz

S (τ )Jz
S

〉
, (12)

�22(i�n) =
∫ T −1

0
dτei�nτ

1

N

〈
Tτ Jz

E (τ )Jz
E

〉
, (13)

and Tτ is the time-ordering operator [51]. Since Jz
S and Jz

E are
written as Eq. (9), we can calculate Eqs. (11)–(13) by using
a method of Green’s functions [4,38,49–51]; in their calcula-
tions, we treat Hint in the second-order perturbation theory. As
derived in Appendix D, Lμη can be written as follows:

Lμη = L0
μη + L′

μη, (14)

where L0
μη (μ, η = 1, 2) is the noninteracting term,

L0
μη = − 2

N

∑
q

∑
ν=α,β

jz
μ;νν (q) jz

η;νν (q)τ
∂n[εν (q)]

∂εν (q)
, (15)

and L′
μη is the magnon-drag term due to the cubic terms,

L′
μη = π

N2

∑
q,q′

∑
ν,ν ′,ν ′′=α,β

jz
μ;νν (q) jz

η;ν ′ν ′ (q′)τ 2 ∂n[εν (q)]

∂εν (q)

× S sin2 2φ
∑

p=1,2,3

F (p)
νν ′ν ′′ (q, q′). (16)

In Eq. (15), n(x) = 1/(ex/T − 1), jz
1;νν (q) = vz

νν (q), and
jz
2;νν (q) = ez

νν (q), where vz
αα (q) = −vz

ββ (q) = 2vz
12(q),

ez
αα (q) = 2[ez

12(q) + ez
11(q)], and ez

ββ (q) = 2[−ez
12(q) +

ez
11(q)]. In Eq. (16),

F (2)
νν ′ν ′′ (q, q′) = {n[εν ′′ (q − q′)] − n[εν ′ (q′)]}v(2)

νν ′ν ′′ (q, q′)

× δ[εν (q) − εν ′ (q′) + εν ′′ (q − q′)], (17)

F (3)
νν ′ν ′′ (q, q′) = − {n[εν ′′ (q − q′)] − n[εν ′ (q′)]}v(3)

νν ′ν ′′ (q, q′)

× δ[εν (q) + εν ′ (q′) − εν ′′ (q − q′)], (18)

F (1)
νν ′ν ′′ (q, q′) = {1 + n[εν ′′ (q − q′)] + n[εν ′ (q′)]}v(1)

νν ′ν ′′ (q, q′)

× δ[εν (q) − εν ′ (q′) − εν ′′ (q − q′)], (19)

and the finite components of v
(p)
νν ′ν ′′ (q, q′)’s are given by those

for (ν, ν ′, ν ′′) = (β, β, β ), (β, α, α), (α, β, α), and (α, α, β )
(for their expressions, see Appendix D). The most impor-
tant difference between Eqs. (15) and (16) is that L′

μη ∝ τ 2,
whereas L0

μη ∝ τ . This dependence is different from that of
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the phonon-drag term of L12 [4], which is proportional to
τelτph, where τel and τph are the electron and phonon lifetimes,
respectively. Then, since Eq. (16) is proportional to the square
of the coupling constant of the cubic terms, the magnon-drag
term depends on the magnetic field. Because of this property,
our magnon drag causes unusual magnetic field dependences
of the magnon-transport coefficients (see Sec. III B). Equa-
tion (15) is consistent with the expression derived in the
Boltzmann theory with the relaxation-time approximation.

B. Magnon-drag induced enhancement and low-temperature
peaks of Sm, σm, and κm

To determine the effects of the cubic terms quantitatively,
we evaluate Sm, σm, and κm numerically. We set J = 1 and S =
5
2 . (In the case of S = 5

2 , the magnon picture for the canted
antiferromagnet is valid in the range of 0 < h < 80J .) The
transition temperature Tc = 16

3 S(S + 1)J is consistent with
the Néel temperature TN of MnF2 (S = 5

2 ) if J ≈ 1.5 K(≈
0.13 meV). Note that h = 20J and 65J correspond to |B| ≈ 20
and 65 T, respectively, using h = −gμBB, with g = 2 and
J = 0.13 meV. We believe such magnetic fields could be
experimentally realized because the magnetic field of the or-
der of 1000T is experimentally accessible [52]. We perform
the momentum summations by dividing the first Brillouin
zone into a Nq-point mesh [38] and setting Nq = 203(= N/2).
We consider the temperature range 0 < T � 28J (∼0.6Tc)
because the perturbation theory with magnon-magnon interac-
tions can reproduce the perpendicular susceptibility of MnF2

up to about 0.6TN [53]. For simplicity, τ is chosen to be
τ−1 = γ0 + γ1T + γ2T 2, where γ0 = 10−2J , γ1 = 10−4, and
γ2 = 10−3. We replace the delta functions in Eqs. (17)–(19) by
the Lorentzian ones using δ(x) ∼ 1

π

3γ

x2+(3γ )2 , where γ = 1/2τ .
Figures 3(a)–3(c) show the temperature dependences of

Sm, σm, and κm at a weak magnetic field h = 20J . The con-
tributions from the upper-branch magnons are non-negligible
even at sufficiently low temperatures in the absence of the cu-
bic terms (compare the red and yellow curves of these figures).
Even in the presence of the cubic terms, the upper-branch
magnons give the non-negligible contributions (compare the
light blue and blue curves). Furthermore, the magnon-drag
terms enhance Sm, σm, and κm. For example, the ratios
L12/L0

12, L11/L0
11, and L22/L0

22 at T = 7.5J are about 1.4, 1.1,
and 1.2, respectively. (As we will show below, these ratios
become much larger for h = 65J .) The broad peak of Sm is
consistent with the experimental result of MnF2 [24] because
the voltage observed in the spin-Seebeck effect is proportional
to Sm.

We turn to the results for a strong magnetic field h = 65J .
Figure 3(d) shows that the magnon-drag term causes a peak
at a low temperature T = 7.5J ∼ 0.16Tc, at which the ratio
L12/L0

12 reaches about 22. This low-temperature peak is sim-
ilar to that induced by the phonon drag [1,3]. In contrast to
the phonon drag, our magnon drag induces a low-temperature
peak of σm, as shown in Fig. 3(e). Thus, our magnon drag
could explain a peak observed in σm [54] if a noncollinear
state is stabilized. A similar peak is observed also in κm

[Fig. 3(f)]. The ratios L11/L0
11 and L22/L0

22 at T = 7.5J are
about 23 and 20, respectively. These results suggest that our
magnon drag can be used to enhance the magnon spin current

and heat current by tuning the magnetic field. The contribu-
tions from the upper-branch magnons are non-negligible also
for h = 65J in the absence and presence of the cubic terms.
Note that the larger enhancement of the magnon-transport
coefficients for h = 65J than for h = 20J comes mainly from
the magnetic field dependence of the coupling constant of the
cubic terms.

We emphasize that our magnon drag can induce a similar
peak for any transport coefficient described by magnon cur-
rents. This is an important difference between our magnon
drag and the other drag effects. Therefore, our magnon drag
provides a mechanism for a low-temperature peak of a trans-
port coefficient.

IV. DISCUSSION

We discuss the generality of our magnon drag. The mecha-
nism for our magnon drag will work as long as the magnon
Hamiltonian contains the cubic terms. This is because the
second-order perturbation of the cubic terms leads to the
similar magnon-drag term. Thus, the similar enhancement
of magnon-transport coefficients may be expected to oc-
cur in other noncollinear magnets, such as those with the
Dzyaloshinsky-Moriya interaction or the dipolar interaction.
We should note that our magnon drag does not necessarily
occur in any noncollinear magnets because there is a non-
collinear magnet in which the cubic terms are zero [46].
The cubic terms in the magnon Hamiltonian are vital for our
magnon drag.

We comment on two ways to reduce the critical magnetic
field at which a low-temperature peak appears. One is to make
S smaller; in our model for S = 3/2, the similar peaks of
Sm, σm, and κm are obtained at h = 40J (see Appendix E).
The other is to reduce the dimension; for example, in a two-
dimensional canted antiferromagnet, a low-temperature peak
could be realized at smaller h’s. Thus, the low-temperature
peaks due to the magnon drag induced by the cubic terms
could be realized in various noncollinear magnets.

