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High-harmonic spectroscopy of coherent lattice dynamics in graphene
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High-harmonic spectroscopy of solids is a powerful tool, which provides access to both electronic structure
and ultrafast electronic response of solids, from their band structure and density of states to phase transitions,
including the emergence of the topological edge states, to the PetaHertz electronic response. However, in spite of
these successes, high-harmonic spectroscopy has hardly been applied to analyze the role of coherent femtosecond
lattice vibrations in the attosecond electronic response. Here we study coherent phonon excitations in monolayer
graphene to show how high-harmonic spectroscopy can be used to detect the influence of coherent lattice
dynamics, particularly longitudinal and transverse optical phonon modes, on the electronic response. Coherent
excitation of the in-plane phonon modes results in the appearance of sidebands in the spectrum of the emitted
harmonic radiation. We show that the spectral positions and the polarization of the sideband emission offer a
sensitive probe of the dynamical symmetries associated with the excited phonon modes. Our work brings the
key advantage of high-harmonic spectroscopy—the combination of subfemtosecond to tens of femtoseconds
temporal resolution—to the problem of probing phonon-driven electronic response and its dependence on the
dynamical symmetries in solids.
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I. INTRODUCTION

Strong-field driven high-harmonic generation (HHG) is a
nonlinear frequency up-conversion process, which emits radi-
ation at integer multiples of the incident laser frequency [1].
Taking advantage of major technical advances in midinfrared
sources, the pioneering experiments [2] have extended HHG
from gases to solids, stimulating intense research into probing
electron dynamics in solids on the natural timescale. Today,
high-harmonic spectroscopy has been employed to probe dif-
ferent static and dynamic properties of solids, such as band
dispersion [3–6], density of states [7], band defects [8,9],
valley pseudospin [10–12], Bloch oscillations [13], topology
and light-driven phase transitions, including strongly corre-
lated systems [14–23], and even combine attosecond temporal
with picometer spatial resolution of electron trajectories in
lattices [24].

Availability of midinfrared light sources also enables co-
herent excitation of a desired phonon mode by tuning the
polarization and frequency of the laser pulse [25]. Yet, the
analysis of the effect of coherent lattice dynamics on high-
harmonic generation in solids appears lacking, apart from a
lone experiment [26]. This situation stands in stark contrast
to molecular gases, where high-harmonic spectroscopy has
been extensively employed to probe nuclear motion in various
molecules [27–32]. Present work aims to fill this gap and
highlight some of the capabilities offered by high-harmonic
spectroscopy in time resolving the interplay of femtosecond
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lattice and attosecond electronic motions. Such interplay is
essential for many fundamental phenomena, including ther-
mal conductivity [33], optical reflectivity [34,35], structural
phase transition [36,37], heat capacity [38], and optical prop-
erties [39,40].

Various spectroscopic methods have been developed to
excite and probe phonons, see, e.g., Refs. [41–52], but their
temporal resolution is limited by the length of the pulses used.
Large coherent bandwidth of high-harmonic signals offers
sub-laser-cycle temporal resolution and the possibility to time
resolve the impact of lattice distortions on the faster electronic
response.

One difficulty in tracking lattice vibrations via highly non-
linear optical response stems from their small amplitude. If
the corresponding changes in both the band structure and cou-
plings are similarly small, the high-harmonic response hardly
changes. Yet, large distortions are not needed if the excited
phonon mode dynamically changes the symmetry of the unit
cell. Here we show how coherent phonon dynamics and the
associated changes in the lattice symmetry are encoded in
the electronic response and the harmonic signal, and how the
subcycle temporal resolution inherent in the harmonic signal
can be used to track the interplay of electronic and lattice
dynamics.

