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Periodically driven Rydberg chains with staggered detuning
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We study the stroboscopic dynamics of a periodically driven finite Rydberg chain with staggered (�) and
time-dependent uniform [λ(t )] detuning terms using exact diagonalization. We show that at intermediate drive
frequencies (ωD), the presence of a finite � results in violation of the eigenstate thermalization hypothesis
(ETH) via clustering of Floquet eigenstates. Such clustering is lost at special commensurate drive frequencies for
which h̄ωd = n� (n ∈ Z) leading to restoration of ergodicity. The violation of ETH in these driven finite-sized
chains is also evident from the dynamical freezing displayed by the density-density correlation between Rydberg
excitations at even sites of the chain for specific ωD. Such a correlator exhibits stable oscillations with perfect
revivals when driven close to the freezing frequencies for initial all spin-down (|0〉) or Neel (|Z2〉, with up spins
on even sites) states. In contrast, for the |Z̄2〉 (time-reversed partner of |Z2〉) initial state, we find complete
absence of such oscillations leading to freezing for a range of ωD; this range increases with �. We also study
the properties of quantum many-body scars in the Floquet spectrum of the model as a function of � and show
the existence of mid-spectrum scars at large � which do not have overlap with either |0〉 or |Z2〉 states. We
supplement our numerical results with those from an analytic Floquet Hamiltonian computed using Floquet
perturbation theory which allows us to provide qualitative analytical explanations of the above-mentioned
numerical results.

DOI: 10.1103/PhysRevB.106.064305

I. INTRODUCTION

The physics of nonequilibrium quantum systems has been
studied extensively in recent years [1–8]. The theoretical
studies in the field have been boosted by possibility of ex-
perimental realization using ultracold-atom platforms [9–13].
Out of the several possible drive protocols that could be used
to take a quantum system out of equilibrium, periodic drives
have attracted a lot of recent attention [6–8]. For such pro-
tocols characterized by a time period T , the unitary evolution
operator U (t, 0) governs the dynamics of the system. At times
t = nT , (where n ∈ Z) U can be written in terms of the Flo-
quet Hamiltonian HF : U (nT, 0) = exp[−iHF nT/h̄], where h̄
is Planck’s constant. Thus, the stroboscopic dynamics of the
system is completely governed by its Floquet Hamiltonian [8].

The interest in such drive protocols stems from several
interesting physical phenomena which occur in periodi-
cally driven systems. These include drive-induced nontrivial
topology [14–16], dynamical localization [17–20], dynamical
phase transitions [21–23], realization of time crystals [24–26],
dynamical freezing [27–32], and the possibility of tuning er-
godicity property of the driven system [33]. More recently,
some of these properties have also been investigated in the
context of quasiperiodically [34–36] and aperiodically [36]
driven systems.

A central paradigm for understanding the behavior of
nonintegrable many-body systems described by local Hamil-
tonians that are driven out of equilibrium comes from the
eigenstate thermalization hypothesis (ETH) [37–40]. ETH

postulates that the reduced density matrix of any eigenstate
with finite-energy density is thermal in the thermodynamic
limit, the corresponding temperature being determined by its
energy density. ETH has also proved successful in explaining
properties of nonintegrable systems in the presence of a peri-
odic drive; here eigenstates of the Floquet Hamiltonian play a
similar role [40].

The violation of ETH in many-body systems can occur
via several routes [32,33,41–60]. For example, ETH does not
hold for integrable models where the presence of an extensive
number of additional conserved quantities makes the system
nonergodic. Moreover, a loss of ergodicity and hence violation
of ETH may also happen due to strong disorder when a system
enters a many-body localized (MBL) phase [41–45]. Such
violation may also occur due to Hilbert space fragmentation
where the system Hilbert space organizes into dynamically
disconnected sectors [57–60].

Another weaker version of ETH violation has also been
found in Rydberg atom systems [32,33,46–49,52]. Experi-
ments on such systems showed coherent long-lived oscillation
of density of Rydberg excitations during evolution starting
from a Neel state with one Rydberg excitation at ev-
ery even (|Z2〉 = | . . . 12 j, 02 j+1, 12 j+2, . . . 〉) or odd (|Z̄2〉 =
| . . . 12 j−1, 02 j, 12 j+1, . . . 〉) site; in contrast, ETH predicted
thermalization occurred when the dynamics started from the
Rydberg vacuum state (|0〉 = |..0 j, 0 j+1, 〉) [13]. The rea-
son for such ETH violating oscillations was traced to the
existence of a special class of eigenstates called quantum
scars [32,33,46–56]. These are many-body eigenstates with
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finite-energy density but anomalously low-entanglement en-
tropy. Consequently, dynamics starting from an initial state
which has large overlap with them does not show thermaliza-
tion. The role of such states in periodically driven Rydberg
chain has also been analyzed [32,33]; it was shown that
their presence may lead to the possibility of drive-frequency-
induced tuning ergodicity property of these chains [33],
presence of subthermal steady states, and the phenomenon
of dynamical freezing [32]. These properties do not have any
analog for scar-induced dynamics following a quench.

More recently, there have been several studies on the pos-
sible role of confinement in condensed matter systems. The
concept of confinement in one-dimensional (1D) quantum
electrodynamics is well known; it was shown that such sys-
tems are characterized by a parameter θ which is related to
the background electric field. For θ = π , the system is decon-
fined and charge excitations can propagate; for other values
of θ , these excitations are confined [61,62]. Such ideas have
also been applied to the simulation of lattice gauge theories
(LGTs) using ultracold-atom platforms [63–68], Ising-type
chains [69], and Rydberg chains with staggered detuning de-
scribed by the Hamiltonian [46,52,70–72]

HRyd = −w
∑

j

σ̃ x
j − 1

2

∑
j

[λ + �(−1) j]σ z
j . (1)

Here � > 0 and λ denote the amplitude of staggered and
uniform detuning, respectively, w > 0 is the coupling strength
between ground and excited states of the Rydberg atoms,
σ z

j = 2n̂ j − 1 is related to the number operator n̂ j for a
Rydberg excitations on site j. The Hamiltonian given by
Eq. (1) is to be supplemented by a constraint that two adja-
cent sites can not both have Rydberg excitations. Thus, the
model has a Rydberg blockade radius of one lattice site. This
constraint is implemented using the projected spin operators
σ̃ x

j = Pj−1σ
x
j Pj+1, where Pj−1 = (1 − σ z

j )/2. The dynamics
of such Rydberg chains was studied in context of quench
protocols in Refs. [52,70]. It was observed that the presence of
the confinement terms leads to slow dynamics of the Rydberg
atoms. However, periodic drive protocols for chains with such
confinement terms have not been studied so far.

In this work, we study a periodically driven Rydberg chain
with a staggered detuning term. Here we consider the uniform
detuning parameter λ to be a periodic function of time given
by

λ(t ) = λ0, t � T/2

= −λ0, t > T/2 (2)

where T = 2π/ωD, ωD is the drive frequency, and we focus
in the regime of large drive amplitude: λ0 � �,w. In the rest
of this work we focus on the dynamics of the density-density
correlation function Oj2 = 〈n̂ j n̂ j+2〉 of these driven Rydberg
atoms and the half-chain entanglement entropy SL/2 of their
Floquet eigenstates. We use ED to study the properties of SL/2

and Oj2 numerically. We supplement our numerical finding by
comparing them with those obtained from an analytic, albeit
perturbative, Floquet Hamiltonian derived using Floquet per-
turbation theory (FPT) [8]. We note that such a perturbation
theory does not use 1/ωD as an expansion parameter and
is therefore distinct from high-frequency expansions carried

out in the literature [8,73,74]. In contrast, it uses inverse of
the drive amplitude as the perturbation parameter and can
therefore address the dynamics in the intermediate frequency
regime [32,33]. The main results that we obtain from such a
study are as follows.

First, we show, via study of SL/2, the presence of clustering
of Floquet eigenstates in these systems for strong staggered
detuning and at intermediate frequencies leading to violation
of ETH. These clusters can be classified into two categories.
The first type, dubbed as primary clusters, is a result of near-
integrable nature of the system for large staggered detuning.
The second type of clusters occurs within each primary cluster
at a much smaller quasienergy scale. We show, via explicit
calculation detailed in Appendix B, that these secondary clus-
ters result from an emergent conservation law found earlier in
nondriven Rydberg chains [52].

Second, we also show that the secondary clustering is de-
stroyed, leading to ergodicity restoration within each primary
cluster, at commensurate drive frequencies h̄ωD = n�, where
n is an integer; this allows drive-induced tuning of ergodic-
ity property of the Floquet eigenstates within each primary
cluster. To the best of our knowledge, such drive-induced
ergodicity restoration has not been so far reported for Rydberg
chains with staggered detuning.