Our results suggest a similar drag for phonons or photons.
For example, a phonon drag could be realized in the presence
of the anharmonicity of lattice forces, which leads to the cubic
terms in the phonon Hamiltonian [55]. Our theory is useful to
study transport properties for other Bose quasiparticles.

Finally, we discuss the differences between the present
magnon drag and another one induced by the quartic terms.
The first-order perturbation of the quartic terms causes an-
other magnon drag [38]. In contrast to the present magnon
drag, its effect is described by the drag terms proportional
to τ . Thus, the effects of the magnon drag induced by the
quartic terms are to modify the values of the magnon-transport
coefficients. More importantly, it does not cause any peak, and
its effects are negligible at low temperatures [38]. Meanwhile,
the present magnon drag causes the enhancement of Sm, σm,
and κm even at low temperatures and their low-temperature
peaks for the strong magnetic fields. Since many-body effects
are usually negligible at low temperatures, the enhancement
and low-temperature peaks shown in the present paper may
be unusual many-body effects. Note that since the Holstein-
Primakoff method is based on the 1/S expansion, the effects
of the second-order perturbation due to the cubic terms should
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be compared with those of the first-order perturbation due to
the quartic terms. [The second-order terms of the cubic terms
and the first-order terms of the quartic terms are both O(S0).]

V. CONCLUSION

In summary, we showed the magnon drag induced by the
cubic terms. Its effects on Sm, σm, and κm are described by the
terms proportional to τ 2, whereas the noninteracting terms are
proportional to τ . Our magnon drag enhances Sm, σm, and κm

even at low temperatures and induces their low-temperature
peaks for the strong magnetic field. It provides a mechanism
for explaining a peak observed in a transport coefficient. The
broad peak of Sm for the weak magnetic field agrees with
the experimental result of MnF2 [24]. Our results open a
way to control the magnon spin current and heat current of
noncollinear magnets by tuning the magnetic field.
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APPENDIX A: ESTIMATE OF THE DIPOLAR
INTERACTION ENERGY

We estimate the dipolar interaction energy for MnF2. Ac-
cording to the argument of Ref [56], the dipolar interaction
energy Udip will be estimated from Udip ≈ (gμB )2

r3 , where r
is the distance between two magnetic dipoles. This equa-
tion can be written as Udip ≈ e2

a0

1
(137)2 ( a0

r )3 ≈ 27.2 1
(137)2 ( a0

r )3

(eV), where a0 ≈ 0.53 Å. For MnF2, the lattice constant along
the a or b axis is a ≈ 4.9 Å, and that along the c axis is
c ≈ 3.3 Å [57]. (This difference in the lattice constant has
been neglected in our model for simplicity.) Setting r = a
or c in the above relation, we get Udip ≈ 1.4 or 5.8 μeV,
respectively. Since these values are much smaller than the an-
tiferromagnetic Heisenberg interaction, the dipolar interaction
may be negligible for MnF2.

APPENDIX B: HOLSTEIN-PRIMAKOFF
TRANSFORMATION FOR A NONCOLLINEAR MAGNET

Before performing the Holstein-Primakoff transformation,
we need to rewrite the spin Hamiltonian in terms of rotated
spin operators. In general, magnons describe spin fluctua-
tions, the deviations from the ground-state magnetic moments.
Since their directions are site dependent in noncollinear mag-
nets, we need to perform a rotation of the spin at each
site [42,43,46]. In our case, the ground-state magnetic mo-
ments are characterized by Si = t (S sin φ 0 S cos φ) and S j =
t (S sin φ 0 − S cos φ) when i and j belong to sublattices A
and B, respectively. Thus, we introduce the following rotated
spin operators:

S′
i = R(−φ)Si, (B1)

S′
j = R(π + φ)S j, (B2)

where the rotation matrix R(θ ) is given by [R(θ )]xx =
[R(θ )]zz = cos θ , [R(θ )]xz = −[R(θ )]zx = sin θ , [R(θ )]yy = 1,
and [R(θ )]xy = [R(θ )]zy = [R(θ )]yx = [R(θ )]yz = 0. The rota-
tion angles have been chosen in order that S′

i and S′
j satisfy

S′
i = S′

j = t (0 0 S) when Si = t (S sin φ 0 S cos φ) and S j =
t (S sin φ 0 − S cos φ). Because of this property, we can ap-
ply the Holstein-Primakoff transformation similar to that for
ferromagnets to the spin Hamiltonian expressed in terms of
S′

i and S′
j [42,43,46]. Combining Eqs. (B1) and (B2) with

Eq. (1), we obtain

H =2J
∑
〈i, j〉

[− cos 2φ
(
S′x

i S′x
j + S′z

i S′z
j

)+ S′y
i S′y

j

]

+ 2J sin 2φ
∑
〈i, j〉

(
S′x

i S′z
j − S′z

i S′x
j

)

− h
∑

i

(
cos φS′x

i + sin φS′z
i

)
− h

∑
j

(− cos φS′x
j + sin φS′z

j

)
. (B3)

We now apply the Holstein-Primakoff transformation,

S′z
i = S − a†

i ai, S′+
i =

√
2S − a†

i aiai, S′−
i = (S′+

i )†,

(B4)

S′z
j = S − b†

jb j, S′+
j =

√
2S − b†

jb jb j, S′−
j = (S′+

j )†,

(B5)

to Eq. (B3). To consider magnon-magnon interactions, we
apply a 1/S expansion [46,58] to the above equations of S′±

i
and S′±

j ; the result is

S′+
i ∼

√
2Sai − 1

2
√

2S
a†

i aiai, (B6)

S′−
i ∼

√
2Sa†

i − 1

2
√

2S
a†

i a†
i ai, (B7)

S′+
j ∼

√
2Sb j − 1

2
√

2S
b†

jb jb j, (B8)

S′−
j ∼

√
2Sb†

j − 1

2
√

2S
b†

jb
†
jb j . (B9)

Substituting Eqs. (B6)–(B9) and the first equations of
Eqs. (B4) and (B5) into Eq. (B3), we obtain Eq. (2) with
Eqs. (3) and (4).

APPENDIX C: DERIVATION OF EQ. (9)

We derive Eq. (9) using the continuity equations [49]. This
derivation can be performed in a way similar to those for
another noncollinear magnet [46] and for a collinear magnet
[38].

First, we derive the spin current operator JS , the k = S
component of Eq. (9). We suppose that the z components of
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S′
i and S′

j satisfy the following continuity equation:

dS′z
m

dt
+ ∇ · j (S)

m = 0, (C1)

where j (S)
m is a spin current operator at site m. Using Eq. (C1),

we have

d

dt

(∑
m

RmS′z
m

)
= −

∑
m

Rm∇ · j (S)
m =

∑
m

j (S)
m = J (S)

l ,

(C2)

where l = A or B for m ∈ A or B, respectively. (Note that
m ∈ A or B means that site m belongs to sublattice A or
B, respectively.) In deriving this equation, we have omitted
the surface contributions. Equation (C2) can be rewritten as
follows:

J (S)
A = i

[
H,
∑

i

RiS
′z
i

]
, (C3)

J (S)
B = i

[
H,
∑

j

R jS
′z
j

]
. (C4)

Then, the spin current operator JS is given by

JS = J (S)
A + J (S)

B . (C5)

Since we consider the magnon system described by H =
H0 + Hint, we replace the H’s, S′z

i , and S′z
j in Eqs. (C3) and

(C4) by the H0’s, S − a†
i ai, and S − b†

jb j , respectively. As a
result, we have

J (S)
A =

∑
i

iRi[a
†
i ai, H0] =

∑
i

iRi[a
†
i ai, HAB], (C6)

J (S)
B =

∑
j

iR j[b
†
jb j, H0] =

∑
j

iR j[b
†
jb j, HAB], (C7)

where

HAB = −J̃ (+)S
∑
〈i, j〉

(aib j + a†
i b†

j ) − J̃ (−)S
∑
〈i, j〉

(aib
†
j + a†

i b j ),

(C8)

and J̃ (±) = (cos 2φ ± 1)J . After some algebra, Eqs. (C6) and
(C7) reduce to

J (S)
A = i

∑
〈i, j〉

RiS[J̃ (+)(aib j − a†
i b†

j ) + J̃ (−)(aib
†
j − a†

i b j )],

(C9)

J (S)
B = i

∑
〈i, j〉

R jS[J̃ (+)S(aib j − a†
i b†

j ) − J̃ (−)(aib
†
j − a†

i b j )].