We analyze monolayer graphene, which belongs to D6h

point group symmetry; see Fig. 1(a). It exhibits six phonon
branches: three optical and three acoustic. Here we focus
on the former. Out of the three optical phonon modes, one
is out of plane and the two others are in-plane modes. We
will consider only the in-plane modes. The lattice vibrations
corresponding to the in-plane longitudinal optical (iLO) and
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FIG. 1. Hexagonal honeycomb structure of graphene and associ-
ated in-plane phonon modes. (a) Real-space structure of graphene.
(b) Brillouin zone in momentum space with Γ, M, and K as the
high symmetry points. Panels (c) and (d) are the sketches of atomic
vibrations associated with the degenerate E2g phonon modes in real
space. Here, modes are labeled as (c) in-plane longitudinal optical
(iLO) phonon mode and (d) in-plane transverse optical (iTO) phonon
mode, respectively.

the in-plane transverse optical (iTO) E2g modes are shown in
Figs. 1(c) and 1(d), respectively. The two modes are degener-
ate at the Γ point, with the phonon frequency equal to 194 meV
(oscillation period ∼21 fs [53]); both are Raman active and
can be excited with a resonant pulse pair or impulsively by
a short pulse with bandwidth covering 194 meV. Moreover,
it is possible to selectively excite either iLO or iTO coherent
phonon mode by tuning the polarization of the pump pulse
either along the Γ − K or Γ − M direction, respectively.

Coherent lattice dynamics should in general introduce pe-
riodic modulations of the system parameters and thus of its
high-harmonic response. In the frequency domain, such mod-
ulations add sidebands to the main peaks in the harmonic
spectrum. We shall see that their position and polarization
encode the information about the frequency and the symmetry
of the excited phonon mode, respectively.

II. THEORETICAL METHOD

Carbon atoms are arranged at the corners of a hexagon
in the honeycomb lattice of the graphene. The unit cell of
graphene has a two-atom basis, usually denoted as A and
B atoms. The corresponding Brillouin zone in momentum
space is shown in Fig. 1(b), where Γ, M, and K are the high-
symmetry points. In our convention, the zigzag and armchair
directions of graphene are along the X axis (Γ − K direction)
and Y axis (Γ − M direction), respectively.

The electronic ground state of the graphene is described
by the nearest-neighbor tight-binding approximation and the
corresponding Hamiltonian is written as

Ĥk = −γ0

∑
i∈nn

eik·di â†
kb̂k + H.c. (1)

Here, the summation is over the nearest-neighbor atoms. γ0

is the nearest-neighbor hopping energy, which is chosen to

be 2.7 eV. di is the separation vector between an atom with
its nearest neighbor, such that |di| = a = 1.42 Å is the inter-
atomic distance, for a lattice parameter a0 of 2.46 Å. â†

k (b̂k ) is
the creation (annihilation) operator for atom A (B) in the unit
cell. The low-energy band structure of graphene is obtained
by solving Eq. (1) and has zero band gap and exhibits linear
dispersion at K points in the Brillouin zone.

We treat lattice dynamics classically and assume that atoms
perform harmonic oscillations for short displacements from
their equilibrium positions. The displacement vector for a
particular phonon mode is expressed as

q(t ) = q0 ê Re(eiωpht ). (2)

Here, q0 is the maximum displacement of an atom from its
equilibrium position, ωph = 194 meV is the energy of the
E2g phonon mode, and ê is the normalized eigenvector for a
particular phonon mode. From Figs. 1(c) and 1(d), it is clear
that êiLO = [1, 0,−1, 0]/

√
2 and êiTO = [0, 1, 0,−1]/

√
2,

in which the first (last) two elements are components of the A
(B) atom.

Due to coherent phonon excitations, lattice dynamics
causes temporal variations in the relative distance between
atoms (di). In this case, the corresponding time-dependent
Hamiltonian within the tight-binding approximation can be
written as [54–56]

Ĥk(t ) = −γ (t )
∑
i∈nn

eik·di (t )â†
kb̂k + H.c. (3)

