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Non-Hermitian many-body localization with open boundaries
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The explorations of non-Hermiticity have been devoted to investigate the disorder-induced many-body local-
ization (MBL). However, the sensitivity of the spatial boundary conditions and the interplay of the non-Hermitian
skin effect with many-body phenomena are not yet clear. For a MBL system in the presence of nonreciprocal
tunnelings and random disorder potential, we identify two different complex-real spectral transitions, one is
present for both open and periodic boundaries while the other is present only for open boundaries of coupled
non-Hermitian chains. The later is driven due to the interchain coupling at weak disorder where the level statistics
of the real eigenenergy phase follows a Gaussian orthogonal ensemble. We further characterize wave functions
through the (biorthogonal) inverse participation ratio and fractal dimension, which reveal the suppression of
skin effect in the non-Hermitian MBL phase. Finally, we demonstrate that the quench dynamics of the local
particle density, spin imbalance, and entanglement entropy also signify the hallmark of the boundary effects and
nonergodic character of many-body localization.
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I. INTRODUCTION

When traditional quantum mechanics postulates Hermitic-
ity, numerous developments have been made for explor-
ing non-Hermitian quantum mechanics in various fields
of physics like condensed matter, cold atoms, and open
quantum systems [1–6]. The recent experimental advances
provide access to engineer the non-Hermitian Hamiltonians
with the dissipation and nonreciprocal tunnelings [7–11].
These developments allow us to explore fundamental physics
of localization. The interplay between disorder and non-
Hermiticity due to asymmetric hopping was first investigated
by the pioneering works of Hatano and Nelson, which reveal a
real-complex transition of a single-particle spectrum [12–14].
Moreover, it has been shown that the random potential can
suppress the complex eigenenergies of an interacting single
Hatano-Nelson chain with periodic boundary condition (PBC)
and the spectral transition is accompanied by non-Hermitian
MBL transition [15]. Similar phenomena have also been
found for quasiperiodic potential [16,17]. Since the disor-
dered single-chain model respecting time-reversal symmetry
belongs to the symmetry class AI, its localized phase follows
the real Poisson ensemble while the delocalized phase follows
the Ginibre ensemble [18–20].

The choice of the imposed boundary conditions plays a
decisive role in determining the properties of non-Hermitian
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systems. One fascinating phenomenon that has no Hermi-
tian counterparts is the non-Hermitian skin effect (NHSE).
It describes the anomalous localization for an extensive
number of bulk modes which can occur at the boundaries
of non-Hermitian open lattices [21–31]. This effect funda-
mentally challenges our knowledge of the band theory and
violates the conventional bulk boundary correspondence of
Hermitian systems which connects robust edge states to bulk
topological invariants. For non-Hermitian Hamiltonians, the
understanding of NHSE in noninteracting systems relies on
the non-Bloch theory in which non-Bloch topological invari-
ants are defined in generalized Brillouin zones [6,32]. The
NHSE has been realized in various experimental setups of
photonics [7,33], electrical circuits [8,9,34], metamaterials
[35,36], and ultracold atoms [10,11]. More recently, the fate of
skin modes in fermionic and bosonic systems with many-body
correlations has been investigated [37–47]. However, little
is known about the robustness of NHSE on the localization
properties of many-body disordered systems.

To date, the unusual characteristics of non-Hermitian sys-
tems have been explored from various perspectives. One of
them is the sensitivity of boundary conditions which leads
to the emergence of NHSE. Under PBC, for a single peri-
odic non-Hermitian chain with nonreciprocal tunnelings, the
many-body localization transition occurs with a complex-real
spectral transition [15,16]. However, this does not apply to
a single chain under open boundary condition (OBC) due to
the real spectrum in the presence of NHSE. Recently, many
theoretical studies have uncovered that the nontrivial behavior
arises due to the finite coupling between two one-band sub-
systems with different generalized Brillouin zones [48–52]. It