(C10)

Combining these equations with Eq. (C5), we have

JS = i
∑
〈i, j〉

(Ri + R j )J̃
(+)S(aib j − a†

i b†
j )

+ i
∑
〈i, j〉

(Ri − R j )J̃
(−)S(aib

†
j − a†

i b j ). (C11)

By using the Fourier coefficients of the magnon operators,

ai =
√

2

N

∑
q

aqe−iq·Ri , b j =
√

2

N

∑
q

bqe−iq·R j , (C12)

we can express Eq. (C11) as follows:

JS = −
∑

q

∂ J̃ (+)(q)

∂q
S(a−qbq + a†

−qb†
q)

−
∑

q

∂ J̃ (−)(q)

∂q
S(aqb†

q + a†
qbq)

= − S

2

∑
q

[
∂ J̃ (+)(q)

∂q
(a−qbq + a†

−qb†
q − aqb−q − a†

qb†
−q)

+ ∂ J̃ (−)(q)

∂q
(aqb†

q + a†
qbq − a−qb†

−q − a†
−qb−q)

]
,

(C13)

where J̃ (±)(q) = (cos 2φ ± 1)J (q). This is equivalent to the
k = S component of Eq. (9).

Then, we derive the energy current operator JE , the k = E
component of Eq. (9). We suppose that the Hamiltonian at site
m, hm, satisfies the following continuity equation:

dhm

dt
+ ∇ · j (E )

m = 0, (C14)

where j (E )
m is an energy current operator at site m. In a way

similar to the derivation of JS , we can determine the energy
current operator JE from

JE = i

[
H0,

∑
n

Rnhn

]
= i
∑
m,n

Rn[hm, hn], (C15)

where
∑N/2

i=1 hi +∑N/2
j=1 h j = H0, hi = hiAA + hiAB, and h j =

h jBB + h jBA. Here hiAA, hiAB, h jBB, and h jBA are given by

hiAA = (2Jz cos 2φS + h sin φ)a†
i ai, (C16)

hiAB = −1

2
S
∑

n

[J̃ (+)
in (aibn + a†

i b†
n) + J̃ (−)

in (aib
†
n + a†

i bn)],

(C17)

h jBB = (2Jz cos 2φS + h sin φ)b†
jb j, (C18)

h jBA = −1

2
S
∑

m

[J̃ (+)
m j (ambj + a†

mb†
j ) + J̃ (−)

m j (amb†
j + a†

mbj )],

(C19)

where J̃ (±)
i j = (cos 2φ ± 1)Ji j , and Ji j = J for nearest-

neighbor i and j. Combining these equations with Eq. (C15),
we have

JE = i
∑
m,n

(Rn − Rm)([hmAA, hnAB] + [hmAA, hnBA]

+ [hmAB, hnBB] + [hmAB, hnBA] + [hmBB, hnBA])

+ i
∑
m,n

Rn([hmAB, hnAB] + [hmBA, hnBA]). (C20)
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After some calculations, Eq. (C20) reduces to

JE =
∑
i, j

i(R j − Ri )S(2Jz cos 2φS + h sin φ)J̃ (−)
i j (aib

†
j − a†

i b j )

+
∑
m,n,i

S2

2
i(Rm − Rn)[J̃ (+)

mi J̃ (+)
in − J̃ (−)

mi J̃ (−)
in ]b†

mbn +
∑
m,n, j

S2

2
i(Rm − Rn)[J̃ (+)

m j J̃ (+)
jn − J̃ (−)

m j J̃ (−)
jn ]a†

man. (C21)

By using the Fourier coefficients of the magnon operators [Eq. (C12)], Eq. (C21) can be written as follows:

JE =
∑

q

{
(2Jz cos 2φS + h sin φ)

∂ J̃ (−)(q)

∂q
S(aqb†

q + a†
qbq) + S2

[
∂ J̃ (+)(q)

∂q
J̃ (+)(q) − ∂ J̃ (−)(q)

∂q
J̃ (−)(q)

]
(a†

qaq + b†
qbq)

}

=
∑

q

1

2
(2Jz cos 2φS + h sin φ)

∂ J̃ (−)(q)

∂q
S(aqb†

q + a†
qbq − a−qb†

−q − a†
−qb−q)

+
∑

q

1

2
S2

[
∂ J̃ (+)(q)

∂q
J̃ (+)(q) − ∂ J̃ (−)(q)

∂q
J̃ (−)(q)

]
(a†

qaq + b†
qbq − a−qa†

−q − b−qb†
−q). (C22)

This gives the k = E component of Eq. (9).

APPENDIX D: DERIVATIONS OF EQS. (15) AND (16) WITH THE EXPRESSIONS OF v
(p)
νν′ν′′ (q, q′ )’s APPEARING

IN EQS. (17)–(19)

We derive Eqs. (15) and (16), L0
μη and L′

μη (μ, η = 1, 2) in the limit τ → ∞, and show the expressions of v
(p)
νν ′ν ′′ (q, q′)’s

(p = 1, 2, 3) appearing in Eqs. (17)–(19). Since we can derive L0
11, L0

22, L′
11, and L′

22 in a way similar to the derivation of L0
12

and L′
12, we explain the derivations of L0

12 and L′
12 below. Their derivations can be performed in a way similar to those of the

spin-Seebeck coefficient of a collinear magnet [38] and of the Seebeck coefficient of a metal [4]. The v
(p)
νν ′ν ′′ (q, q′)’s are given by

Eqs. (D64)–(D75) with Eqs. (D76)–(D92).
First, we derive Eq. (15), the expression of L0

μη in the limit τ → ∞. After deriving the general expression of L0
12 [Eq. (D22)],

we derive its expression in the limit τ → ∞ [Eq. (D28)]. Then, we explain how L0
11 and L0

22 are obtained from L0
12 and show

their expressions in the limit τ → ∞ [Eqs. (D29) and (D30)]. Substituting Eq. (9) into Eq. (11), we have

�12(i�n) = 1

N

∑
q,q′

4∑
l1,l2,l3,l4=1

vz
l1l2

(q)ez
l3l4

(q′)GII
l1l2l3l4 (q, q′; i�n), (D1)

where

GII
l1l2l3l4 (q, q′; i�n) =

∫ T −1

0
dτei�nτ 〈Tτ x†

ql1
(τ )xql2 (τ )x†

q′l3 xq′l4〉. (D2)

The expectation value in Eq. (D2) can be calculated by using the method of Green’s functions [49–51]. Equation (D1) provides
a starting point to derive L0

12, and L′
12. To derive L0

12, we evaluate Eq. (D2) without the effects of Hint using the Wick’s theorem;
the result is

GII(0)
l1l2l3l4

(q, q′; i�n) = δq,q′T
∑

m

Gl4l1 (q, i�m)Gl2l3 (q, i�n+m), (D3)

where Gll ′ (q, i�m) is the magnon Green’s function in the Matsubara-frequency representation,

Gll ′ (q, i�m) =
∫ T −1

0
dτei�mτ Gll ′ (q, τ ) = −

∫ T −1

0
dτei�mτ 〈Tτ xql (τ )x†

ql ′ 〉, (D4)

and �m = 2πT m. Substituting Eq. (D3) into Eq. (D1), we obtain

�
(0)
12 (i�n) = 1

N

∑
q

4∑
l1,l2,l3,l4=1

vz
l1l2

(q)ez
l3l4

(q)T
∑

m

Gl4l1 (q, i�m)Gl2l3 (q, i�n+m). (D5)

By using the Bogoliubov transformation [Eq. (6)],

xql =
∑

ν=α1,β1,α2,β2

(Pq)lνx′
qν, (D6)
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where

x′
qα1

= αq, x′
qβ1

= βq, x′
qα2

= α
†
−q, x′

qβ2
= β

†
−q, (D7)

(Pq)1α1 = (Pq)2α1 = (Pq)3α2 = (Pq)4α2 = 1√
2

cosh θq, (D8)

(Pq)3α1 = (Pq)4α1 = (Pq)1α2 = (Pq)2α2 = 1√
2

sinh θq, (D9)

(Pq)1β1 = −(Pq)2β1 = (Pq)3β2 = −(Pq)4β2 = 1√
2

cosh θ ′
q, (D10)

(Pq)3β1 = −(Pq)4β1 = (Pq)1β2 = −(Pq)2β2 = 1√
2

sinh θ ′
q, (D11)

we can rewrite Eq. (D5) as follows:

�
(0)
12 (i�n) = 1

N

∑
q

∑
ν,ν ′=α1,β1,α2,β2

vz
ν ′ν (q)ez

νν ′ (q)T
∑

m

Gν ′ (q, i�m)Gν (q, i�n+m), (D12)

where

vz
ν ′ν (q) =

4∑
l1,l2=1

(Pq)l1ν ′ (Pq)l2νv
z
l1l2

(q), (D13)

ez
νν ′ (q) =

4∑
l3,l4=1

(Pq)l3ν (Pq)l4ν ′ez
l3l4

(q), (D14)

Gα1 (q, i�m) = 1

i�m − εα (q)
, Gβ1 (q, i�m) = 1

i�m − εβ (q)
, (D15)

Gα2 (q, i�m) = − 1

i�m + εα (q)
, Gβ2 (q, i�m) = − 1

i�m + εβ (q)
. (D16)

Then, to perform the analytic continuation, we replace the Matsubara-frequency summation in Eq. (D12) by the corresponding
integral [38,50]; the result is

T
∑

m

Gν ′ (q, i�m)Gν (q, i�n+m)

=
∫

C

dz

2π i
n(z)Gν ′ (q, z)Gν (q, z + i�n) + T [Gν ′ (q, 0)Gν (q, i�n) + Gν ′ (q,−i�n)Gν (q, 0)]

=
∫ ∞

−∞

dz

2π i
n(z)

{
G(R)

ν (q, z + i�n)
[
G(R)

ν ′ (q, z) − G(A)
ν ′ (q, z)

]+ [G(R)
ν (q, z) − G(A)

ν (q, z)
]
G(A)

ν ′ (q, z − i�n)
}
, (D17)

where the contour C is shown in Fig. 4(a), n(z) is the Bose distribution function n(z) = 1/(ez/T − 1), G(R)
ν (q, z) and G(A)

ν (q, z)[=
G(R)

ν (q, z)∗] are the retarded and advanced magnon Green’s functions, respectively,

G(R)
α1

(q, z) = 1

z + iγ − εα (q)
, G(R)

β1
(q, z) = 1

z + iγ − εβ (q)
, (D18)

G(R)
α2

(q, z) = − 1

z + iγ + εα (q)
, G(R)

β2
(q, z) = − 1

z + iγ + εβ (q)
, (D19)

and γ (= 1/2τ ) is the magnon damping. By combining Eq. (D17) with Eq. (D12) and performing the analytic continuation
i�n → ω + iδ [i.e., �

R(0)
12 (ω) = �

(0)
12 (i�n → ω + iδ)], we obtain

�
R(0)
12 (ω) = 1

N

∑
q

∑
ν,ν ′=α1,β1,α2,β2

vz
ν ′ν (q)ez

νν ′ (q)
∫ ∞

−∞

dz

2π i
n(z)

× {G(R)
ν (q, z + ω)

[
G(R)

ν ′ (q, z) − G(A)
ν ′ (q, z)

]+ [G(R)
ν (q, z) − G(A)

ν (q, z)
]
G(A)

ν ′ (q, z − ω)
}
. (D20)

After some calculations, Eq. (D20) reduces to

�
R(0)
12 (ω) ∼ �

R(0)
12 (0) − ω

2N

∑
q

∑
ν,ν ′=α1,β1,α2,β2

vz
ν ′ν (q)ez

νν ′ (q)
∫ ∞

−∞

dz

2π i

∂n(z)

∂z

[−4ImG(R)
ν (q, z)ImG(R)

ν ′ (q, z)
]
. (D21)
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FIG. 4. The contours (a) C, (b) C′, and (c) C′′. Blue lines and curves correspond to the integral paths. Crosses for C, C′, and C′′ represent the
poles at Imz = 0 and −�n, at Imz′ = 0, �m, and −�n, and at Imz′ = 0, −�m, and �n, respectively. In these panels, we neglect the horizontal
shifts due to the noninteracting energies, such as εν (q), for simplicity because the most important information is about the imaginary parts; in
the actual calculations, we consider them correctly. The C is used to derive Eq. (D17); its contributions from the region for −�n < Imz < 0
are considered to replace the sums over m in Eqs. (D41)–(D43) by the integrals. The C′ or C′′ is used to replace the sum over m′ in Eq. (D41)
or (D42) or in Eq. (D43), respectively.

In deriving this equation, we have used f (z ± ω) = f (z) ± ω
∂ f (z)

∂z + O(ω2), vz
ν ′ν (q) = vz

νν ′ (q), and ez
νν ′ (q) = ez

ν ′ν (q). Combining
Eq. (D21) with Eq. (10), we have

L0
12 = lim

ω→0

�
R(0)
12 (ω) − �

R(0)
12 (0)

iω
= − 1

N

∑
q

∑
ν,ν ′=α1,β1,α2,β2

vz
ν ′ν (q)ez

νν ′ (q)
∫ ∞

−∞

dz

π

∂n(z)

∂z
ImG(R)

ν (q, z)ImG(R)
ν ′ (q, z). (D22)

Then we take the limit τ = 1/2γ → ∞. In this limit, the integral part in Eq. (D22) reduces to

Iνν ′ (q) =
∫ ∞

−∞

dz

π

∂n(z)

∂z
ImG(R)

ν (q, z)ImG(R)
ν ′ (q, z) ∼

⎧⎪⎪⎨
⎪⎪⎩

1
2γ

∂n[εα (q)]
∂εα (q) (ν = ν ′ = α1, α2),

1
2γ

∂n[εβ (q)]
∂εβ (q) (ν = ν ′ = β1, β2),

0 (ν �= ν ′).

(D23)

These limiting expressions can be obtained by using Eqs. (D18) and (D19) and doing the integral [38]. Combining Eq. (D23)
with Eq. (D22), we obtain the expression of L0

12 in the limit τ = 1/2γ → ∞,

L0
12 ∼ − 1

N

∑
q

∑
ν=α1,β1,α2,β2

vz
νν (q)ez

νν (q)τ
∂n[εν (q)]

∂εν (q)
, (D24)

where εα1 (q) = εα2 (q) = εα (q) and εβ1 (q) = εβ2 (q) = εβ (q). In addition, using Eqs. (D13) and (D14) and Eqs. (D8)–(D11), we
have

vz
α1α1

(q) = −vz
β1β1

(q) = −vz
α2α2

(q) = vz
β2β2

(q) = 2vz
12(q), (D25)

ez
α1α1

(q) = −ez
α2α2

(q) = 2[ez
12(q) + ez

11(q)], (D26)

ez
β1β1

(q) = −ez
β2β2

(q) = 2[−ez
12(q) + ez

11(q)], (D27)

where vz
12(q), ez

12(q), and ez
11(q) are defined below Eq. (9). Thus, Eq. (D24) reduces to

L0
12 ∼ − 2

N

∑
q

∑
ν=α,β

vz
νν (q)ez

νν (q)τ
∂n[εν (q)]

∂εν (q)
, (D28)

where vz
αα (q) = −vz

ββ (q) = vz
α1α1

(q), ez
αα (q) = ez

α1α1
(q), and ez

ββ (q) = ez
β1β1

(q). Then Eqs. (9) and (11)–(13) show that L0
11 and

L0
22 are obtained by replacing ez

νν (q) in Eq. (D28) by vz
νν (q) and by replacing vz

νν (q) in Eq. (D28) by ez
νν (q), respectively.

Therefore, L0
11 and L0

22 in the limit τ → ∞ are given by

L0
11 ∼ − 2

N

∑
q

∑
ν=α,β

vz
νν (q)vz

νν (q)τ
∂n[εν (q)]

∂εν (q)
, (D29)

L0
22 ∼ − 2

N

∑
q

∑
ν=α,β

ez
νν (q)ez

νν (q)τ
∂n[εν (q)]

∂εν (q)
. (D30)

Equations (D28)–(D30) give Eq. (15).
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Next, we derive Eq. (16), the expression of L′
μη in the limit τ → ∞ [Eqs. (D93), (D97), and (D98)], and show the explicit

expressions of v
(p)
νν ′ν ′′ (q, q′)’s [Eqs. (D64)–(D75)]. (This derivation can be done in a way similar to that of the phonon-drag term

of a metal [4].) Before evaluating Eq. (D2) with the effects of Hint, we express Hint in terms of the operators xql and x†
ql . Since

Hint is defined as Eq. (4), we have

Hint =1

2

∑
q,q′,q′′

δq+q′′,q′J3(q)(bqa†
q′aq′′ − aqb†

q′bq′′ + b−qa†
−q′a−q′′ − a−qb†

−q′b−q′′ ) + (H.c.)