Third, we show that for almost all intermediate drive fre-
quencies, O22 does not reach its ETH predicted steady-state
value; this phenomenon is seen for |Z2〉, |0〉, and the |Z̄2〉
initial states. For dynamics starting from |Z2〉 and |0〉 initial
states, we find specific drive frequencies for which the system
is dynamically frozen; O22 remains pinned to its initial values
at these frequencies. Around these freezing frequencies, O22

displays oscillatory behavior around its initial values with
perfect revivals. We provide a semianalytic explanation of the
properties of these oscillations in Appendix C.

Fourth, in contrast to the above cases, for the |Z̄2〉 initial
state, O22 remains frozen over a range of frequencies leading
to a dynamically frozen phase. We provide a qualitative ex-
planation for this unusual phenomenon which does not have
a counterpart in periodic dynamics of Rydberg chains without
uniform detuning [32,33]; our analysis, detailed in Appendix
C, also shows that for odd j, Oj2 will have a frozen phase
for dynamics starting from |Z2〉. This dichotomy is a direct
consequence of the Z2 (between even and odd sites) symmetry
breaking due to the presence of the staggered detuning.

Fifth, we study the fate of the quantum many-body scars
in the Floquet eigenspectrum as a function of the staggered
detuning. For small �, these scars have almost equal overlap
with both the Neel states and we find that scars with EF < 0
(EF > 0) have stronger overlap with |Z2〉 (|Z̄2〉). For large
enough �, we demonstrate the existence of mid-spectrum
scars (EF � 0) which do not show significant overlap with
either of the Neel states. Instead, we find that they constitute
a separate type of scar states exhibiting high overlap either
with classical Fock states with broken Z4 symmetry (|Z4〉) or
with states having single Rydberg excitation (|1〉). These scar
states result in long-time coherent oscillations for dynamics
starting from |Z4〉 or |1〉 initial states and are therefore qual-
itatively different from their counterparts in the PXP model
[47]. To the best of our knowledge, such quantum scars have
not been reported earlier in the literature. We also present a
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computation of the scars at small and intermediate � using
a FSA formalism (where FSA stands for forward scattering
approximation) in Appendix D.

The plan of the rest of the paper is as follows. In Sec. II,
we obtain the analytic Floquet Hamiltonian using FPT. This
is followed by Sec. III where we study the structure of the
Floquet eigenspectrum for strong staggered detuning and dis-
cuss the resultant clustering. Next, in Sec. IV, we analyze
the dynamical freezing of O22 and its dynamics near the
freezing points. This is followed by Sec. V where we dis-
cuss the change in properties of the quantum many-body
scars in the Floquet eigenspectra as � is tuned from small
to large values. Finally, we summarize our main results and
conclude in Sec. VI. Several technical details of our work
are discussed in the Appendixes as mentioned earlier in this
section.

II. DERIVATION OF THE FLOQUET HAMILTONIAN

In this section, we derive an analytic Floquet Hamiltonian
for the driven Rydberg atoms described by Eq. (1) in the
presence of the drive protocol given by Eq. (2). To this end, we
shall focus on the limit λ0 � �,w; however, no restriction is
placed on the relative magnitude of � and w. For the rest of
this section, we shall set h̄ = 1.

In what follows, we shall use FPT to obtain the Floquet
Hamiltonian [8,9,32]. Since λ0 � �,w, we treat the uniform
detuning term exactly and rewrite Eq. (1) as H = H0(t ) +

H1 + H2 where

H0(t ) = −1

2
λ(t )

∑
j

σ z
j ,

H1 = −1

2

∑
j

�(−1) jσ z
j , H2 = −w

∑
j

σ̃ x
j . (3)

We shall treat H1 and H2 perturbatively. This leads to the
evolution operator

U0(t, 0) = Tt {e−i
∫ t

0 H0(t ′ )dt ′ }
= eiλ0t

∑
j σ z

j /2, t � T/2

= eiλ0(T −t )
∑

j σ z
j /2, t � T/2. (4)

We note that U0(T, 0) = I which leads to H (0)
F = 0. Also, for

subsequent computation, we define the states |m〉 as eigen-
states of H0 that have m up spins and L − m down spins. Such
states need to obey the constraint imposed by the model; thus,
mmax = L/2 is the maximum number of up spins.

Next, we consider the first-order correction to the Floquet
Hamiltonian given, within FPT, by

U1(T, 0) = −i
∫ T

0
dt1U

†
0 (t1, 0)(H1 + H2)U0(t1, 0). (5)

To evaluate U1, we note that H1 commutes with U0. More-
over, the contribution from H2 has already been obtained in
Refs. [32,33]. From these we find

〈m|U1(T, 0)|n〉 = iT
∑

m

⎛
⎝∑

j

�

2
(−1) j〈m|σ z

j |m〉|m〉〈m|δmn +
∑

s j=±1

4iw

λ0T
sin

λ0T

4
eiλ0T s j |m〉〈m + s j |δn,m+s j

⎞
⎠. (6)

Using Eq. (6), one obtains the first-order Floquet Hamiltonian,
given by H (1)

F (�,wr ) ≡ H (1)
F = iU1(T, 0)/T , to be

H (1)
F (�,wr ) = −�Zπ − wr

∑
j

(cos γ σ̃x + sin γ σ̃y),

Zπ = 1

2

∑
j

(−1) jσ z
j , wr = w sin γ

γ
, (7)

where γ = λ0T/4. We note that the second term in H (1)
F ,

obtained in Refs. [32,33], vanishes at γ = nπ (or λ0 = 2nωD)
for nonzero integer n; thus, at these points, we expect the
effect of the staggered detuning term (H1) to be particularly
strong.

The next higher-order correction to the Floquet Hamilto-
nian comes from O(w3) terms in the Floquet Hamiltonian.
The derivation of these corrections can be found in Ap-
pendix A. The main effects of these terms are to renormalize
the Floquet Hamiltonian obtained within first order and to pro-
vide three-spin interaction terms. As shown in Appendix A,
the final Floquet Hamiltonian is given by

HF = H (1)
F (�r,wr ) + H (2)

F3 + H (3)
F + · · · ,

�r = �

[
1 − w2T 2

8γ 3

(
1

2
sin 2γ − γ cos 2γ

)
+ · · ·

]
, (8)

where the ellipses indicate higher-order contribution to the
Floquet Hamiltonian and �r denote the renormalized am-
plitude of the staggered term obtained using Eq. (A9) in
Appendix A. The other terms, H (2)

F and H (3)
F , are given in

Eqs. (A6) and (A10), respectively; their derivation has been
sketched in Appendix A. In what follows, we shall use Eq. (8)
to analyze our numerical results; in most cases, we find
that the effect of the third-order terms H (2)

F and H (3)
F ob-

tained in Appendix A are small and HF � H (1)
F (�r,wr ) for

our purpose.

III. STRONG STAGGERED DETUNING

In this and the next two sections, we present the main
results of our study obtained by exact numerics and compare
them to those obtained from the analytic Floquet Hamiltonian
derived in Sec. II. In the present section, we shall restrict
ourselves to the strong staggered detuning limit (� � w),
while other parameter regimes will be explored in Secs. IV
and V.

The exact numerical results that we present are obtained
using exact diagonalization (ED) on finite-sized chain as fol-
lows [32,33]. We first numerically diagonalize H (±λ0) =
H0(±λ0) + H1 + H2 [Eq. (3)] to obtain their energy
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FIG. 1. Left: Plot of SL/2 as a function of φ = EF T/h̄ for
ωD = 100w/h̄. The red dotted line is the ETH predicted Page value
of SL/2. Right panel: Plot of 〈Zπ 〉 for Floquet eigenstates as a function
of φ for same ωD. For both plots L = 24, �/w = 1.2, and λ/w = 15.
All energies are scaled in units of w and frequencies in units of
w/h̄. The color scheme indicates higher density of states for warmer
colors. See text for details.

eigenvalues ε±
a and eigenvectors |ξ±

a 〉. The evolution operator
for the square-pulse protocol [Eq. (2)] can then be written as

U (T, 0) = e−iHF (−λ0 )T/(2h̄)e−iHF (λ0 )T/(2h̄)

=
∑
a,b

c−+
ab e−i(ε−

a +ε+
b )T/(2h̄)|ξ−

a 〉〈ξ+
b |, (9)

where c−+
ab = 〈ξ−

a |ξ+
b 〉. We then numerically diagonal-

ize the unitary matrix U to obtain its eigenvalues
λn = exp[−iEF

n T/h̄] and eigenvectors |χn〉. The exact Floquet
Hamiltonian of the system can then be obtained as

HF =
∑

n

EF
n |χn〉〈χn|. (10)

In what follows, we shall use Eq. (10) for numerical com-
putation of the Floquet Hamiltonian. Most of the numerical
results in the rest of this section, unless explicitly mentioned
otherwise, correspond to λ = 15 and w = 1.