Here, the hopping energy is modeled as an exponentially
decaying function of the relative displacement between
nearest-neighbor atoms as γ (t ) = γ0 e−[|di (t )|−a]/δ , in which δ

is the width of the decay function chosen to be 0.184a0 [57].
The interaction among laser, electrons, and coherently ex-

cited phonon mode in graphene is modeled by solving the
following equations of the single-particle density matrix. By
updating the modified Hamiltonian as a result of the lattice
dynamics, semiconductor Bloch equations in comoving frame
|n, k + A(t )〉 are extended and equations of motion read as

d

dt
ρk

vv = iE(t ) · dvc(kt , t )ρk
cv + c.c., (4a)

d

dt
ρk

cv =
[
−iεcv (kt , t ) − 1

T2

]
ρk

cv

+ iE(t ) · dcv (kt , t )
[
ρk

vv − ρk
cc

]
. (4b)

Here, E(t ) and A(t ) are, respectively, the electric field
and the vector potential corresponding to the laser field,
which are related as E(t ) = −dA(t )/dt , and kt is the
shorthand notation for k + A(t ). εcv (k) and dcv (k) are, re-
spectively, the band-gap energy and dipole matrix elements
between valence and conduction bands at k. dcv (k) is de-
fined as dcv (k) = i〈c, k|∇k|v, k〉. Also, ρk

cc(t ) = 1 − ρk
vv (t )

and ρk
vc(t ) = ρk∗

cv (t ).
A phenomenological term to take care of the interband

decoherence is added with a constant dephasing time T2.
We calculate the matrix elements at each time step during
temporal evolution of the coherently excited phonon mode,
which results in the additional time dependence in the matrix
elements. As long as the maximum displacement of the atoms
are small and the time step is too small compared to the

064303-2



HIGH-HARMONIC SPECTROSCOPY OF COHERENT … PHYSICAL REVIEW B 106, 064303 (2022)

E

E

E

E

FIG. 2. High-harmonic spectra of monolayer graphene with and without coherent lattice dynamics. (a),(c) High-harmonic spectra cor-
responding to the coherent iLO E2g phonon mode and the probe harmonic pulse is polarized along ΓK and ΓM directions, respectively.
(b),(d) Same as (a) and (c) except iTO E2g phonon mode is coherently excited. In all the cases, sidebands corresponding to the first harmonic
are marked at frequencies (ω0 ± mωph), where ω0 is the frequency of the harmonic generating probe pulse and ωph is the phonon frequency.
The harmonics with gray shaded area are the reference spectra and represent the spectra of graphene without phonon excitation. The unit
cell of the graphene with the corresponding phonon eigenvector and polarization of the harmonic generating probe pulse are shown in the
respective insets. Red (blue) color corresponds to the polarization of emitted radiation parallel (perpendicular) to the polarization of the
harmonic generating probe pulse.

phonon time period, the matrix elements at consecutive time
steps are smoothly updated.

We solve the coupled differential equations described in
Eq. (4) using the fourth-order Runge-Kutta method with a
time step of 0.01 fs. We sampled the Brillouin zone with a
251 × 251 grid. The current at any k point in the Brillouin
zone is defined as

J(k, t ) =
∑

m,n∈{c,v}
ρk

mn(t )pnm(kt , t ). (5)

Here, pnm are the momentum matrix elements defined as
pnm(k) = 〈n, k|∇kĤk|m, k〉. The total current, J(t), can be
calculated by integrating J(k, t ) over the entire Brillouin zone.

The high-harmonic spectrum is simulated as

I (ω) =
∣∣∣∣FT

(
d

dt
J(t )

)∣∣∣∣
2

. (6)

Here, FT stands for the Fourier transform.
High-order harmonics are generated from monolayer

graphene, with or without coherent lattice dynamics, using
a linearly polarized pulse with a wavelength of 2.0 μm and
peak intensity of 1 × 1011 W/cm2. The pulse is 100 fs long
and has a sin-squared envelope. The laser parameters used in
this work are below the damage threshold of graphene [58].
Similar laser parameters have been used to investigate electron
dynamics in graphene via intense laser pulse [59–61]. The

value of the dephasing time T2 = 10 fs is used throughout in
this work [62]. The observations we made here are consistent
for other values of T2 in the range 5–30 fs. Both in-plane E2g

phonon modes are considered here. Results presented in this
work correspond to a maximum 0.03a0 displacement of atoms
from their equilibrium positions during coherent lattice dy-
namics. However, our findings remain valid for displacements
ranging from 0.01a0 to 0.05a0 with respect to the equilibrium
positions.