=1

2

∑
q,q′,q′′

δq+q′′,q′J3(q)

[
2∑

l=1

sgn(l )(xql x
†
q′ l̄ xq′′ l̄ + x†

ql x
†
q′′ l̄ xq′ l̄ ) +

4∑
l=3

sgn(l )(xql xq′′ l̄ x
†
q′ l̄ + x†

ql xq′ l̄ x
†
q′′ l̄ )

]
, (D31)

where

sgn(l ) =
{−1 (l = 1, 3),

1 (l = 2, 4), l̄ =

⎧⎪⎨
⎪⎩

2 (l = 1),
1 (l = 2),
4 (l = 3),
3 (l = 4).

(D32)

To derive L′
12, we evaluate Eq. (D2) in the second-order perturbation theory [49,51] using the Wick’s theorem and Eqs. (D6) and

(D31); the result is

�GII
l1l2l3l4 (q, q′; i�n) =

∫ T −1

0
dτei�nτ

∫ T −1

0
dτ1

∫ T −1

0
dτ2

1

2
〈Tτ x†

ql1
(τ )xql2 (τ )x†

q′l3 xq′l4 Hint(τ1)Hint(τ2)〉

=
∫ T −1

0
dτei�nτ

∫ T −1

0
dτ1

∫ T −1

0
dτ2

∑
ν1,ν2,ν3,ν4,ν5=α1,β1,α2,β2

(Pq)l1ν1 (Pq)l2ν2 (Pq′ )l3ν3 (Pq′ )l4ν4

×
∑

k=a,b,c

Ṽ (k)
ν1ν2ν3ν4ν5

(q, q′) f (k)
ν1ν2ν3ν4ν5

(q, q′; τ, τ1, τ2), (D33)

where

Ṽ (a)
ν1ν2ν3ν4ν5

(q, q′) = − 1

4

4∑
l,l ′=1

sgn(l )sgn(l ′)
[
J3(q)2(Pq)lν1 (Pq)l ′ν2 (Pq′ )l̄ ′ν3

(Pq′ )l̄ν4
(Pq′−q)l̄ν5

(Pq′−q)l̄ ′ν5

+ J3(q)J3(q′ − q)(Pq)lν1 (Pq)l̄ ′ν2
(Pq′ )l̄ ′ν3

(Pq′ )l̄ν4
(Pq′−q)l̄ν5

(Pq′−q)l ′ν5

+ J3(q′ − q)J3(q)(Pq)l̄ν1
(Pq)l ′ν2 (Pq′ )l̄ ′ν3

(Pq′ )l̄ν4
(Pq′−q)lν5 (Pq′−q)l̄ ′ν5

+ J3(q′ − q)2(Pq)l̄ν1
(Pq)l̄ ′ν2

(Pq′ )l̄ ′ν3
(Pq′ )l̄ν4

(Pq′−q)lν5 (Pq′−q)l ′ν5

]
, (D34)

Ṽ (b)
ν1ν2ν3ν4ν5

(q, q′) = −1

4

4∑
l,l ′=1

sgn(l )sgn(l ′)
[
J3(q′)2(Pq)l̄ ′ν1

(Pq)l̄ν2
(Pq′ )lν3 (Pq′ )l ′ν4 (Pq−q′ )l̄ν5

(Pq−q′ )l̄ ′ν5

+ J3(q′)J3(q − q′)(Pq)l̄ ′ν1
(Pq)l̄ν2

(Pq′ )lν3 (Pq′ )l̄ ′ν4
(Pq−q′ )l̄ν5

(Pq−q′ )l ′ν5

+ J3(q − q′)J3(q′)(Pq)l̄ ′ν1
(Pq)l̄ν2

(Pq′ )l̄ν3
(Pq′ )l ′ν4 (Pq−q′ )lν5 (Pq−q′ )l̄ ′ν5

+ J3(q − q′)2(Pq)l̄ ′ν1
(Pq)l̄ν2

(Pq′ )l̄ν3
(Pq′ )l̄ ′ν4

(Pq−q′ )lν5 (Pq−q′ )l ′ν5

]
, (D35)

Ṽ (c)
ν1ν2ν3ν4ν5

(q, q′) = −1

4

4∑
l,l ′=1

sgn(l )sgn(l ′)
[
J3(q)2(Pq)lν1 (Pq)l ′ν2 (Pq′ )l̄ν3

(Pq′ )l̄ ′ν4
(Pq+q′ )l̄ ′ν5

(Pq+q′ )l̄ν5

+ J3(q)J3(q′)(Pq)lν1 (Pq)l̄ ′ν2
(Pq′ )l̄ν3

(Pq′ )l ′ν4 (Pq+q′ )l̄ ′ν5
(Pq+q′ )l̄ν5

+ J3(q′)J3(q)(Pq)l̄ν1
(Pq)l ′ν2 (Pq′ )lν3 (Pq′ )l̄ ′ν4

(Pq+q′ )l̄ ′ν5
(Pq+q′ )l̄ν5

+ J3(q′)2(Pq)l̄ν1
(Pq)l̄ ′ν2

(Pq′ )lν3 (Pq′ )l ′ν4 (Pq+q′ )l̄ ′ν5
(Pq+q′ )l̄ν5

]
, (D36)

and

f (a)
ν1ν2ν3ν4ν5

(q, q′; τ, τ1, τ2) = Gν1 (q, τ1 − τ )Gν2 (q, τ − τ2)Gν3 (q′, τ2)Gν4 (q′,−τ1)Gν5 (q′ − q, τ1 − τ2), (D37)

f (b)
ν1ν2ν3ν4ν5

(q, q′; τ, τ1, τ2) = Gν1 (q, τ2 − τ )Gν2 (q, τ − τ1)Gν3 (q′, τ1)Gν4 (q′,−τ2)Gν5 (q − q′, τ1 − τ2), (D38)
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f (c)
ν1ν2ν3ν4ν5

(q, q′; τ, τ1, τ2) = Gν1 (q, τ1 − τ )Gν2 (q, τ − τ2)Gν3 (q′, τ1)Gν4 (q′,−τ2)Gν5 (q + q′, τ2 − τ1). (D39)

By combining Eqs. (D33)–(D39) with Eq. (D1) and doing the integrals about τ , τ1, and τ2 in Eq. (D33), we obtain

��12(i�n) = 1

N

∑
q,q′

∑
ν1,ν2,ν3,ν4,ν5=α1,β1,α2,β2

vz
ν1ν2

(q)ez
ν3ν4

(q′)
∑

k=a,b,c

Ṽ (k)
ν1ν2ν3ν4ν5

(q, q′)Ĩ (k)
ν1ν2ν3ν4ν5

(q, q′; i�n), (D40)

where

Ĩ (a)
ν1ν2ν3ν4ν5

(q, q′; i�n) = T 2
∑
m,m′

Gν1 (q, i�m)Gν2 (q, i�n+m)Gν3 (q′, i�n+m′ )Gν4 (q′, i�m′ )Gν5 (q′ − q, i�m′−m), (D41)

Ĩ (b)
ν1ν2ν3ν4ν5

(q, q′; i�n) = T 2
∑
m,m′

Gν1 (q, i�m)Gν2 (q, i�n+m)Gν3 (q′, i�n+m′ )Gν4 (q′, i�m′ )Gν5 (q − q′, i�m−m′ ), (D42)

Ĩ (c)
ν1ν2ν3ν4ν5

(q, q′; i�n) = T 2
∑
m,m′

Gν1 (q, i�m)Gν2 (q, i�n+m)Gν3 (q′, i�m′ )Gν4 (q′, i�m′−n)Gν5 (q + q′, i�m+m′ ). (D43)

Then, to perform the analytic continuation, we replace the Matsubara-frequency summations in Eqs. (D41)–(D43) by the
corresponding integrals in a way similar to that for metals [50]. Namely, since an intraband pair of the retarded and advanced
Green’s functions, such as G(A)

ν (q, z)G(R)
ν (q, z), gives the leading contribution in the limit τ → ∞ [50], we can express