A. Clustering of Floquet eigenstates

In this section, we discuss the structure of the Hilbert
space spanned by Floquet eigenstates of the driven staggered
Rydberg chain. To this end, we plot the half-chain entan-
glement entropy SL/2 of these eigenstates as a function of
their quasienergy EF . The details of the numerical proce-
dure used for this computation are same as that charted in
Ref. [33]. The first step involves writing the density matrix
ρn = |χn〉〈χn| corresponding to the nth Floquet eigenstate.
One then integrates out the contribution to this state from
Fock states residing on one half of the chain; such an oper-
ation has to be carried out numerically without violating the
constraint condition as detailed in Ref. [33]. This leads to the
reduced density matrix ρred

n . The von Neumann entanglement
entropy is then computed from ρred

n following the standard
prescription: S(n)

L/2 ≡ SL/2 = −Tr[ρred
n ln ρred

n ]. For finite-sized
periodically driven systems, the prediction of ETH for SL/2

is given by the Page formula: SPage
L/2 = ln HSD − 1/2, where

HSD denotes Hilbert space dimension of the half-chain with
open boundary condition, and HSD = 377 for L = 24.

The result of such a computation is shown in Figs. 1 and
2 for � = 1.2w. From Fig. 1, we find that the Hilbert space
is ergodic at high drive frequencies for which wr � w. In
contrast, as seen from Fig. 2, it fragments into several clusters

FIG. 2. Top left panel: Plot of SL/2 as a function of Floquet
quasienergies φ = EF T/h̄ for ωD = 3.5w/h̄. Top right panel: A
similar plot for ωD = 3.65w/h̄. Bottom left panel: Plot of 〈Zπ 〉 for
Floquet eigenstates as a function of φ for ωD = 3.5w/h̄. Bottom right
panel: Similar plot as the bottom left panel but for ωD = 3.65w/h̄.
For all plots L = 24, � = 1.2w, and λ = 15w. All energies are
scaled in units of w and frequencies in units of w/h̄. The color
scheme is same as in Fig. 1 and the red dotted lines in the top panel
indicate ETH predicted Page value of SL/2. See text for details.

at intermediate ωD. We dub these clusters as primary clusters.
Their origin can be straightforwardly understood as follows.

We note that the leading terms in the Floquet Hamilto-
nian are given by HF1. For λT/h̄ � 1 (ωD = 100w/h̄), when
wr ∼ w, the amplitude of the staggered and the PXP terms
in HF1 are comparable and their eigenstates span the entire
Hilbert space as expected for a nonintegrable model. This
behavior is shown in the left panel of Fig. 1 and is further
highlighted by plotting the expectation value of Zπ [Eq. (7)]
for these states, as shown in the right panel of Fig. 1. We
find that the quasienergy difference between the states with
different 〈Zπ 〉 are O(w); hence, wr ∼ w can hybridize states
with different 〈Zπ 〉 leading to ergodicity.

In contrast, for ωD ∼ 3.5w/h̄ and 3.65w/h̄, wr 
 w,�.
In this limit, the model is near integrable and the eigenstates
cluster into groups as shown in the top panels of Fig. 2.
Each of these groups have states with definite values 〈Zπ 〉 and
dimensionless quasienergy

φ = EF T

h̄
� −�rT

h̄
〈Zπ 〉 (11)

as shown in the bottom panels of Fig. 2. It is crucial to note
here that φ is 2π periodic; thus, Floquet eigenstates with
quasienergy outside the range −π � φ � π have to be folded
back, using this periodicity, to the first Floquet-Brillouin zone.
The primary clustering is therefore a consequence of near
integrability of HF for small wr/�r .

The eigenstates within the central primary cluster seen in
the top panel of Fig. 2 have 〈Zπ 〉 = ±3n while the other
clusters have 〈Zπ 〉 = ±3n + 1 and ±3n + 2 where n is an
integer. The number of such primary clusters can be deduced
from the fact that for the parameter regime of these plots
�r/(h̄ωD) ∼ 1

3 . Importantly, �r is still incommensurate to the
drive frequency by a small amount (the exact commensura-
tion occurs at �r = h̄ωD/3 ∼ 1.2w) so that states within the
same cluster are nondegenerate. This incommensuration can
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FIG. 3. Left panel: Plot of SL/2 as a function of Floquet
quasienergies φ = EF T/h̄ within the central primary cluster for
ωD = 3.5w/h̄. Right panel: A similar plot for ωD = 3.65w/h̄. For
all plots L = 24, � = 1.2w, and λ = 15w. All energies are scaled
in units of w and frequencies in units of w/h̄. The color scheme is
same as in Fig. 1 and the red dotted lines in the top panel indicate
ETH predicted Page value of SL/2. See text for details.

be parametrized by a dimensionless ratio given by

x = h̄ωD

�r
− 3. (12)

For � = 1.2, x � −0.0834 for ωD = 3.5w/h̄ and 0.04167
for ωD = 3.65w/h̄. The primary clusters, for wr 
 �r , are
separated with quasienergies φ1 while the states within each
cluster are separated by smaller quasienergy scale φ2, where

φ1 = δE1T/h̄ ∼ 2π/(3 + x),

φ2 = δE2T/h̄ ∼ |x|2π/(3 + x). (13)

In the parameter regime of our numerics, where wr 
 δE1,
the primary clustering is not destroyed by wr for finite-sized
chains with L � 24.

A closer inspection of the primary clusters reveals that each
of them, with definite values of Zπ , exhibit further clustering.
The left (right) panel of Fig. 3 shows such clustering for
ωD = 3.5 (3.65)w/h̄. We dub this phenomenon as secondary
clustering. The origin of such secondary clustering can be
understood via construction of an effective Floquet Hamil-
tonian in the regime wr ∼ δE2 
 δE1. The analysis is same
as what has been carried out in Ref. [52] and has been de-
tailed in Appendix B. Such a Hamiltonian, given by Eqs. (B4)
and (B5), shows that wr can have significant nonzero matrix
elements only between states within each primary cluster.
Moreover, as shown in Ref. [52], the presence of a finite
wr does not lead to ergodic structure within each primary
cluster. Instead, a perturbative analysis, similar to that carried
out in Ref. [52] and detailed in Appendix B, indicates that
the secondary clustering occurs due to an emergent conserved
quantity [Eq. (B5)]

Y = −
∑

j

(−1) jPj−1σ
z
j Pj+1, (14)

within each Zπ sector. These secondary clusters correspond to
groups of states with same values of 〈Y 〉. This can be clearly
seen from Fig. 4 where 〈Y 〉 is plotted for eigenstates in each
of the primary clusters. We find a definite value of 〈Y 〉 for all
Floquet eigenstates both at h̄ωD = 3.65w and 3.5w as can be
seen from the top and bottom panels of Fig. 4, respectively. We
note that the emergence of Y relies on the perturbative param-
eter wr/δE2 � 1. Such a perturbation theory will break down
for at the exact commensuration point where x, and hence
δE2, vanishes. This leads to loss of secondary clustering. At

FIG. 4. Plot of 〈Y 〉 for the Floquet eigenstates as a function of
φ = EF T/h̄ for h̄ωD = 3.65w (top panel), 3.58w (middle panel),
and 3.5w (bottom panel). For all plots L = 24, λ/w = 15, and
�/w = 1.2. All energies are scaled in units of w and frequencies
in units of w/h̄. The color scheme is same as in Fig. 1 and the black
dashed lines are guide to the eye. See text for details.

these commensuration points, the Floquet eigenstates can not
be associated with a definite 〈Y 〉 value as can be seen from the
middle panel of Fig. 4. We shall discuss this case in Sec. III B.

B. Ergodicity restoration

In this section, we discuss the behavior of the driven chain
when the amplitude of the staggered detuning is commensu-
rate with the drive frequency. To this end, we first note that for
h̄ωD/�r = n where n ∈ Z , one can write

U (T, 0) = e−iHF T/h̄ = e−i[H ′
1T +(2π/n)Zπ ]/h̄. (15)

Thus, for n = 3, the Floquet eigenstates can be organized into
clusters of states with values of 〈Zπ 〉 = ±3n, ±3n + 1, and
±3n + 2. This is seen in the top left panel of Fig. 5. We also
note that each of the states in a given primary cluster shall
have identical quasienergy at wr = 0 since x, and hence δE2,
vanishes. Thus, in absence of wr , they form a flat band and the
Hilbert space comprises of three such flat bands with δE1 = 0
and ±h̄ωD/3 in this limit. The number of such clusters de-
pends on n; this is exhibited in Fig. 6 where the structure of
the states with n = 2 and 4 primary clusters is shown.