2469-9950/2022/106(6)/064208(11) 064208-1 ©2022 American Physical Society

https://orcid.org/0000-0002-0156-5033
https://orcid.org/0000-0002-4412-5556
https://orcid.org/0000-0002-1152-8164
https://orcid.org/0000-0002-5089-4634
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.064208&domain=pdf&date_stamp=2022-08-31
https://doi.org/10.1103/PhysRevB.106.064208


SUTHAR, WANG, HUANG, JEN, AND YOU PHYSICAL REVIEW B 106, 064208 (2022)

is legitimate to ask whether the boundary-induced phenomena
exist when two subsystems are coupled together with unequal
(or equal) nonreciprocal hopping parameters. The interplay
of the nonreciprocal hoppings and coupling strength of two
chains for a many-body disordered system is yet to be ex-
plored.

In this work we study the spectral statistics, eigenstate
properties, and nonequilibrium dynamics of many-body cou-
pled Hatano-Nelson chains in the presence of a random
disorder potential. In particular, we investigate the role of the
imposed boundary conditions on the characteristic properties
of a non-Hermitian two-chain system. We identify a parameter
space of interchain coupling and nonreciprocal tunneling pa-
rameters, where a complex-real spectral transition is observed
for finite open chains, while the spectrum for PBC main-
tains complex. The spectral transition is accompanied by the
change in nearest-level-spacing distribution of eigenenergies
and an average complex spacing ratio. At weak disorder, the
level statistics changes from Ginibre to Gaussian orthogonal
ensemble (GOE), corresponding to the spectral transition as
the interchain coupling increases. The system enters into the
many-body localized phase with increases in disorder strength
and this phase possesses a real eigenspectrum. Our work
reports a spectral transition which is unique to the coupled
fermionic chains and enhances the prospects of observing
more spectral transitions as compared to its single-chain coun-
terpart. We further confirm the MBL by eigenstate properties
such as inverse participation ratio and fractal dimension, and
show the suppression of NHSE in the localized phase. Finally,
the boundary effects and signature of MBL are corroborated
in the time evolution of imbalance and entanglement entropy.

This work is organized as follows. Section II introduces
the interacting two-chain Hatano-Nelson model. In Sec. III
we discuss the spectral transition in eigenspectrum, the level
statistics, the inverse participation ratio, the quench dynamics
of spin imbalance and entanglement entropy, and experi-
mental realization of the model Hamiltonian. Finally, we
summarize our results in Sec. IV.

II. THE MODEL

We consider two coupled non-Hermitian Hatano-Nelson
chains of interacting fermions in the presence of a random
potential. In the two-chain geometry, the two chains can be
interpreted as two components of spin-1/2 fermions [see
Fig. 1(a)]. The model Hamiltonian reads as

Ĥ = −
∑
j,σ

J (e−gσ ĉ†
j,σ ĉ j+1,σ + egσ ĉ†

j+1,σ ĉ j,σ )

−
∑

j

(K ĉ†
j,↑ĉ j,↓ + H.c.)

+U
∑

j

n̂ j,↑n̂ j,↓ +
∑
j,σ

ε jσ n̂ j,σ , (1)

where j and σ = {↑,↓} represent the spatial and spin (chain)
indices, J is the hopping strength between neighboring lattice
sites on the same chain, gσ is the non-Hermiticity parameter
of σ spin, ĉ†

j,σ (ĉ j,σ ) creates (annihilates) fermion with spin

FIG. 1. (a) The schematic representation of a two-chain Hatano-
Nelson model. (b) and (c) The complex energy fraction fim in
K-g↑/g↓ plane. Disorder-averaged eigenspectrum distributions of a
finite lattice with L = 7 sites under open boundary conditions are
shown for two representative cases. (b) W = 2 corresponds to the
ergodic regime while (c) W = 30 represents the MBL regime. The
yellow and blue colors represent the parameter space of the model
with complex ( fim = 1) and real ( fim = 0) eigenenergies, respec-
tively. The red circles in (b) represent the critical interchain coupling
strength (Kc) of complex-real spectral transition for different g↑/g↓.
The interplay of K and gσ ’s results into (b) complex-real transitions
at weak disorder and (c) at strong disorder the spectrum remains
real. Here we fix U = 1 and set J = 1 as the unit of the energy. The
spectrum is averaged over 200 disorder samples.