Eqs. (D41)–(D43) in this limit as follows:

Ĩ (a)
ν1ν2ν3ν4ν5

(q, q′; i�n) ∼ δν1,ν2δν3,ν4

∫ ∞

−∞

dz

2π i
n(z)

[−G(A)
ν1

(q, z)G(R)
ν2

(q, z + i�n)
]

×
∫ ∞

−∞

dz′

2π i
n(z′)

{−G(R)
ν3

(q′, z′ + i�n)G(A)
ν4

(q′, z′)G(R)
ν5

(q′ − q, z′ − z)

+ G(R)
ν3

(q′, z′ + z + i�n)G(A)
ν4

(q′, z′ + z)
[
G(R)

ν5
(q′ − q, z′) − G(A)

ν5
(q′ − q, z′)

]
+ G(R)

ν3
(q′, z′)G(A)

ν4
(q′, z′ − i�n)G(A)

ν5
(q′ − q, z′ − z − i�n)

}
+ δν1,ν2δν3,ν4

∫ ∞

−∞

dz

2π i
n(z)G(A)

ν1
(q, z − i�n)G(R)

ν2
(q, z)

×
∫ ∞

−∞

dz′

2π i
n(z′)

{−G(R)
ν3

(q′, z′ + i�n)G(A)
ν4

(q′, z′)G(R)
ν5

(q′ − q, z′ − z + i�n)

+ G(R)
ν3

(q′, z′ + z)G(A)
ν4

(q′, z′ + z − i�n)
[
G(R)

ν5
(q′ − q, z′) − G(A)

ν5
(q′ − q, z′)

]
+ G(R)

ν3
(q′, z′)G(A)

ν4
(q′, z′ − i�n)G(A)

ν5
(q′ − q, z′ − z)

}
, (D44)

Ĩ (b)
ν1ν2ν3ν4ν5

(q, q′; i�n) ∼ δν1,ν2δν3,ν4

∫ ∞

−∞

dz

2π i
n(z)

[−G(A)
ν1

(q, z)G(R)
ν2

(q, z + i�n)
]

×
∫ ∞

−∞

dz′

2π i
n(z′)

{−G(R)
ν3

(q′, z′ + i�n)G(A)
ν4

(q′, z′)G(A)
ν5

(q − q′, z − z′)

− G(R)
ν3

(q′, z′ + z + i�n)G(A)
ν4

(q′, z′ + z)
[
G(R)

ν5
(q − q′,−z′) − G(A)

ν5
(q − q′,−z′)

]
+ G(R)

ν3
(q′, z′)G(A)

ν4
(q′, z′ − i�n)G(R)

ν5
(q − q′, z − z′ + i�n)

}
+ δν1,ν2δν3,ν4

∫ ∞

−∞

dz

2π i
n(z)G(A)

ν1
(q, z − i�n)G(R)

ν2
(q, z)

×
∫ ∞

−∞

dz′

2π i
n(z′)

{−G(R)
ν3

(q′, z′ + i�n)G(A)
ν4

(q′, z′)G(A)
ν5

(q − q′, z − z′ − i�n)

− G(R)
ν3

(q′, z′ + z)G(A)
ν4

(q′, z′ + z − i�n)
[
G(R)

ν5
(q − q′,−z′) − G(A)

ν5
(q − q′,−z′)

]
+ G(R)

ν3
(q′, z′)G(A)

ν4
(q′, z′ − i�n)G(R)

ν5
(q − q′, z − z′)

}
, (D45)

Ĩ (c)
ν1ν2ν3ν4ν5

(q, q′; i�n) ∼ δν1,ν2δν3,ν4

∫ ∞

−∞

dz

2π i
n(z)

[−G(A)
ν1

(q, z)G(R)
ν2

(q, z + i�n)
]

×
∫ ∞

−∞

dz′

2π i
n(z′)

{−G(R)
ν3

(q′, z′ + i�n)G(A)
ν4

(q′, z′)G(R)
ν5

(q′ + q, z′ + z + i�n)

+ G(R)
ν3

(q′, z′ − z)G(A)
ν4

(q′, z′ − z − i�n)
[
G(R)

ν5
(q′ + q, z′) − G(A)

ν5
(q′ + q, z′)

]
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+ G(R)
ν3

(q′, z′)G(A)
ν4

(q′, z′ − i�n)G(A)
ν5

(q′ + q, z′ + z)
}

+ δν1,ν2δν3,ν4

∫ ∞

−∞

dz

2π i
n(z)G(A)

ν1
(q, z − i�n)G(R)

ν2
(q, z)

×
∫ ∞

−∞

dz′

2π i
n(z′)

{−G(R)
ν3

(q′, z′ + i�n)G(A)
ν4

(q′, z′)G(R)
ν5

(q′ + q, z′ + z)

+ G(R)
ν3

(q′, z′ − z + i�n)G(A)
ν4

(q′, z′ − z)
[
G(R)

ν5
(q′ + q, z′) − G(A)

ν5
(q′ + q, z′)

]
+ G(R)

ν3
(q′, z′)G(A)

ν4
(q′, z′ − i�n)G(A)

ν5
(q′ + q, z′ + z − i�n)

}
. (D46)

In replacing the sums over m in Eqs. (D41)–(D43) by the contour integrals, we have considered the contributions only from
the region for −�n < Imz < 0 in the contour C shown in Fig. 4(a) because they include the pair of the retarded and advanced
Green’s functions. Furthermore, in replacing the sums over m′ in Eqs. (D41)–(D43) by the integrals, we have used the contours
C′, C′, and C′′, respectively; the C′ and C′′ are shown in Figs. 4(b) and 4(c). We now perform the analytic continuation of
Eqs. (D44)–(D46) using the replacement i�n → ω + iδ; the results are

�IR(a)
νν ′ν ′′ (q, q′; ω) = ĨR(a)

ννν ′ν ′ν ′′ (q, q′; ω) − ĨR(a)
ννν ′ν ′ν ′′ (q, q′; 0)

∼ iω
∫ ∞

−∞

dz

2π

∂n(z)

∂z
gν (q, z)

∫ ∞

−∞

dz′

π
[n(z′) − n(z′ − z)]gν ′ (q′, z′)ImG(R)

ν ′′ (q′ − q, z′ − z), (D47)

�IR(b)
νν ′ν ′′ (q, q′; ω) = ĨR(b)

ννν ′ν ′ν ′′ (q, q′; ω) − ĨR(b)
ννν ′ν ′ν ′′ (q, q′; 0)

∼ iω
∫ ∞

−∞

dz

2π

∂n(z)

∂z
gν (q, z)

∫ ∞

−∞

dz′

π
[n(z′ − z) − n(z′)]gν ′ (q′, z′)ImG(R)

ν ′′ (q − q′, z − z′), (D48)

�IR(c)
νν ′ν ′′ (q, q′; ω) = ĨR(c)

ννν ′ν ′ν ′′ (q, q′; ω) − ĨR(c)
ννν ′ν ′ν ′′ (q, q′; 0)

∼ iω
∫ ∞

−∞

dz

2π

∂n(z)

∂z
gν (q, z)

∫ ∞

−∞

dz′

π
[n(z′) − n(z′ + z)]gν ′ (q′, z′)ImG(R)

ν ′′ (q′ + q, z′ + z), (D49)

where we have introduced gν (q, z) = G(A)
ν (q, z)G(R)

ν (q, z), used n(z) − n(z + ω) ∼ −ω∂n(z)
∂z , and neglected the O(ω2) terms.