In the presence of a nonzero wr , within each cluster, the
effective Floquet Hamiltonian is given by H ′

1. For small wr ,
the primary clustering still exists for finite L since wr 

�. However, within each primary cluster, H eff

F � H ′
1 since

δE2 = 0. Thus, the effective Floquet Hamiltonian for each
primary cluster resembles a renormalized PXP Hamiltonian
along with higher-order terms. The states within each primary
cluster are therefore expected to have an ergodic structure
with no secondary clustering. Moreover, as seen from the
right panel of Fig. 5, they possess a continuous range of 〈Zπ 〉
values for any finite wr . This property stems from strong
hybridization between states with definite integer values of
〈Zπ 〉 in the presence of nonzero wr . We note that the pertur-
bative analysis derived in Ref. [52] leading to the emergent
invariant Y responsible for the secondary clustering becomes
invalid here since the perturbative parameter wr/δE2 → ∞ at
the commensuration point. This expectation is validated from
exact numerics as seen from the central panel of Fig. 5 where
the ergodic structure for states within the central primary
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FIG. 5. Left panel: Plot of SL/2 as a function of φ = EF T/h̄ for ωD = 3.58w/h̄. Central panel: A similar plot showing states within the
primary cluster around EF = 0. Right panel: Plot of 〈Zπ 〉 as a function of φ. For all plots �/w = 1.2, and λ/w = 15. All energies are scaled in
units of w and frequencies in units of w/h̄. The color scheme is same as in Fig. 1 and the red dotted lines in the left and central panels indicate
ETH predicted Page value of SL/2. See text for details.

cluster is shown. We note that each of the clusters contain
both anomalous states with low SL/2 along with thermal states
with high SL/2. A similar behavior is expected for the s = ±1
primary clusters.

The consequence of such ergodicity restoration within a
primary cluster is also reflected in the steady-state value of
O22, ODE

22 , as shown in Fig. 7. The steady-state value of O22,
in terms of the Floquet spectrum, is given by

ODE
22 =

∑
n

∣∣cinit
n

∣∣2〈n|n̂2n̂4|n〉, (16)

where cinit
n = 〈n|ψ0〉 and |ψ0〉 ≡ |Z̄2〉, |Z2〉, or |0〉 is the over-

lap of the Floquet eigenstates |n〉 with the initial state. We find
that ODE

22 exhibits a sharp dip at the commensuration point
when the dynamics starts from |Z2〉; in contrast, it exhibits
a smaller peak for |Z̄2〉 initial state. In both cases, its value
approaches close to that predicted by ETH: OETH

22 ∼ 0.11. This
is clearly a consequence of restoration of ergodicity within a
primary cluster. As one varies the frequency away from the
commensuration point, ODE

22 deviates sharply from its ETH
predicted value approximately around wr � δE2. The sharp-
ness of such deviation is a consequence of small wr � 0.045
at λ = 15w and h̄ωD = 3.58w; this can be controlled by
varying λ which tunes wr for a fixed ωD. The stroboscopic
evolution of O22 at these ergodicity restoring points does not

FIG. 6. Top panel: Plot of SL/2 as a function of Floquet quasiener-
gies φ = EF T/h̄ for �/w = 1.8 showing two primary clusters.
Bottom panel: A similar plot for �/w = 0.9 showing four primary
clusters. For both plots h̄ωD/w = 3.6w and λ/w = 15. All energies
are scaled in units of w and frequencies in units of w/h̄. The color
scheme is same as in Fig. 1 and the red dotted lines indicate ETH
predicted Page value of SL/2. The black dashed lines are guide to the
eye. See text for details.

display coherent oscillations as can be seen from the inset
of Fig. 7; instead, it displays a slow approach to the thermal
steady state.

IV. DYNAMICAL FREEZING

In this section, we present our results on the density-
density correlation function Oj2 = 〈n̂ j n̂ j+2〉 with focus on
dynamical freezing of these correlations at specific drive fre-
quencies and their oscillations near these freezing frequencies.
For all numerical results in this section, we shall choose j = 2.

We begin with a study of the behavior of ODE
22 as a function

of �/w as shown in Fig. 8. The plot shows its behavior
for the initial Neel (|Z2〉 and |Z̄2〉) and vacuum (|0〉) states.
It indicates strong deviation from the ETH predicted value
OETH

22 � 0.11 at intermediate drive frequencies. For the |0〉
initial state, ODE

22 reaches its ETH predicted value at high drive
frequencies where wr ∼ w � � as expected; in contrast, for
the |Z2〉 initial state, ODE

22 reaches a superthermal value. The
latter behavior can be attributed to the presence of scar states
in the Floquet spectra with large overlap with the |Z2〉 states

FIG. 7. Plot of the steady-state value of O22 ≡ ODE
22 as a func-

tion ωD for �/w = 1.2 showing restoration of ergodicity at special
frequencies. Such restoration is characterized by sharp dips in the
ODE

22 value approaching the ETH prediction OETH
22 ∼ 0.11. The inset

shows the dynamics of O22 starting from a |Z2〉 state as a function of
n for commensurate (h̄ωD/w = 3.58) and slightly incommensurate
(h̄ωD/w = 3.65 and h̄ωD/w = 3.5) drive frequencies. The coherent
oscillations of O22 (shown above for h̄ωd/w = 3.5 and 3.65) seen
at incommensurate frequencies are replaced by a slower approach to
the steady state at exactly commensurate drive frequency (h̄ωD/w =
3.58). All energies (frequencies) are scaled in units of w(w/h̄). See
text for details.
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FIG. 8. Plot of the steady-state value of O22 ≡ ODE
22 as a function

of ωD starting from the |0〉 (top panel), |Z2〉 (middle panel), and |Z̄2〉
(bottom panel) states for several representative values of �/w as
shown. The maroon dashed lines indicate the ETH predicted value
OETH

22 . For all plots λ/w = 15. All energies are scaled in units of w

and frequencies in units of w/h̄. See text for details.

[32,33]; we shall discuss these states in Sec. V. For either of
these initial states, ODE

22 , in the high-frequency limit, is almost
independent of � as long as w � �. In contrast, it depends
strongly on � for h̄ωD � w and can take either superthermal
or subthermal values for |Z̄2〉 initial state; this constitutes a
stronger violation of ETH which can not be explained by
presence of scars alone.

To see why this is the case, we note that �/w 
 1,
the value of ODE

22 is expected to be identical irrespective of
whether the starting state is |Z2〉 or |Z̄2〉. This situation is
highlighted in the left panels of Fig. 9. The top left panel
shows the expectation value O(m)

22 = 〈m|n̂2n̂4|m〉 correspond-
ing to the Floquet eigenstate |m〉 as a function of their
dimensionless quasienergy φ = E (m)

F T/h̄. The bottom panel
shows the overlap of the eigenstates |m〉 with the initial states.
For small �/w = 0.2, we find that the largest value of O(m)

22
occurs for eigenstates |m〉 which lie close to the middle of

FIG. 9. Top left panel: Plot of O(m)
22 = 〈m|n̂2n̂4|m〉 ≡ O22 corre-

sponding to Floquet eigenstates |m〉 as a function of their quasienergy
φ = E (m)

F T/h̄ for �/w = 0.1. Bottom left panel: Overlap of these
eigenstates with |Z2〉 (red dots), |Z̄2〉 (blue dots), and |0〉 (black
dots). Right panels: Same as the corresponding left panels but for
�/w = 1.2. All left panel plots have same Y axes range as their right
panel counterparts. All plots correspond to L = 14, λ/w = 15, and
h̄ωD/w = 6.9. All energies are scaled in units of w and frequencies
in units of w/h̄. See text for details.

the Floquet spectrum (EF � 0). Furthermore, near the middle
of the Floquet spectrum, some of these states have significant
overlap with |Z2〉 while others have large overlap with |Z̄2〉
as can be seen the left bottom panel of Fig. 9. From Eq. (16),
we find that this ensures that ODE

22 would be almost identical
irrespective of whether the dynamics starts from |Z2〉 or |Z̄2〉
initial states; in fact, they have exactly identical values at
� = 0.