III. RESULTS AND DISCUSSION

High-harmonic spectra for monolayer graphene, with and
without coherent lattice dynamics, are presented in Fig. 2.
The spectrum corresponding to the graphene, without lattice
dynamics, is shown by the gray shaded area as a reference.
Owing to the inversion symmetry of the graphene, the ref-
erence spectrum in gray color exhibits only odd harmonics
(consistent with earlier reports; e.g., Refs. [61–64]).

We assume that coherent phonon dynamics is excited prior
to a high-harmonic probe. When one of the E2g phonon
modes in graphene is coherently excited, the harmonic spectra
display sidebands along with the main odd harmonic peaks
as reflected from Fig. 2. The energy difference between the
adjacent sidebands matches the phonon energy (ωph). The
sideband intensity is sensitive to the phonon amplitude but is
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FIG. 3. High-harmonic spectra of monolayer deformed graphene. (a),(c) When the atoms in graphene are maximally displaced, from
their equilibrium position, along iLO phonon mode. (b),(d) Similar to (a) and (b) but atoms are displaced along the iTO phonon mode. The
harmonic spectrum of undeformed graphene is shown in the gray shaded area for reference. The unit cell of the deformed graphene lattice and
the polarization of the harmonic generating probe pulse are shown in the respective insets. Red (blue) color corresponds to the polarization of
emitted radiation parallel (perpendicular) to the polarization of the harmonic generating probe pulse.

clearly visible already for amplitudes above 0.01 of the lattice
constant. Here we present the case of the amplitude equal to
0.03 of the lattice constant.

As E2g phonon modes preserve the inversion center, only
odd harmonics are generated. When the coherent iLO mode
and the probe harmonic pulse (along Γ − K) are in the same
direction, the even-order sidebands are polarized along Γ − K
(red color), whereas the odd-order sidebands are polarized
perpendicular to Γ − K (blue color), i.e., along the Γ − M
direction [see Fig. 2(a)]. When the polarization of the probe
pulse changes from Γ − K to Γ − M direction, the polarization
of the sidebands remains the same with respect to the laser
polarization. In this case, the even-order sidebands are polar-
ized along Γ − M (blue color), whereas odd-order sidebands
are polarized along Γ − K (red color) [see Fig. 2(c)]. In both
the cases, the main harmonic peaks are always polarized along
the direction of the probe pulse.

The situation is simpler in the case of coherent iTO mode
excitation. Both the main harmonic peaks and the sidebands
are polarized along the direction of the probe pulse [see
Figs. 2(b) and 2(d)]. Thus we see that the polarization of
the sidebands yields information about the symmetries of the
excited phonon modes.

We now investigate how the dynamical changes in symme-
tries differ from similar static variation in the high-harmonic
spectra. Consider the static case with the maximum displace-
ment of atoms, along a particular phonon mode direction,

3% of the lattice parameter from their equilibrium positions.
Figure 3 compares high-harmonic spectra for the statically
deformed and undeformed graphene (gray color). The probe
polarization is along Γ − K and Γ − M directions in the top
and bottom panels of Fig. 3, respectively.

When the graphene is deformed along the iLO phonon
mode, odd harmonics are generated along parallel and per-
pendicular directions with respect to the laser polarization
as shown in Figs. 3(a) and 3(c), respectively. However, only
odd harmonics, parallel to the laser polarization, are generated
when graphene is deformed in accordance with the iTO mode
[see Figs. 3(b) and 3(d)].