Combining Eqs. (D47)–(D49) with Eq. (D40) and ��R
12(ω) = ��12(i�n → ω + iδ), we obtain

L′
12 = lim

ω→0

��R
12(ω) − ��R

12(0)

iω
= 1

N

∑
q,q′

∑
ν,ν ′,ν ′′=α1,β1,α2,β2

vz
νν (q)ez

ν ′ν ′ (q′)
∑

k=a,b,c

V (k)
νν ′ν ′′ (q, q′)I (k)

νν ′ν ′′ (q, q′), (D50)

where

V (k)
νν ′ν ′′ (q, q′) = Ṽ (k)

ννν ′ν ′ν ′′ (q, q′), (D51)

I (a)
νν ′ν ′′ (q, q′) =

∫ ∞

−∞

dz

2π

∂n(z)

∂z
gν (q, z)

∫ ∞

−∞

dz′

π
[n(z′) − n(z′ − z)]gν ′ (q′, z′)ImG(R)

ν ′′ (q′ − q, z′ − z), (D52)

I (b)
νν ′ν ′′ (q, q′) =

∫ ∞

−∞

dz

2π

∂n(z)

∂z
gν (q, z)

∫ ∞

−∞

dz′

π
[n(z′ − z) − n(z′)]gν ′ (q′, z′)ImG(R)

ν ′′ (q − q′, z − z′), (D53)

I (c)
νν ′ν ′′ (q, q′) =

∫ ∞

−∞

dz

2π

∂n(z)

∂z
gν (q, z)

∫ ∞

−∞

dz′

π
[n(z′) − n(z′ + z)]gν ′ (q′, z′)ImG(R)

ν ′′ (q′ + q, z′ + z). (D54)

Note that Ṽ (k)
ννν ′ν ′ν ′′ (q, q′)’s have been given by Eqs. (D34)–(D36). In the limit τ = 1/2γ → ∞, we can easily do the integrals in

Eqs. (D52)–(D54) by using the approximate relations,

gν (q, z) = G(A)
ν (q, z)G(R)

ν (q, z) = 1

[z + (−1)νεν (q)]2 + γ 2
∼ π

γ
δ[z + (−1)νεν (q)], (D55)

ImG(R)
ν (q, z) = (−1)ν

γ

[z + (−1)νεν (q)]2 + γ 2
∼ (−1)νπδ[z + (−1)νεν (q)], (D56)

where (−1)ν = −1 for ν = α1, β1 and 1 for ν = α2, β2. Combining these equations with Eqs. (D52)–(D54), we obtain

I (a)
νν ′ν ′′ (q, q′) ∼ π

2γ 2

∂n[εν (q)]

∂εν (q)
{n[(−1)ν

′+1εν ′ (q′)] − n[(−1)ν
′′+1εν ′′ (q′ − q)]}(−1)ν

′′

× δ[(−1)νεν (q) − (−1)ν
′
εν ′ (q′) + (−1)ν

′′
εν ′′ (q′ − q)], (D57)
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I (b)
νν ′ν ′′ (q, q′) ∼ π

2γ 2

∂n[εν (q)]

∂εν (q)
{n[(−1)ν

′′
εν ′′ (q − q′)] − n[(−1)ν

′+1εν ′ (q′)]}(−1)ν
′′

× δ[(−1)νεν (q) − (−1)ν
′
εν ′ (q′) − (−1)ν

′′
εν ′′ (q − q′)], (D58)

I (c)
νν ′ν ′′ (q, q′) ∼ π

2γ 2

∂n[εν (q)]

∂εν (q)
{n[(−1)ν

′+1εν ′ (q′)] − n[(−1)ν
′′+1εν ′′ (q′ + q)]}(−1)ν

′′

× δ[(−1)νεν (q) + (−1)ν
′
εν ′ (q′) − (−1)ν

′′
εν ′′ (q′ + q)], (D59)

where the delta functions represent the energy conservation relations in the scattering processes due to the second-order Hint.
These equations can be obtained also by using Eqs. (D18) and (D19) and the relation 3

x2+(3γ )2 ∼ π
γ
δ(x), instead of Eqs. (D55)

and (D56), and doing the integrals in Eqs. (D52)–(D54). This is the reason why we have used that relation about the Lorentzian
function in the numerical evaluations of Sm, σm, and κm. Then, performing some calculations using Eqs. (D51), (D34)–(D36), and
(D8)–(D11), we find that the finite terms of V (p)

νν ′ν ′′ (q, q′)’s (p = 1, 2, 3) are given by those for (ν, ν ′, ν ′′) = (β, β, β ), (β, α, α),
(α, β, α), and (α, α, β ), which are expressed as follows:

V (1)
νν ′ν ′′ (q, q′) = V (a)

ν1ν
′
1ν

′′
2
(q, q′) + V (a)

ν2ν
′
2ν

′′
1
(q, q′) + V (b)

ν1ν
′
1ν

′′
1
(q, q′) + V (b)

ν2ν
′
2ν

′′
2
(q, q′) + V (c)

ν1ν
′
2ν

′′
1
(q,−q′) + V (c)

ν2ν
′
1ν

′′
2
(q,−q′), (D60)

V (2)
νν ′ν ′′ (q, q′) = V (a)

ν1ν
′
1ν

′′
1
(q, q′) + V (a)

ν2ν
′
2ν

′′
2
(q, q′) + V (b)

ν1ν
′
1ν

′′
2
(q, q′) + V (b)

ν2ν
′
2ν

′′
1
(q, q′) + V (c)

ν2ν
′
1ν

′′
1
(q,−q′) + V (c)

ν1ν
′
2ν

′′
2
(q,−q′), (D61)

V (3)
νν ′ν ′′ (q, q′) = V (a)

ν2ν
′
1ν

′′
1
(q, q′) + V (a)

ν1ν
′
2ν

′′
2
(q, q′) + V (b)

ν1ν
′
2ν

′′
1
(q, q′) + V (b)

ν2ν
′
1ν

′′
2
(q, q′) + V (c)

ν1ν
′
1ν

′′
1
(q,−q′) + V (c)

ν2ν
′
2ν

′′
2
(q,−q′). (D62)

[Note that if (ν, ν ′, ν ′′) = (β, α, α), we have (ν1, ν
′
1, ν

′′
2 ) = (β1, α1, α2), (ν2, ν

′
2, ν

′′
1 ) = (β2, α2, α1), etc.] Since V (k)

νν ′ν ′′ (q, q′)’s
(k = a, b, c) include the square of the coupling constant of Hint [see Eqs. (D34)–(D36) with Eq. (D51)] and J3(q) =√

4S
N sin 2φJ (q), we can write the finite terms of V (p)

νν ′ν ′′ (q, q′)’s (p = 1, 2, 3) as follows:

V (p)
νν ′ν ′′ (q, q′) = v

(p)
νν ′ν ′′ (q, q′)

S

2N
sin2 2φ, (D63)

where

v
(1)
βββ (q, q′) = +va0(q, q′)C′

q − vb0(q, q′)C′
q′ − vc0(q, q′)C′

q−q′ − vd0(q, q′)(C′
qC

′
q′C′

q−q′ + S′
qS′

q′S′
q−q′ ), (D64)

v
(2)
βββ (q, q′) = −va0(q, q′)C′

q + vb0(q, q′)C′
q′ − vc0(q, q′)C′

q−q′ − vd0(q, q′)(C′
qC

′
q′C′

q−q′ + S′
qS′

q′S′
q−q′ ), (D65)

v
(3)
βββ (q, q′) = −va0(q, q′)C′

q − vb0(q, q′)C′
q′ + vc0(q, q′)C′

q−q′ − vd0(q, q′)(C′
qC

′
q′C′

q−q′ + S′
qS′

q′S′
q−q′ ), (D66)

v
(1)
βαα (q, q′) = +va1(q, q′)C′

q − vb1(q, q′)Cq′ − vc1(q, q′)Cq−q′ − vd1(q, q′)(C′
qCq′Cq−q′ + S′

qSq′Sq−q′ ), (D67)

v
(2)
βαα (q, q′) = −va1(q, q′)C′

q + vb1(q, q′)Cq′ − vc1(q, q′)Cq−q′ − vd1(q, q′)(C′
qCq′Cq−q′ + S′

qSq′Sq−q′ ), (D68)

v
(3)
βαα (q, q′) = −va1(q, q′)C′

q − vb1(q, q′)Cq′ + vc1(q, q′)Cq−q′ − vd1(q, q′)(C′
qCq′Cq−q′ + S′

qSq′Sq−q′ ), (D69)

v
(1)
αβα (q, q′) = +va2(q, q′)Cq − vb2(q, q′)C′

q′ − vc2(q, q′)Cq−q′ − vd2(q, q′)(CqC
′
q′Cq−q′ + SqS′

q′Sq−q′ ), (D70)

v
(2)
αβα (q, q′) = −va2(q, q′)Cq + vb2(q, q′)C′

q′ − vc2(q, q′)Cq−q′ − vd2(q, q′)(CqC
′
q′Cq−q′ + SqS′

q′Sq−q′ ), (D71)

v
(3)
αβα (q, q′) = −va2(q, q′)Cq − vb2(q, q′)C′

q′ + vc2(q, q′)Cq−q′ − vd2(q, q′)(CqC
′
q′Cq−q′ + SqS′

q′Sq−q′ ), (D72)