σ at jth site, n̂ j,σ = ĉ†
j,σ ĉ j,σ is the occupation number oper-

ator, K is the interchain coupling strength, U is the on-site
interaction strength, and ε jσ is the random disorder potential
chosen between [−W,W ] with W being the disorder strength.
Here we primarily consider the uncorrelated (spin-dependent)
disorder, which breaks SU(2) spin symmetry of the model and
is known to induce full localization in the Hermitian system
[53–56]. However, we also discuss the contrast behavior due
to spin-independent disorder potential (ε j↑ = ε j↓) for some
specific cases. In the present work we set the hopping am-
plitude J as the unit of energy scale, J = 1. We consider
a system of fermions at half-filling, i.e., the total number
of fermions N = N↑ + N↓ = L with L being the number of
lattice sites along the ladder. It is also worth noting, according
to the symmetry class of a non-Hermitian system [57–59], the
model considered here belongs to the symmetry class AI that
preserves the time-reversal symmetry (H = H∗) and breaks
the transposition symmetry (H �= HT ).

In non-Hermitian systems with nonreciprocal hoppings,
the spectra are extremely sensitive to the boundary conditions.
For the two-chain model with dissimilar non-Hermiticity pa-
rameters g↑ �= g↓, the interchain coupling K can further yield
nontrivial interference between chains. When K = 0, the open
boundary condition allows us to remove gσ by an imagi-
nary gauge transformation (IGT) [60], c j,σ → egσ jc j,σ and
c†

j,σ → e−gσ jc†
j,σ . As a result, Eq. (1) becomes a Hermitian
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disordered Hubbard model and all the many-body eigenen-
ergies are real under OBC. For any K �= 0, if g↑ �= g↓, gσ

cannot be removed by such a transformation, and imaginary
parts of eigenenergies could appear in the spectrum. While the
complex (real) spectrum of the single Hatano-Nelson chain is
unique to the PBC (OBC), much richer eigenspectrum and
many-body dynamics arise from the two-chain model under
OBC.

III. RESULTS AND DISCUSSIONS

A. Real-complex transition of eigenspectrum

We first discuss the characteristic properties of the change
in the eigenspectrum as a function of the interchain cou-
pling K and non-Hermiticity parameters gσ . To manifest the
complex spectrum, we define the fraction of the complex
energies fim = Dim/D, where Dim is the number of complex
eigenenergies with nonzero imaginary part, D is the total
number of eigenenergies, and the overline denotes the dis-
order average. The eigenenergies are defined as complex if
|Im{E}| � C with a cut-off C = 10−13, which is identified
based on the machine error. Since the model Hamiltonian pre-
serves the time-reversal symmetry, we find that the imaginary
parts of the energies appear symmetric to the real axis (see
Appendix A for details).