This situation drastically changes at large �, where all the
Floquet eigenstates with large values of O(m)

22 have quasienergy
EF > 0 as shown in the top right panel of Fig. 9. Moreover,
these eigenstates only have large overlap with |Z2〉. Conse-
quently, the value of ODE

22 does not change appreciably for
dynamics starting from |Z2〉 as � is increased; however, its
value reduces drastically if the initial state is |Z̄2〉. Thus,
with increasing �, ODE

22 drops rapidly to subthermal values
and approaches zero for the |Z̄2〉 initial state; this leads to
qualitatively different � dependence of ODE

22 .
In addition, the top and the middle panel plots of Fig. 8

indicate the presence of dynamical freezing at special values
of the drive frequencies ωD � λ/(2n0h̄) (where n0 ∈ Z) for
which wr � 0. At these values, the initial states |0〉, |Z2〉,
and |Z̄2〉 become approximate eigenstates of the Floquet
Hamiltonian leading to freezing. The neighborhood of these
freezing frequencies is marked by strong deviation from the
ETH predicted value of O22 as shown in the top and middle
panels of Fig. 8; this deviation increases with increasing �.
As discussed in details in Appendix C, O22 displays steady
oscillations around these points with an amplitude which de-
creases with � and frequency given by �/h̄. In contrast, for
|Z̄2〉 initial state and for � > w, the freezing extends over a
range of frequencies, as seen in the bottom panel of Fig. 8. An
explanation of this behavior is also presented in Appendix C.
We note here that this behavior stems from the presence of
staggered detuning which differentiates between odd and even
sites of the chain as explained in details in Appendix C.

V. CROSSOVER FROM WEAK TO STRONG
STAGGERED DETUNING

In this section, we shall study the behavior of the
quasienergy eigenstates as δE2/wr is gradually increased. We
note at the outset that this behavior can be reproduced by
studying the properties of eigenstates of

Hm = −�′Zπ −
∑

j

σ̃ x
j (17)

such that �′ ≡ 2δE2/wr . This is due to the fact that a variation
of ωD in H (1)

F can take us close to both the commensu-
ration point where δE2 � 0 (for example, for � � 1.2 and
h̄ωd � 3.6) and the dynamical freezing point where wr � 0
(for example, around λT/h̄ = 4π ). We therefore expect this
analysis to reveal the nature of the crossover between Hilbert
space structure having quantum scars (�′ = 0) to that having
clustering (�′ � 1).

We begin by plotting the entanglement entropy of the
eigenstates of Hm as a function of dimensionless energy E
for four representative values of �′ in Fig. 10. The top
left panel of Fig. 10 shows the existence of quantum scars
for small �′ 
 1. These scars which occur close to the
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(a) (b)

(c) (d)

FIG. 10. Plot of the half-chain entanglement SL/2 of the eigen-
states of Hm as a function of energy E for (a) �′ = 0.005, (b) 0.05,
(c) 0.5, and (d) 2. The green and the red circles indicate states with
high overlap with |Z̄2〉 and |Z2〉, respectively. All plots have same Y
axes range and correspond to L = 24. See text for details.

commensuration point where x 
 1 have, in accordance with
standard expectation, almost equal overlap with |Z2〉 (red
circles) and |Z̄2〉 (green circles) states. We find as we increase
�′, the scars with EF < 0 develop higher overlap with |Z2〉
while those with EF > 0 exhibit higher overlap with |Z̄2〉.
This asymmetry can be understood from the fact that the
presence of a large �′ pushes the states with high |Z2〉 (|Z̄2〉)
overlap to lower (higher) quasienergy. This phenomenon
can be easily understood from a FSA analysis as shown in
Appendix D. For �′ � 1, there are almost no mid-spectrum
states which have high overlap with either |Z2〉 or |Z̄2〉. Re-
markably, even in this regime, we find existence of scarlike
states as seen from bottom right panel of Fig. 10; these do
not show high overlap with either |Z̄2〉 or |Z2〉. This situation
is to be contrasted to that in Rydberg chains with uniform
detuning where scars disappear at large detuning away from
the PXP limit [46,47]. The crossover between these two situ-
ations happens between 0.75 � �′ � 1 as can be seen from
Fig. 11. Thus, at these values of �′, an almost continuous

(a) (b)

(c) (d)

FIG. 11. Plot of the half-chain entanglement SL/2 of the eigen-
states of Hm as a function of energy E for (a) �′ = 0.75, (b) 1,
(c) 1.25, and (d) 1.75. The red circles indicate states with high
overlap with |Z2〉. All plots have same Y axes range and correspond
to L = 24. See text for details.

FIG. 12. Left panel: Plot of SL/2 for eigenstates of Hm showing
the scar states having large overlap with |0〉 (black square), |1〉 (blue
square), and |Z4〉 (green square). The red dashed line indicates the
ETH predicted Page value of SL/2. Right panel: The dynamics of 〈Nd〉
starting from state |1〉 (top) and the fidelity F (t ) = |〈ψ (t )|1〉|2 (bot-
tom) as a function of time showing scar-induced long-time coherent
oscillations. For all plots L = 24 and �′ = 5. See text for details.

band of scar states remain although their nature evolves with
increasing �′.

This structure of scars is preserved at higher values of
�′ where the Hilbert space is strongly clustered. The mid-
spectrum states here do not have significant overlap with
either |Z2〉 and |Z̄2〉. Instead, as we find numerically and as
shown in the left panel of Fig. 12, two of these states have
high overlap with |Z4〉 = | ↑,↓,↓,↓,↑,↓,↓,↓ . . . 〉 states.
Other mid-spectrum scar states have strong overlap either with
the single Rydberg excited state |1〉 = | ↑,↓,↓ . . . 〉 or the
vacuum state |0〉 as shown in the left panel of Fig. 12. These
mid-spectrum scar states have no analog in their counterparts
for small �′. Indeed, this can be seen by studying the dynam-
ics of the Rydberg excitation density 〈Nd〉 = 〈∑ j (σ

z
j + 1)/2〉

as a function of time. The fidelity F1 = |〈1|ψ (t )〉|2 of these
oscillations indicates perfect revivals as can be seen from the
bottom right panel of Fig. 12. The presence of such oscilla-
tions starting from single spin-up state could not have been
due to the |Z2〉 scars. Similar oscillatory coherent dynamics
with near perfect fidelity revivals is also seen in this regime
for initial states |0〉 and |Z4〉 as shown in Fig. 13.

The frequencies of these oscillations and the nature of
the dynamics starting from the |Z4〉 state can be understood
as follows. From the plot of the overlap of the initial state
with the Floquet eigenstates, shown in Fig. 14, we find that
the overlap of |Z4〉 is maximal with the one of the mid-
spectrum scar states. This state has EF > 0 (EF < 0) if the
|Z4〉 hosts Rydberg excitations on odd (even) sites; this is
due to the presence of a large �′ in the Hamiltonian which
breaks the particle-hole symmetry. The next largest overlap
corresponds to two states on both sides of the |Z4〉 states; these
have slightly different energies and belong to primary clusters
characterized by Zπ = 5 and 7, respectively. The difference
in energy between the Z4 scar and these two states leads to
the main oscillation frequency ω � �′/(2h̄); in addition, the
small difference in frequencies of these two states leads to a
long-time beating phenomenon as can be seen from the right
panel Fig. 13. The analysis of the dynamics starting from |1〉
or |0〉 reveals a qualitatively similar picture and we do not
discuss them in details here.

064305-8



PERIODICALLY DRIVEN RYDBERG CHAINS WITH … PHYSICAL REVIEW B 106, 064305 (2022)

FIG. 13. Left: The dynamics of 〈Nd〉 (top) starting from the ini-
tial state |0〉 and the fidelity F (t ) = |〈ψ (t )|0〉|2 (bottom) as a function
of time. Right: Similar plots for the initial |Z4〉 state. All left panel
plots have same Y axes range as their right panel counterparts. All
plots correspond to L = 16 and �′ = 5. See text for details.

The nature of the scar states with large overlap with |1〉
states may be qualitatively understood by noting the form of
H (1)

4 given in Eq. (B5). For strong �′, where the analysis of
Ref. [52] holds, H (1)

4 is the leading term in 1/�′ which induces
spin dynamics. Here we note that such a term acting on a
state |1 j〉 (which represents a single Rydberg excitation on
the jth site) connects it to |1 j+2〉. Thus, it creates an almost
closed subspace of L/2 such states; the corresponding Floquet
eigenstates are therefore expected to have low entanglement
and could be a candidate for the scar state having large overlap
with |1〉.

A similar, but more complicated situation, holds for scars
having large overlap with |Z4〉. We note that H (1)

4 acting on
|Z4〉 connects it to a series of L/4 states where any up-spin
state is shifted by two sites. These states are denoted by |Z4 j〉
and have repeated blocks of one up spin on site 4� for integer
� and three subsequent down spins. Now let us consider the
subsequent action of H (1)

4 on this state; it is easy to see that
a further shift of the jth up spin is either forbidden by the
constraint or gives back |Z4〉. This ensures that action of H (1)

4
on |Z4 j〉 leads to L/4C2 new states. Following this argument
we find that the dimension of the almost closed subspace

FIG. 14. Plot of ln |〈Z4|n〉|2 as a function of EF for |Z4〉 states
which host Rydberg excitations on even (top panel) and odd (bottom
panel) sites. For all plots �′ = 5 and L = 16. See text for details.

formed by the action of H (1)
4 on |Z4〉 is ∼ ∑

n=1...L/4
L/4Cn.