v
(1)
ααβ (q, q′) = +va3(q, q′)Cq − vb3(q, q′)Cq′ − vc3(q, q′)C′

q−q′ − vd3(q, q′)(CqCq′C′
q−q′ + SqSq′S′

q−q′ ), (D73)

v
(2)
ααβ (q, q′) = −va3(q, q′)Cq + vb3(q, q′)Cq′ − vc3(q, q′)C′

q−q′ − vd3(q, q′)(CqCq′C′
q−q′ + SqSq′S′

q−q′ ), (D74)

v
(3)
ααβ (q, q′) = −va3(q, q′)Cq − vb3(q, q′)Cq′ + vc3(q, q′)C′

q−q′ − vd3(q, q′)(CqCq′C′
q−q′ + SqSq′S′

q−q′ ), (D75)

and

C′
q = cosh 2θ ′

q, S′
q = sinh 2θ ′

q, Cq = cosh 2θq, Sq = sinh 2θq, (D76)

va0(q, q′) = J (q)[J (q) + J (q′)] + J (q − q′)[J (q) − J (q′)], (D77)

vb0(q, q′) = J (q′)[J (q′) + J (q)] − J (q − q′)[J (q) − J (q′)], (D78)
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vc0(q, q′) = J (q − q′)[J (q) + J (q′) + J (q − q′)] − J (q)J (q′), (D79)

vd0(q, q′) = [J (q) + J (q′)]2 − J (q)J (q′) + J (q − q′)[J (q) + J (q′) + J (q − q′)], (D80)

va1(q, q′) = J (q)[J (q) − J (q′)] − J (q − q′)[J (q) + J (q′)], (D81)

vb1(q, q′) = J (q′)[J (q′) − J (q)] + J (q − q′)[J (q) + J (q′)], (D82)

vc1(q, q′) = J (q − q′)[J (q − q′) − J (q) + J (q′)] + J (q)J (q′), (D83)

vd1(q, q′) = [J (q) − J (q′)]2 + J (q)J (q′) + J (q − q′)[J (q − q′) − J (q) + J (q′)], (D84)

va2(q, q′) = J (q)[J (q) − J (q′)] + J (q − q′)[J (q) + J (q′)], (D85)

vb2(q, q′) = J (q′)[J (q′) − J (q)] − J (q − q′)[J (q) + J (q′)], (D86)

vc2(q, q′) = J (q − q′)[J (q) − J (q′) + J (q − q′)] + J (q)J (q′), (D87)

vd2(q, q′) = [J (q) − J (q′)]2 + J (q)J (q′) + J (q − q′)[J (q) − J (q′) + J (q − q′)], (D88)

va3(q, q′) = J (q)[J (q) + J (q′)] − J (q − q′)[J (q) − J (q′)], (D89)

vb3(q, q′) = J (q′)[J (q′) + J (q)] + J (q − q′)[J (q) − J (q′)], (D90)

vc3(q, q′) = J (q − q′)[J (q − q′) − J (q) − J (q′)] − J (q)J (q′), (D91)

vd3(q, q′) = [J (q) + J (q′)]2 − J (q)J (q′) − J (q − q′)[J (q) + J (q′) − J (q − q′)]. (D92)

[Note that the hyperbolic functions Eq. (D76) satisfy tanh 2θq = − B′(q)
A+A′(q) and tanh 2θ ′

q = B′(q)
A−A′(q) , as described in Sec. II B.]

Equations (D64)–(D75) with Eqs. (D76)–(D92) give the expressions of the v
(p)
νν ′ν ′′ (q, q′)’s (p = 1, 2, 3) appearing in Eqs. (17)–

(19). By combining Eqs. (D63)–(D92), (D57)–(D59), and (D25)–(D27) with Eq. (D50), we can express L′
12 in the limit τ → ∞

as follows:

L′
12 = π

N2

∑
q,q′

∑
ν,ν ′,ν ′′=α,β

vz
νν (q)ez

ν ′ν ′ (q′)τ 2 ∂n[εν (q)]

∂εν (q)
S sin2 2φ

∑
p=1,2,3

F (p)
νν ′ν ′′ (q, q′), (D93)

where

F (1)
νν ′ν ′′ (q, q′) = v

(1)
νν ′ν ′′ (q, q′){1 + n[εν ′′ (q − q′)] + n[εν ′ (q′)]}δ[εν (q) − εν ′ (q′) − εν ′′ (q − q′)], (D94)

F (2)
νν ′ν ′′ (q, q′) = v

(2)
νν ′ν ′′ (q, q′){n[εν ′′ (q − q′)] − n[εν ′ (q′)]}δ[εν (q) − εν ′ (q′) + εν ′′ (q − q′)], (D95)

F (3)
νν ′ν ′′ (q, q′) = −v

(3)
νν ′ν ′′ (q, q′){n[εν ′′ (q − q′)] − n[εν ′ (q′)]}δ[εν (q) + εν ′ (q′) − εν ′′ (q − q′)]. (D96)

In deriving them, we have used the identity n(−x) = −1 − n(x). Then, since Eqs. (9) and (11)–(13) show that L′
11 and L′

22 are
obtained by replacing ez

ν ′ν ′ (q′) in Eq. (D93) by vz
ν ′ν ′ (q′) and by replacing vz

νν (q) in Eq. (D93) by ez
νν (q), respectively, we can

express L′
11 and L′

22 in the limit τ → ∞ as follows:

L′
11 = π

N2

∑
q,q′

∑
ν,ν ′,ν ′′=α,β

vz
νν (q)vz

ν ′ν ′ (q′)τ 2 ∂n[εν (q)]

∂εν (q)
S sin2 2φ

∑
p=1,2,3

F (p)
νν ′ν ′′ (q, q′), (D97)

L′
22 = π

N2

∑
q,q′

∑
ν,ν ′,ν ′′=α,β

ez
νν (q)ez

ν ′ν ′ (q′)τ 2 ∂n[εν (q)]

∂εν (q)
S sin2 2φ

∑
p=1,2,3

F (p)
νν ′ν ′′ (q, q′). (D98)

Equations (D93), (D97), and (D98) yield Eq. (16).

064306-15



NAOYA ARAKAWA PHYSICAL REVIEW B 106, 064306 (2022)

FIG. 5. The temperature dependences of (a) Sm, (b) σm, and (c) κm obtained in the numerical calculations for S = 3
2 with N

2 = 203 and
J = 1 at h = 40J . The red, yellow, light blue, and blue curves represent the T/J dependences of Sm = L0

12β , σm = L0
11β , and κm = L0

22β ,
those of Sm = L0

12, σm = L0
11, and κm = L0

22, those of Sm = L12β , σm = L11β , and κm = L22β , and those of Sm = L12, σm = L11, and κm = L22,
respectively. L0

μηβ is part of the noninteracting term, the contribution from the lower-branch magnons (i.e., the β-band magnons); L0
μη and

L′
μη(= Lμη − L0

μη ) are the noninteracting and drag terms, respectively. Lμηβ = L0
μη + L′

μηβ , where L′
μηβ is part of the drag term, the contribution

from the term for (ν, ν ′, ν ′′) = (β, β, β ) in Eq. (16).

APPENDIX E: ADDITIONAL NUMERICAL RESULTS
OF Sm, σm, AND κm

We present the additional results of the numerically
evaluated Sm, σm, and κm for S = 3

2 with N
2 = 203 and J = 1.

(In the case of S = 3
2 , the magnon picture for the canted

antiferromagnet is valid in the range of 0 < h < 48J .) Since
the transition temperature for S = 3

2 becomes Tc = 20J , we
choose the temperature range to be 0 < T � 12J (= 0.6Tc).
Figures 5(a)–5(c) show the temperature dependences of

Sm, σm, and κm for S = 3
2 at h = 40J . For S = 3

2 , the
low-temperature peaks are observed at the h lower than
65J . Then, the ratios L12/L0

12, L11/L0
11, and L22/L0

22 at
T = 5J (= 0.25Tc) reach about 60, 66, and 52, respectively.
The larger enhancement for S = 3

2 than that for S = 5
2

comes from the property that the smaller the S is, the more
considerable the effects of magnon-magnon interactions
become. This general property is due to the difference
between the S dependences of H0 and Hint.
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