Under OBC we first show the disorder-averaged fraction
of the complex energies for weak disorder strengths (W = 2)
in Fig. 1(b). The phase diagram can be divided into various
regimes (i) K = 0 → K �= 0, (ii) g↑ �= g↓ → g↑ = g↓, and
(iii) K � 1. (i) When tuning the interchain coupling from
decoupled (K = 0) to the coupled (K �= 0) limit, we numer-
ically verify that the phase diagram, except for g↑/g↓ = 1,
exhibits a real-complex spectral transition of the many-body
eigenenergies [52]. In the limit of weak interchain coupling
(K ≈ 10−5), the energy spectrum of the system resembles
that of two individual uncoupled chains. It is important to
note that a single Hatano-Nelson chain under OBC possesses
real spectrum, this is because the nonreciprocal hopping can
be gauged out using IGT and a non-Hermitian Hamiltonian
with real energies can be mapped to a Hermitian Hamilto-
nian. To elucidate the effect of nonzero K on the eigenenergy
distribution, we first consider the g↑ = g↓ case where the
forward and backward hoppings are identical for both chains.
In this scenario, the anomalous localization due to NHSE still
survives and the validity of IGT makes the energy spectrum
real. On the other hand, the g↑ �= g↓ case leads to dissimilar
inverse skin lengths (of NHSE) for each of the chains. The
effects of gσ ’s cannot be removed through IGT for unequal
non-Hermiticity parameters. The collective effects of the two
different skin modes result into a complex eigenenergy phase
[52]. Hence, as the interchain coupling is varied from a decou-
pled (K = 0) to the coupled (K �= 0) limit, we numerically
find that the phase diagram, except for g↑/g↓ = 1, exhibits
a real-complex spectral transition of the many-body eigenen-
ergies. (ii) We further discuss the effects of g↑/g↓ on the
eigenspectrum. A smooth complex-real spectral transition is
observed as the ratio g↑/g↓ approaches unity. Note that the
OBC eigenenergies are real at g↑/g↓ = 1 because IGT is valid
for this case. As the g↑/g↓ ratio increases, the critical inter-

chain coupling strength (Kc) of the complex-real transition
decreases, as evident in Fig. 1(b). For a hybridized coupled
chains with g↑ = 0 and g↓ �= 0 or vice versa, Kc reaches the
maximum and for g↑ = g↓, Kc = 0 as for the later case the
system can be mapped to a Hermitian one. (iii) At sufficiently
higher K , the effect of the non-Hermiticity is suppressed and
the system possesses real spectra irrespective of any g↑/g↓.
The quantitative variation of fim for different system sizes is
discussed in Appendix A, which confirms the robustness of
the phase diagram with L.

At strong disorder strengths, the system is expected to be
in the many-body localized phase. As shown in Fig. 1(c),
the OBC eigenenergies remain real in the entire K-g↑/g↓
plane since the strong disorder potential destroys the non-
Hermiticity. Hence, we find a disorder-induced complex-real
transition. It is important to note that for the coupled-chain
system this transition exists not only for OBC but also for
PBC, in stark contrast to the occurrence of the interchain
coupling driven transition which is sensitive to the boundary
conditions. We have provided the details of the eigenspectrum
with PBC in Appendix A.

B. Spectral statistics

We now investigate the level statistics to unveil the
universal features of the eigenenergies. For non-Hermitian
disordered systems with time-reversal symmetry, the localized
phase follows the real Poisson ensemble while the delo-
calized phase follows the Ginibre ensemble [18–20]. The
nearest-level-spacings for an eigenenergy Ei are defined as
|Ei − ENN

i |, where ENN
i is an eigenvalue nearest to Ei in the

complex energy plane. We first perform an unfolding of the
spectrum to obtain the histogram of the Euclidean distance
between nearest-neighbor eigenvalues [20,57]. Here the un-
folding procedure is applied to both complex and real spectra
of the model. To get the unfolding spectrum, we first compute
the nearest-neighbour distance of the eigenvalues

d1,i ≡ min j |Ei − Ej |. (2)

Next, the local mean density of the eigenvalues is computed
as

ρ̄i = n

πd2
n,i

, (3)

where n is sufficiently larger than unity (≈30), but very small
compared to the Hamiltonian matrix size. Here dn,i is the
nth nearest-neighbor distance from Ei. The rescaled nearest-
neighbor distance si is obtained as

si = d1,i
√

ρ̄ i, (4)

which removes the dependence of the local density of
eigenvalues on the level-spacing. Finally, the statistics of
nearest-neighbor spacings are computed from si.