For finite L � 24 studied in our numerics, this leads to a
small, almost closed, subspace of states. Thus, qualitatively
one may expect to have a low-entangled eigenstate formed
out of their superposition which has significant overlap with
|Z4〉. We conjecture that such a state may be the Z4 scar that
we find. We also note that this suggests that scars having
large overlap with |1〉 [for which the closed subspace always
has O(L) states] would be more stable for large L than their
counterparts having large overlap with |Z4〉.

VI. DISCUSSION

In this work, we have studied a periodically driven Rydberg
chain with both uniform and staggered detuning. We have
primarily focused on the limit of large drive amplitude and
a square-pulse protocol; the uniform detuning term has been
made time dependent. We have used FPT to obtain analytic
insight for the Floquet Hamiltonian in the intermediate fre-
quency regime. We note that for these interacting quantum
systems, it is difficult to implement nonperturbative effec-
tive Hamiltonian techniques [8,76]; moreover, high-frequency
expansions [8,73,74] do not provide an accurate description
of the Floquet Hamiltonian in the intermediate frequency
regime. This makes FPT our method of choice for obtaining
analytic insight into the Floquet Hamiltonian; this choice is
justified by a comparison of FPT-based results with exact
numerics. We find that the presence of a staggered detuning
term leads to several features of the driven system that have no
analog in Floquet dynamics of Rydberg atoms without such a
term.

The first of such features involves ergodicity violation of
such system via clustering of Floquet eigenstates. We find
that when � � wr , the eigenstates of the Floquet Hamilto-
nian arrange themselves into several discrete well-separated
clusters in the Hilbert space. Each of these clusters belong
to definite values of Zπ and the number of such clusters
depends on the ratio of h̄ωD/�r . We dub this phenomenon
as primary clustering and recognize this to be a consequence
of near integrability of HF for large �r/wr . In addition, we
also find a secondary clustering which leads to discrete set
of states within each of these primary clusters. We tie the
presence of such secondary clustering to the existence of
emergent conserved quantity Y , which was noted earlier in the
context of nondriven Rydberg chains with staggered detuning
in Refs. [51,52]. We note that these clusterings leading to
violation of ETH do not stem from standard Hilbert space
fragmentation [57–60] since the Floquet Hamiltonian of the
staggered Rydberg chain does not have dynamically discon-
nected sector at any finite wr . Furthermore, such clustering is
not expected to survive in the thermodynamic limit; however,
they will be a feature of finite-sized chains which are typically
realized in standard experiments [12,13].

We also show that the existence of Y and hence sec-
ondary clustering is contingent on incommensuration of the
drive frequency and �r which leads to a nonzero δE2.
Thus, at commensurate drive frequencies where δE2 = 0, the
secondary clustering is destroyed and states within each pri-
mary cluster become ergodic. This is reflected in the values
of local observables such as O22 near these commensurate
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drive frequencies which reach very close to their ETH
predicted values. This leads to a possibility of tuning er-
godicity properties of the driven system using the drive
frequency.

We also study the behavior of the correlation function O22

for the driven chain starting from the vacuum and the Neel
states. We find, for initial |0〉 and |Z2〉, dynamical freezing
of O22 at specific drive frequencies whose values are well
approximated by the analytic Floquet Hamiltonian obtained
using FPT. When driven close to these freezing frequencies,
O22 starting from |0〉 or |Z2〉 displays oscillations with perfect
revivals. The amplitude of these oscillations decreases with
increasing � in the large or intermediate �/wr regime; in
contrast, their frequencies are pinned to �/h̄ for both the
initial states. We provide a simple qualitative explanation of
these features using the structure of the Floquet eigenstates
in this regime. In contrast, such oscillations are completely
suppressed when the dynamics starts from |Z̄2〉; this leads to
a range of drive frequencies where one encounters dynamic
freezing. This range increases with �. We explain this phe-
nomenon qualitatively in Appendix C and point out that the
dynamics of Oj2, where j is odd, would show exactly opposite
behavior: it would show range of freezing frequencies for
dynamics starting from the |Z2〉 state. This dichotomy is a
direct consequence of breaking of the sublattice symmetry by
the staggered detuning term.

We have also studied the quantum scars in the Floquet
eigenspectrum of such a driven Rydberg chain. Such scars
are known to exist for �′ = 0 [33] and are dubbed as PXP
scars [47]; they have identical overlap with both the Neel
states in this limit. We find that with increasing �′, the
scars with energy EF < 0 develop a stronger overlap with
|Z2〉 while those with EF > 0 overlap more with |Z̄2〉. This
phenomenon clearly originates from the breaking of the Z2

sublattice symmetry due to presence of �. In fact, at large �′,
we find that no near mid-spectrum scar states have significant
overlap with either of the Neel states. Instead, as confirmed
from quench dynamics studies in Sec. V, they have a high
overlap with either |Z4〉, vacuum (|0〉), or single-dipole (|1〉)
states. This indicates that the presence of large �′ leads to
scars which have no analog with the standard PXP scars
studied earlier in the literature. Our FSA analysis, detailed
in Appendix D, explains the property of the scars at weak or
intermediate �′ fails to capture these mid-spectrum scars at
large �′.

In conclusion, we have shown that a driven Rydberg chain
with staggered detuning term leads to several interesting
phenomena. These include ergodicity violation via Floquet
eigenstate clustering in the strong staggered detuning limit,
dynamical freezing, sustained coherent oscillations with per-
fect revivals near the freezing frequency, existence of separate
class of quantum scars with large overlap with |0〉, |1〉, and
|Z4〉 states, and the possibility of tuning ergodicity property
of these chains with the drive frequency. The experimental
implementation of a Rydberg chain has already been achieved
[12,13]; a possible extension of some of these experiments
with implementation of staggered detuning may provide a
suitable experimental platform testing our theoretical predic-
tions.

ACKNOWLEDGMENTS

K.S. thanks DST, India, for support through SERB Project
No. JCB/2021/000030.

APPENDIX A: HIGHER-ORDER FPT TERMS

In this Appendix, we compute the higher-order corrections
to the Floquet Hamiltonian within Floquet perturbation the-
ory. It turns out that there is no second-order contribution to
HF since

U2(T, 0) = −
∫ T

0
dt1U

†
0 (t1, 0)(H1 + H2)U0(t1, 0)

×
∫ t1

0
dt2U

†
0 (t2, 0)(H1 + H2)U)(t2, 0)

= U1(T, 0)2/2. (A1)

Equation (A1) can be obtained from a straightforward com-
putation; however, it can also be checked as follows. First,
we note that the terms ∼H1 in the expression of U2 commute
with U0. This indicates that the term originating from H2

1 in
U2(T, 0) must trivially satisfy Eq. (A1). Second, we recall
that it is known [32,33] that the term ∼H2

2 does not yield any
second-order contribution to HF . This is due to the presence
of a symmetry noted in Ref. [33]. For � = 0, it was shown
that {Q, HF } = 0, where Q = ∏

j σ
z
j ; consequently, there can

be no terms with product of even number of σ̃±
j operators

in HF . Moreover, a straightforward computation shows that
the contribution from all terms which involve both H1 and H2

also vanish due to commutation of H1 with U0. Thus, we have
H (2)

F = 0.
Next, we compute the third-order term in the Floquet

Hamiltonian. To this end, we consider the third-order contri-
bution to U , given by

U3(T, 0) = i
∫ T

0
dt2U

†
0 (t1, 0)(H1 + H2)U0(t1, 0)

×
∫ t1

0
dt2U

†
0 (t2, 0)(H1 + H2)U0(t2, 0)

×
∫ t2

0
dt2U

†
0 (t3, 0)(H1 + H2)U0(t3, 0). (A2)

To obtain the third-order Floquet Hamiltonian, we first note
that the commutation of H1 with U0 ensures that there is no
third-order contribution to HF from the term with three H1

operators. The first nontrivial contribution to the third order
HF comes from the term in Eq. (A2) which has two H1 and
one H2 operators. The contribution of this term to U3(T, 0) can
be computed as charted in details in Ref. [32]. The result is