The emergence of parallel and perpendicular components
in the first case and the parallel component in the second case
can be explained as follows: the monolayer graphene has σx

and σy symmetry planes, in addition to the inversion center.
When the polarization of the probe laser is along the high
symmetry direction (Γ − K or Γ − M), there is no perpendic-
ular component of the current. However, if the polarization of
the probe pulse is along any other than these high-symmetry
directions, symmetry constraints allow the generation of odd
harmonics perpendicular to the direction of the laser polar-
ization. Recently, the same symmetry concept is employed
in twisted bilayer graphene to correlate the twist angle with
its high-harmonic spectrum [65]. It is straightforward to see
that the distortion due to the iLO phonon mode breaks the
symmetries of the reflection planes in monolayer graphene.
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The absence of the reflection symmetry planes along X and
Y directions guarantees the generation of harmonics in both
Γ − K and Γ − M directions as shown in Figs. 3(a) and 3(c).
On the other hand, the iTO phonon mode preserves both the
symmetry planes and as a result harmonics along the laser
polarization are only allowed [Figs. 3(b) and 3(d)].

In short, the presence or absence of the perpendicular
current is a result of the transient breaking of the symmetry
planes, which can be correlated to the results in Fig. 2. To un-
derstand the mechanism behind the sideband generations and
associated polarization properties during a coherent lattice
dynamics, we need to consider the changes in the symmetries
dynamically during the probe pulse.

To understand the symmetry constraint on the polarization
of sidebands, let us consider dynamical symmetries (DSs) of
the system, accounting for the coherent lattice dynamics and
the probe pulse. We apply the Floquet formalism to a periodi-
cally driven system, represented by the Hamiltonian described
by Eq. (3), which satisfies Ĥk(t) = Ĥk(t + τph), where τph

is the time period corresponding to ωph. The Hamiltonian
obeys the time-dependent Schrödinger equation and its solu-
tion is obtained in the basis of the Floquet states as |ψF

n (t )〉 =
e−iεF

n t |φF
n (t )〉. Here, εF

n is the quasienergy corresponding to the
nth Floquet state and |φF

n (t )〉 is the time-periodic part of the
wave function, such that |φF

n (t + τph)〉 = |φF
n (t )〉. The DSs in a

Floquet system are the combined spatiotemporal symmetries,
which provide different kinds of selection rules as discussed
in Refs. [66,67].

In the presence of the probe pulse, the laser-graphene in-
teraction within tight-binding approximation can be modeled
with the Peierls substitution as Ĥk(t ) → Ĥk+A(t )(t ). For the
sake of simplicity, we employ a perturbative approach to
understand the polarization of the sidebands as the strength
of the sidebands is much weaker in comparison to the main
harmonic peaks. Let us expand Ĥk+A(t )(t ) in terms of iA(t ) ·
di(t ) as

Ĥk+A(t )(t ) ≈ Ĥk(t ) + A(t ) · ∇kĤk(t ). (7)

The second term in the above equation can be treated as a per-
turbation as Ĥ′

k(t ) = A(t ) · Ĵ(t ) with Ĵ = ∇A(t )Ĥk+A(t ) being
the current operator in the Bloch basis. In Eq. (7), higher-order
terms are neglected.

By following Ref. [67] and assuming the electron initially
is in the Floquet state |φF

i 〉, we can solve the time-dependent
Schrödinger equation within first-order perturbation theory
and the μth component of the current can be written as

Jμ(t ) = 〈
φF

i (t )
∣∣Ĵμ(t )

∣∣φF
i (t )

〉

−
∑
e�=i

∫ t

−∞
idt ′e−iωei (t−t ′ )χF

μν (t, t ′)Aν (t ′) + c.c. (8)

Here, χF
μν (t, t ′) = 〈φF

i (t )|Ĵμ(t )|φF
e (t )〉〈φF

e (t ′)|Ĵν (t ′)|φF
i (t ′)〉.

From the above equation, it is apparent that the second term
correlates to the generations of the sidebands via the Raman
process.