At weak disorder, the complex energy spectrum with
smaller K and g↑ �= g↓ obeys the Ginibre distribution
PC

Gin(s) = cp(cs) which describes the ensemble of non-
Hermitian Gaussian random matrices [20,57,61]. Here

p(s) = lim
N→∞

[
N−1∏
n=1

en(s2)e−s2

]
N−1∑
n=1

2s2n+1

n!en(s2)
, (5)
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FIG. 2. (a)–(c) The unfolded nearest-level-spacing distributions
with K at W = 2 and g↑/g↓ = 0.5. At smaller K , the distribution fol-
lows Ginibre distribution and at larger K , it follows GOE distribution.
(d)–(f) The level-spacing distributions as a function of the disorder
strengths for K = 1 and g↑/g↓ = 0.5. The disorder-driven complex-
real transition corresponds to the Ginibre-to-Poisson level-spacing
transition. The red, blue, and green lines represent the Ginibre, GOE,
and (real) Poisson distributions, respectively. Here the system size
L = 8, on-site interaction U = 1, and disorder average is performed
for 100 realizations.

with en(x) = ∑n
m=0

xm

m! and c = ∫ ∞
0 ds s p(s) = 1.1429

[20,62]. We further find that for the strong interchain coupling
K or equal gσ ’s of two chains, the real eigenspectrum of a
weak disorder case follows the level statistics of GOE. The
level-spacing distribution of GOE is

PR
GOE(s) = πs

2
exp(−π s2/4). (6)

The nearest-neighbor level-spacing distributions as a func-
tion of K at W = 2 are plotted in Figs. 2(a)–2(c). It shows
that for smaller K , the distribution is a Ginibre distribu-
tion while at larger K , the system follows GOE distribution.
Hence, the general features of the non-Hermitian Hamiltonian
with purely real eigenvalues can be mapped to a Hermitian
Hamiltonian. On the other hand, at strong disorder case,
the localized phase with real eigenspectrum is character-
ized by the Poisson level distribution PR

Po(s) = exp(−s). The
level-spacing distribution as a function of W is illustrated in
Figs. 2(d)–2(f), which suggests the MBL phase transition of
two-chain Hatano-Nelson model.

We further study the complex level-spacing ratio [61]. The
level-spacing ratio is a dimensionless complex variable zi ≡
[(Ei − ENN

i )/(Ei − ENNN
i )] ≡ rieiθi with the amplitude ri ≡

|zi|, which also allows us to extract the angular information.
Here ENNN

i is a next-nearest-neighbor eigenvalue to Ei. The
mean level-spacing ratio 〈r〉 is obtained by the average of ri

over the energy window and number of disorder realizations.
This definition is the generalization of the well-known gap
ratio defined for Hermitian isolated quantum systems [63,64].
Here we consider the energy window to be 10% eigenvalues
around the center of the eigenspectrum in the complex energy
plane. This allows us to obtain a large number of eigenvalues
for the level statistics and ascertain that their eigenstates share

FIG. 3. The average level-spacing ratio 〈r〉 for the coupled
Hatano-Nelson model exhibiting AI symmetry class. (a) Evolution
of 〈r〉 as a function of K for different non-Hermiticity parameters
at W = 2. As g↑/g↓ ratio increases, the Kc (demarcating the two
level statistics) pushed towards lower K and at g↑/g↓ = 1 the system
exhibits Wigner-Dyson statistics. (b) Evolution of 〈r〉 as a function of
W for three system sizes at K = 1 and g↑/g↓ = 0.2. At lower W , the
ergodic phase of the system (with complex eigenenergies) follows
Ginibre ensemble statistics and at strong W , the MBL follows real
Poisson statistics. The average value of − cos(θ ) as a function of
(c) the interchain couplings at W = 2 and (d) disorder strengths for
K = 1 and g↑/g↓ = 0.2. The system size is L = 8, on-site interaction
U = 1, and disorder average is performed for 100 realizations.

similar localization properties. The number of disorder real-
izations is chosen such that the total number of eigenvalues is
∼106.