U3a(T, 0) = i�2
0w

4

∑
j1, j2, j3

∑
s=±

(−1) j1+ j2
(
2c1sσ

z
j1
σ z

j2
σ̃ s

j3

+ c2sσ
z
j1
σ̃ s

j3σ
z
j2

)
,

c1± = ±T 3 −i ± 2γ (1 ± 2iγ ) − ie±2iγ (2γ 2 − 1)

32γ 3
,

c2± = ±T 3 i ∓ 2γ − ie±2iγ (2γ 2 + 1)

16γ 3
. (A3)
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The structure of U3a shows that it is necessary to categorize
the terms into two groups. The first constitutes the case where
at least one of the ji’s are different from the other two. For
these, U3a(T, 0) either vanishes or can be written as

U3a(T, 0) = i�2
0w

4

∑
j1 �= j2 �= j3

∑
s=±

(−1) j1+ j2 (2c1s + c2s)

× σ z
j1
σ z

j2
σ̃ s

j3 = U1(T, 0)3

3!
, (A4)

where we have used the fact that 2c1s + c2s =
iT 2(exp[iλ0T s] − 1)/(λ0s) for s = ±1. Thus, such terms
do not contribute to HF3. However, when j1 = j2 = j3, we
find that the last term in Eq. (A3) acquires a negative sign due
to the anticommutation of σ z

j and σ̃ s
j . This leads to

U3a(T, 0) = i�2
0w

4

∑
j

∑
s=±

(2c1s − c2s)σ̃ s
j . (A5)

Comparing this with U1(T, 0)3/3!, we find that there is a
nontrivial contribution to the Floquet Hamiltonian given by

H (3)
F1 = w�2

0

2T

∑
j

(c2+σ̃+
j + H.c.). (A6)

This term leads to a frequency-dependent renormalization of
the coefficient of w in the first-order Floquet Hamiltonian.

The next contribution to the Floquet Hamiltonian comes
from the terms in Eq. (A2) with two H2 and one H1 operators.
The calculation of this term, U3b(T, 0), follows a similar route
as that followed in Ref. [32] and leads to

U3b(T, 0) = i�0w
2

2

∑
j1, j2, j3

∑
s1,s2=±

(−1) j3 (2d1s1s2 σ̃
s1
j1
σ̃

s2
j2
σ z

j3
+ d2s1s2 σ̃

s1
j1
σ z

j3
σ̃

s2
j2

), (A7)

d1++ = T 3 −(i/4 + γ ) + ie2iγ (i + 2γ ) + e12iγ (3i/4 + 2γ )

32γ 3
,

d1+− = T 3 γ (2 − iγ ) − γ e2iγ − i(1 − e2iγ )/2

16γ 3
,

d2++ = T 3 i/4 − γ + 3e4iγ /4 + e2iγ (−i + 2γ )

16γ 3
, d2+− = T 3

8γ 3

(
1

2
sin 2γ − γ cos 2γ

)
, (A8)

and da±± = d∗
a∓∓ for a = 1, 2. The argument leading to the

Floquet Hamiltonian is similar to the one discussed earlier and
only the onsite terms in U3b contribute to H (3)

F . The final result
is

H (3)
F2 = −w2�0

T

∑
j

(−1) j (d2+−σ̃+
j σ z

j σ̃
−
j + H.c.). (A9)

Note that the action of H (3)
F2 on any eigenstate of σ z

j is same
as that of −σ z

j . Thus, this term can be considered as a correc-
tion of the staggered detuning term in the first-order Floquet
Hamiltonian. From Eq. (A7), we find that for tan 2γ > 2γ ,
this correction is negative and leads to a reduction in the
magnitude of the onsite detuning.

The final term in the Floquet Hamiltonian comes from the
term in Eq. (A2) which has three H2 operators. This term has
already been computed in Ref. [32]; for completeness, we
write the contribution of this term to HF here. This is given
by

H (3)
F3 =

∑
j

A0[(σ̃+
j−1σ̃

+
j+1 + σ̃+

j+1σ̃
+
j−1)σ̃−

j − 6σ+
j ] + H.c.,

A0 = [e6iγ + 3e2iγ (1 + 4iγ ) + 2(1 − 3e12iγ )]

× w3T 2e−12iγ

192iγ 3
. (A10)

This term contains a three-spin term as well as a higher-order
correction to the first-order Floquet term ∼w.

This completes our derivation of the Floquet Hamiltonian
for the driven Rydberg chain with staggered detuning to third
order in Floquet perturbation theory. In subsequent sections,
we shall use this along with numerical results to analyze the
properties of the driven chain.

APPENDIX B: PROJECTION OPERATOR FORMALISM

In this Appendix, we detail the computation of Y and H2

using a perturbative formalism developed in Ref. [52]. To this
end we shall start from a Hamiltonian Hm [Eq. (17)] in the
main text and treat 1/�′ as the perturbative parameter. In what
follows, we write Hm = H0 + H1 [Eq. (17)], where

H0 = −�′Zπ , H1 = −
∑

j

σ̃ x
j , (B1)

and treat H1 perturbatively in the regime where �′ > 1.
The formalism used in Ref. [52] constitutes construction

of a perturbative effective Hamiltonian for such a system. The
method relies on the presence of a canonical transformation,
implemented through an operator S, which yields

Heff = eiSHme−iS = H0 + H (1) + H (2) + · · · ,

H (1) = [iS, H0] + H1,

H (2) = P′[iS, H1] + 1
2 [iS, [iS, H0]]P′, (B2)

where the ellipsis represents higher-order terms and P′ is
a projection operator which projects the Hamiltonian to the
low-energy manifold of H0 [52]. The next step is to determine
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S to first order in perturbation theory by setting H (1) = 0. A
straightforward calculation using this condition yields

iS = 1

2i�′
∑

j

σ̃
y
j (−1) j . (B3)

Using Eq. (B3), one can now compute H (2). While doing this,
it is important to remember that the final results need to be
projected in the low-energy manifold of H0. This considera-
tion leads to a single term in the second order which can be
easily computed by substituting Eq. (B3) in (B2) given by

H (2) = −1

�′ Y, (B4)

where the expression of Y is given in Eq. (14) of the main
text. We note that as long as the perturbation theory is valid, Y
emerges as a constant of motion; however, this breaks down,
along with the perturbative approach, when �′ → 0.

The higher-order terms in the perturbation theory can be
computed systematically using this approach and are detailed
out in Ref. [52]. This yields H (3) = 0; the leading-order
nonzero term is given by H (4). As shown in Ref. [52], this
can be written as

H (4) = H (4)
1 + H (4)

2 ,

H (4)
1 = −1

2�′3
∑

j

(−1) j (σ̃+
j σ̃−

j+2 + H.c.),

H (4)
2 = −1

2�′3
∑

j

Pj−1σ
z
j Pj+1Pj+2 + Pj−2Pj−σ z

j Pj+1

− 2Pj−1σ
z
j Pj+1. (B5)

We note that H (4)
1 is the leading-order term introducing non-

trivial spin dynamics. The expression of H (4)
1 has been used

in Sec. V of the main text for developing a qualitative under-
standing of the |Z4〉 and single-dipole scar states.

APPENDIX C: OSCILLATIONS AROUND
FREEZING FREQUENCIES

In this Appendix, we discuss the behavior of O22 around
the freezing frequencies and provide a qualitative explanation
of the difference of its time evolution starting from |Z2〉 and
|Z̄2〉 states. In the range of drive frequencies that we study
here, �r � � and we ignore their difference for the rest
of this Appendix. The stroboscopic dynamics of O22 as a
function of n around the freezing frequencies is shown in the
top panel Fig. 15. We find that O22 does not thermalize; in-
stead, it displays long-time oscillation with a fixed frequency
ωosc � �/h̄. We have checked this numerically for n > 1000
cycles. The amplitude A of these oscillations decreases as the
freezing point is approached and also as � is increased; it is
a monotonically decreasing function of wr/�. However, the
period of the oscillations remains constant for �/w � 1, as
shown in Fig. 16. A similar feature is seen from the fidelity
F = |〈Z2|ψ (nT )〉|2, where |ψ (nT )〉 denotes the many-body
state at time t = nT , as shown in the bottom panel of Fig. 15.
In contrast, the oscillation amplitude is close to zero for a wide
range of frequencies around the freezing point when one starts
from the |Z̄2〉 state.

FIG. 15. Top panel: Plot of O22 as a function of the number of
drive cycles n starting from the |0〉 (red line), |Z2〉 (black line). The
bottom panel shows the plot of fidelity F as a function of n for |Z2〉
initial state. For all plots L = 14, λ/w = 15, and h̄ωD/w = 6.9. All
energies (frequencies) are scaled in units of w (w/h̄). See text for
details.