The symmetry constraint for the mth-order sideband can be
written as X̂ t Es,m(t )[X̂ t E(t )]† = Es,mE†(t ), provided spatial
symmetries of X̂ t and probe pulse are the same [67]. Here,
Es,m(t ) and E(t ) are, respectively, the electric fields associated

with mth-order sideband and the probe laser and X̂ t is the
dynamical symmetry operation. The quantity Es,m(t )E(t )† is
denoted by Rm(t ) and known as the Raman tensor [67]. Thus
the selection rules for the sidebands depend on the invariance
of the Raman tensor under operation with the DSs of the
Floquet system.

There are two DSs corresponding to the coherent iLO
phonon mode as shown in Fig. 4. We define τn as the time
translation of τph/n, Ĉnμ is the rotation of 2π/n with respect
to the μ axis, σ̂μ is the reflection with respect to the μ axis,
and T̂ is the time-reversal operator. The symmetry operations
D1 = σ̂x · τ2 [see Fig. 4(a)] and D2 = σ̂x [see Fig. 4(b)] leave
the system invariant.

The selection rules for the sidebands and its polarization
directions are obtained from the DSs as shown in Fig. 4 and
require a condition as D̂Rm(t ) = Rm(t ). We assume that the
temporal part of the mth-order sideband is ei(ω0±mωph )t+φ0 and
of the probe laser pulse is eiω0t . In such a situation, the Raman
tensor is explicitly written as

Rm(t ) = ei(±mωpht+φ0 )

[
Es,mx E

∗
x Es,mx E

∗
y

Es,my E
∗
x Es,my E

∗
y

]
. (9)

When the probe laser is polarized along the X axis, the
invariance condition for the Raman tensor D̂1Rm(t ) = Rm(t )
reduces to

ei(±mωpht )

[
Es,mx

Es,my

]
= ei[±m(ωpht+π )]

[
Es,mx

−Es,my

]
. (10)

The selection rule for the mth-order sideband is as follows:
when m is odd (even), the polarization of the sideband will
be along the Y(X) direction. Our observations in Fig. 2(a) are
consistent with Eq. (10).

When the iLO phonon mode is excited and the probe pulse
is along the Γ − M direction, σ̂y · τ2 and Ĉ2Z are the DSs,
which leave the Raman tensor invariant. It is straightforward
to see that the selection rules for the mth-order sideband are
deduced as follows: when m is odd (even), the polarization
of the sidebands will be along the X(Y) direction. On the
other hand, when the iTO phonon mode is excited and the
probe pulse is along the Γ − K (Γ − M) direction, σ̂x (σ̂y) is
the DS, which yields the Raman tensor invariant [see
Fig. 4(b)]. This symmetry restricts the polarization of the side-
bands to be along the direction of the probe pulse. Our results
are consistent with the observation made in Fig. 2. With the
increased intensity of the probe, higher-order harmonics and
sidebands will appear.

To summarize, we have established that high-harmonic
spectroscopy is responsive to the coherent lattice dynamics
in solids. The high-harmonic spectrum is modulated by the
frequency of the excited phonon mode within the solid. Both
in-plane E2g Raman-active phonon modes of the monolayer
graphene lead to the generation of higher-order sidebands,
along with the main harmonic peaks. In the case of iLO
phonon mode excitation, the even- and odd-order sidebands
are polarized parallel and perpendicular to the polarization
of the probe harmonic pulse, respectively. In the case of
the iTO phonon mode, all sidebands are polarized along the
probe harmonic pulse’s polarization. The polarizations of
the sidebands are dictated by the dynamical symmetries of
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FIG. 4. Schematic representations of the dynamical symmetries of the Floquet Hamiltonian (a) D̂1 = σ̂x · τ̂2 and (b) D̂2 = σ̂x . The arrows
show the displacements of the atom for a particular phonon mode.

the combined system, which includes the phonon modes and
probe laser pulse. Therefore, the polarization properties are a
sensitive probe of these dynamical symmetries. The presence
of a high-harmonic signal perpendicular to the polarization
of the probe pulse is a signature of lattice excitation-driven
symmetry breaking of the reflection plane. The present work
is paving a way for probing phonon-driven processes in solids
and nonlinear phononics with subcycle temporal resolution.
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