We first consider the evolution of 〈r〉 as a function of K
for weak disorder (W = 2) [Fig. 3(a)]. For smaller K and
g↑ �= g↓, the 〈r〉 attains a constant value ≈0.74, which cor-
responds to the Ginibre ensemble [61]. When K increases to
the strong coupling limit (K � 1), Fig. 3(a) shows a transition
to 〈r〉 ≈ 0.56 for the GOE distribution [65]. This transition is
consistent with the corresponding complex-real transition of
the eigenspectrum shown in Fig. 1(b). In Fig. 3(a) it is evident
that the Kc, which demarcates Ginibre and GOE statistics,
lowers as the ratio g↑/g↓ approaches unity. For g↑/g↓ = 1, the
〈r〉 remains nearly GOE, because the non-Hermiticity can be
removed by the imaginary gauge transformation under OBC.
It is interesting to note that for g↑/g↓ = 1, the correlated
(spin-independent) disorder potential leads to a Poisson level
distribution due to inherent SU(2) spin symmetry. Therefore,
to have GOE statistics, we need an uncorrelated disorder
potential which breaks the spin symmetry (see Appendix B
for details).

Figure 3(b) shows 〈r〉 as a function of the disorder strength
W for weak interchain coupling (K = 1). We demonstrate that
the disorder-induced complex-real transition is accompanied
by a change in 〈r〉 from Ginibre to real Poisson statis-
tics. It is important to stress that the present non-Hermitian
model has 〈r〉 ≈ 0.5 for the real Poisson statistics, which
is different from the conventional 〈r〉 ≈ 0.38 of Hermitian
many-body systems [63,64], even with both being charac-
terized for real spectra. This fact is consistent with a recent
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study which characterizes the spacing ratio for the spectra
of non-Hermitian random matrices [65]. Furthermore, the
critical disorder strength of the transition Wc ≈ 9 can be ob-
tained by inspecting the crossing of 〈r〉 curves for the two
largest systems. Combining Figs. 3(a) and 3(b), we note
that for strong interchain coupling or g↑/g↓ = 1, the disor-
der leads to a transition from GOE to Poisson distribution.
Thus, at strong W , the effects of the disorder potential prevail
and 〈r〉 value reaches a stationary value of the real Poisson
statistics.

Likewise, the single-number signature of 〈− cos(θ )〉 dis-
tinguishes the ergodic and localized phases [61]. In Figs. 3(c)
and 3(d) we show the evolution of the disorder-averaged
〈− cos(θ )〉 with K and W , respectively. We first consider
〈− cos(θ )〉 as a function of K for weak disorder [Fig. 3(c)].
At small K , we numerically find 〈− cos(θ )〉 ≈ 0.22 that
corresponds to the Ginibre level distribution. This value is
consistent with the analysis for the single Hatano-Nelson
chain [61]. As K increases, we find a dip in 〈− cos(θ )〉
which demarcates the complex- and real-energy phases.
Moreover, for larger g↑/g↓ (with g↑ �= g↓) the dip occurs
at smaller K . On the other hand, for g↑/g↓ = 1 the dis-
tribution of 〈− cos(θ )〉 does not change sign. The main
features of 〈− cos(θ )〉 are in consonance with the eigen-
spectrum transition and evolution of 〈r〉. In Fig. 3(d) we
further show the variation of 〈− cos(θ )〉 as a function of
W for K = 1 and g↑/g↓ = 0.2. As W increases, the value
of 〈− cos(θ )〉 decreases, becomes negative, and eventually
reaches 〈− cos(θ )〉 = 0 for the Poisson statistics at strong
disorder. This again confirms the disorder-induced spectral
and localization transition.