The characteristics of these oscillations at large �/wr can
be qualitatively understood as follows. Let us consider the
evolution operator when � � wr . Clearly, in this limit, one
can write

U (nT, 0) =
∑

α

e−inεF
α T/h̄|α〉〈α|,

εα = E0 + α� + O(w2
r /�

2),

|α〉 =
∑

p

cα
p;q|p; q〉, (C1)

where E0 denotes the energy of the state |0〉 for wr = 0 and
any eigenstate |α = α0〉 of the Floquet Hamiltonian HF is
mapped to a state in the number basis |p; q〉 = |p0, q0〉 for
wr = 0. We note here that the states |p0; q0〉 have p0 (q0)
up spins distributed on even (odd) sites of the chain without
violation of the constraint; these are eigenstates of H (1)

F for
wr = 0 with quasienergy

E = E0 + (q0 − p0)�. (C2)

FIG. 16. Top panel: Plot of the frequency h̄ωosc/� (top panel)
and the amplitude A (bottom panel) of coherent oscillations of O22

as a function of � for h̄ωD/w = 6.9 and λ/w = 15. All energies
(frequencies) are scaled in units of w (w/h̄). See text for details.
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Here we shall assume that cα0
p0+μ;q0

∼ O[(wr/�)|μ|] for
μ = ±1,±2 . . . ; thus, for small wr/�, |cα0

p0+μ;q0
| 
 cα0

p0;q0
for

any α0. A similar relation holds for cα0
p0;q0+μ.

Let us now consider the initial state |0〉. The wave function
after n drive cycles can be obtained as

|ψ (nT )〉 = U (nT, 0)|0〉 =
∑

α

cα∗
0;0e−iεαnT/h̄|α〉

=
∑

α

∑
p,q

cα∗
0;0cα

p;qe−iεα pT/h̄|p; q〉, (C3)

where cα
0;0 = 〈p0 = 0; q0 = 0|α〉. Since the correlator O22 can

receive finite contribution for states with p0 > 2 up spins, we
find that the leading contribution to O22 is given by

O(0)
22 (nT ) � |c0∗

0;0c2
2;0 + c1∗

0;0c1
2;0ei�nT/h̄|2, (C4)

where we have retained only the leading-order term in wr/�

and used εα0 � E0 − (p0 − q0)� [Eq. (C1)]. This indicates
that the oscillation amplitude A will decay with increasing
� as (wr/�)4; however, the frequency of these oscillations
will be pinned to � as long as wr 
 �. The change in the
oscillation frequency is expected to occur with reduction of
� when O[(wr/�)2] terms in the expression of εα becomes
significant. The validation of this argument can be found in
Fig. 16. We note that for � � wr , the presence of a large
onsite term which is diagonal in the Fock basis leads to long-
time coherent oscillations; in this case, we do not find the
rapid thermalization expected by ETH.

The coherent oscillations discussed above are expected to
have larger amplitude provided we start from the state |Z2〉.
To see this, we note that, in this case, the wave function after
n drive cycles is given by

|ψ ′(nT )〉 =
∑

α

∑
p,q

cα∗
L/2;0cα

p,qe−iεαnT/h̄|p; q〉, (C5)

where cα
L/2;0 = 〈Z2|α〉. In this case, the leading-order contri-

bution to O22 reads as

O(Z2 )
22 (nT ) � ||cL/2∗

L/2,0|2 + cL/2−1∗
L/2,0 cL/2−1

L/2−1,1ei�nT/h̄|2 (C6)

which leads to O(w2
r /�

2) oscillation amplitude.
In contrast, if one starts from the |Z̄2〉 states, the oscillation

amplitude is expected to be vanishingly small. This is due to
the fact that |Z̄2〉 has insignificant overlap with any |p0; q0〉
state which contributes to 〈n̂2n̂4〉. We also note that density-
density correlation between odd sites (such as O12) would
show similar behavior for the initial state |0〉; however, it
would have vanishing oscillation amplitude for the |Z2〉 initial
state instead of |Z̄2〉.

APPENDIX D: FSA-BASED ANALYSIS
FOR SCARS AT SMALL �′

To understand the nature of these scars at low and interme-
diate �′ and the change in their properties as �′ is increased,
we use a semianalytic FSA treatment. To this end, we first
note that the presence of the staggered detuning term suggests
that such a construction should distinguish between odd and
even sites in the lattice. Therefore, we adapt the formalism
of Ref. [75] which allows for such a sublattice-resolved for-
mulation. In this method, the states are labeled by a set of

two integers n1 and n2 which denote number of Rydberg
excitations (up spins) on even and odd sites, respectively.
In what follows we shall construct the matrix elements of
Hm between two such states and then diagonalize this matrix
numerically. Such a class of states constitutes a symmetric
subspace defined from a set of equivalence classes (n1, n2);
all elements of these classes are invariant under shuffling of
excitations in each sublattice [75]. Thus, in this scheme, the
action of translation by an even number of lattice states leads
to an equivalent state. The assumption here is that the key in-
formation about properties of the states resides in the number
of excitations in each sublattice. We note that this procedure
naturally yields states which have significant overlap with
|Z2〉 and |Z̄2〉 since these Neel states are included as elements
in the subspace [75]. The first step towards construction of the
matrix elements of Hm is to construct an orthonormal basis for
the symmetric subspace. To this end, we use the prescription
of Ref. [75] and write, for a chain with 2L sites,

|n1, n2〉 = 1

N
∑

a

|αa〉,

N = (L − n1 − n2)L

(L − n1)(L − n2)

(
L − n1

n2

)(
L − n2

n1

)
, (D1)

where any state |αa〉 contains n1 and n2 total Rydberg exci-
tations on even and odd sites, respectively. The number of
such states N depends on specific values of n1 and n2 and
also on the Hilbert space constraint of having no two Rydberg
excitations on neighboring sites.

The matrix element of Hm between these states can be
easily obtained following the prescription of Ref. [75]. To this
end, we write, using |0〉 as the reference state,

〈n1, n2|Hm|m1, m2〉 = F1 + F2,

F1 = �′(n2 − n1)δn1,m1δn2,m2 ,

F2 = −[M(n1, n2)δm1,n1+1δm2,n2 (D2)

+ M(n2, n1)δm1n1δm2,n2+1] + H.c.,

M(n1, n2) =
√

(L − n1 − n2)(L − n1 − n2 + 1)n1

L − n1
.

We note that the structure of the FSA Hamiltonian suggests
that a large �′ essentially separates out states with large n1

FIG. 17. A plot of log10 |〈Z2|ψ〉|2 for states obtained via FSA
(large red circles) and those obtained from exact numerics (small
black circle) for �′ = 0.5 and L = 24. See text for details.
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(a) (b)

(c) (d)

FIG. 18. A plot of log10 |〈Z2|ψ〉|2 (blue circles) and
log10 |〈Z̄2|ψ〉|2 (red circles) for states obtained via FSA for
(a) �′ = 0.005, (b) 0.05, (c) 0.5, and (d) 2. All plots have same Y
axes range and correspond to L = 24. See text for details.

from those with large n2. Thus, the eigenvalues of this Hamil-
tonian, for large �′, are expected to have large overlap with
either |Z2〉 or |Z̄2〉 but not both. The diagonalization of the
FSA matrix constructed from Eq. (D2) leads to the eigenval-
ues of Hm for a fixed �′. A comparison of the |Z2〉 overlap of
these states with those of their counterparts obtained via exact

numerics for L = 24 and �′ = 0.5, plotted in Fig. 17, shows
a near-exact match between the scar eigenstates obtained by
these two methods: the eigenstates with EF < 0 have a much
higher overlap with |Z2〉 compared to those with EF > 0 in
both cases. This allows us to surmise that the present FSA
captures the essence of the scar eigenstates in the presence of
finite �.

The overlap between these eigenstates with |Z2〉 (red dots)
and |Z̄2〉 (blue dots) is shown in Fig. 18. From these, we find
that the FSA eigenstates qualitatively reproduce the charac-
teristics of scars seen in exact numerics. For low �′, the scar
states have near-exact overlap with both the Neel states (top
left panel of Fig. 18); in contrast, as �′ is increased, states
with EF > 0 develop a large overlap with |Z̄2〉 while those
with EF < 0 overlap strongly with |Z2〉. Thus, the crossover
of the nature of the scars as a function of �′ is well captured by
the FSA. This behavior can be understood to be a consequence
of the presence of the diagonal elements of the FSA matrix
for finite �′ [Eq. (D2)]; their presence pushes states having
large overlap with |Z2〉 (|Z̄2〉) to opposite ends of the Floquet
spectrum. The mid-spectrum scar states at large �′, however,
can not be captured by the present FSA formalism. A more
detailed quantitative understanding of such states and their
description in terms of a modified FSA approach is left for
future studies.
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