C. Inverse participation ratio

To further understand the interplay between localization
and NHSE in real space, we characterize the wave functions
by employing the inverse participation ratio (IPR) and fractal
dimension (FD). For non-Hermitian systems, the IPR can be
defined in two ways: one using nth left or right eigenstates and
other is defined under a biorthogonal basis from both left and
right eigenstates. These are defined as

In,s =
∑

i,σ

∣∣ψn
i,σ

∣∣2

(∑
i,σ

∣∣ψn
i,σ

∣∣)2 , InB,s =
∑

i,σ

∣∣ψ̃n
i,σ

∣∣2

( ∑
i,σ

∣∣ψ̃n
i,σ

∣∣)2 , (7)

where s is the disorder realization, the subscript nB represents
the biorthogonal IPR, ψn

i,σ ≡ (〈n|bi,σ 〉∗)〈n|bi,σ 〉 and ψ̃n
i,σ ≡

(〈ñ|bi,σ 〉∗)〈n|bi,σ 〉 with n and ñ the right and corresponding
left eigenstates, and |bi,σ 〉 are Fock space chosen as a com-
putational basis. The IPRs are furthermore first averaged over
numerous disorder realizations and then over the spectrum to
get the mean IPRs, Iavg = ∑

n In/D and IB
avg = ∑

n InB/D with
D being the dimension of the Hilbert space and the overline
denotes the disorder average. The disorder-averaged IPRs of
eigenstate n are shown in Appendix C. For delocalized states,
the IPR approaches zero in the thermodynamic limit while
for localized states it saturates to a finite value (≈1). The
fractal dimension of an eigenstate is another measure which
is recently devised to examine the localization properties
of many-body systems [66,67]. The mean FD can be di-

FIG. 4. Disorder-averaged IPR and FD of the right eigenstates
(squares, triangles) and biorthogonal eigenstates (circles, diamonds)
for the system size L = 8 and g↑/g↓ = 0.5 at (a) W = 2 and (b) K =
1. Here the disorder average is performed for 100 samples.

rectly constructed from the mean IPRs as η = − ln(Iavg)/ ln D
and biorthogonal FD ηB = − ln(IB

avg)/ ln D. The extended and
localized phases are recognized by η → 1 and η → 0, respec-
tively.

In Fig. 4(a) we show the mean IPR and FD (defined in
both ways) for open chains as a function of K for W = 2.
It is interesting to note that the value of Iavg is nonzero even
at weak disorder, whereas IB

avg is zero. This suggests that the
finite Iavg is due to the NHSE which plays a significant role at
weak disorder, where the biorthogonal density distributions do
not suffer from the NHSE. This fact can be understood from
the similarity transformation |n′〉 = S−1 |n〉 and 〈n′| = 〈ñ| S,
with |n′〉 being the eigenstate of the corresponding Hermitian
system. Hence, the biorthogonal density distributions are de-
void of the NHSE. It is important to note that the choice of
eigenstates for IPR is only important for open chains as under
PBC the NHSE is absent. Furthermore, the corresponding
contrast behavior in η and ηB is also noted, cf. Fig. 4(a). The
evolution of IB

avg and ηB with K confirms the delocalization at
W = 2. While the system possesses a complex-real spectral
transition with increase in K , as shown in Fig. 1(b), this
transition does not overlap with the localization transition.

We further present the evolution of mean IPR and FD with
W in Fig. 4(b). At lower W , the IB

avg is small but Iavg acquires
a finite value due to the interference of the NHSE. The ηB

approaches unity at lower W representing the delocalization.
The value of mean IPR (FD) increases (decreases) with W ,
confirms the disorder-driven localization in the non-Hermitian
two-chain model. The observed behaviors of IPR and FD
show that the disorder-driven localization transition overlaps
to the complex-real spectral transition. In addition, we note
that in contrast to the weak-disorder regime where a signifi-
cant difference between η and ηB exists, at strong disorder the
values predicted by η and ηB coincide. This indicates the sup-
pression of NHSE in the presence of strong disorder strength.
The finite-size effects of IPR are discussed in Appendix C.

D. Dynamical properties

Here we study the nonequilibrium time dynamics of the
non-Hermitian system from the perspective of quantum trajec-
tories with no-jump condition for the continuously measured
system [15,68]. By choosing an arbitrary initial state |ψ0〉 at
t = 0, the time dynamics is encoded in the wave function

|ψt 〉 = e−iHt/h̄ |ψ0〉√
〈ψ0| eiH†t/h̄e−iHt/h̄ |ψ0〉

, (8)
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(a)

(b) (c)

FIG. 5. (a) Schematic of the initial state ĉ†
1,↑ĉ†

2,↓ĉ†
3,↑ĉ†

4,↓ · · · |vac〉.
The red (blue) dots are initially occupied (unoccupied) sites, and the
dark to light gradients denote the spatial position from left to right.
(b) and (c) The time evolution of the local particle density at each site
for weak (K = 0.5, upper panel) and strong (K = 6, lower panel)
interchain couplings. The dynamics at weak (W = 2) and strong
(W = 20) disorder strengths are shown in (b) and (c), respectively.
The plots are obtained by averaging over 500 disorder realizations,
and the other parameters are U = 1 and g↑/g↓ = 0.5.

which is governed solely by the non-Hermitian effective
Hamiltonian H. With this time-dependent wave function, all
the dynamical properties can be explored.

We first discuss the dynamics of the local particle density
n j,σ (t ) and spin imbalance Is(t ) for different interchain cou-
plings K and disorder strengths W . Here the spin imbalance is
defined as

Is(t ) = 1

L

L∑
j=1

(−1) j−1[n j,↑(t ) − n j,↓(t )], (9)

whose long-time stationary value effectively serves as an
order parameter of many-body localized phase. We choose
the Néel ordered state |↑↓↑↓ · · ·〉 as an initial state, whose
schematic representation is shown in Fig. 5(a). This state has
Is(0) = 1 at initial time (t = 0).

At weak disorder (W = 2), the time evolution of the local
particle density for both small and strong interchain couplings
are shown in Fig. 5(b). We observe that the saturation values
of the local particle densities for |↑〉 and |↓〉 coincide at the
same spatial indices. Thus, the corresponding Is(t ) in Fig. 6(a)
relaxes to zero as time evolves, losing memory of initial or-
dering, suggests delocalization of the system. On the other
hand, Fig. 5(c) for strong disorder (W = 20) shows that the
stationary values of the particles densities for |↑〉 and |↓〉 do
not coincide at the same spatial indices, which leads to a non-
vanishing steady value of Is(t ) at long times in Fig. 6(a). This
initial-state memory retention indicates the disorder-driven
MBL. In addition, we find that at strong disorder, larger K

FIG. 6. The time dynamics of (a) spin imbalance and (b) bipartite
entanglement entropy for W = 2 (dashed line) and W = 20 (solid
line) at K = 0.5 (red) and K = 6 (blue). At W = 20, a nonvanishing
stationary value of Is(t ) and the logarithmic growth of SE (t ) char-
acterize the MBL. At weak disorder, the long-time dynamics of the
entanglement entropy exhibits the decrease in the complex-energy
phase (K = 0.5) while it remains steady in the real-energy phase
(K = 6). The disorder average is performed over 500 realizations.
Here the on-site interaction strength U = 1 and g↑/g↓ = 0.5.

suppresses the steady value of Is(t ). This is because the K term
couples different spin sectors and scrambles the initial spin
ordering. Therefore, as the interchain coupling K increases,
the disorder-driven localization transition occurs at higher W .

It is interesting to note that although the system is extended
in character at weak disorder, the larger local particle den-
sity appears at the site closer to the right end of the chain
[Fig. 5(b)]. This anomalous localization stems from the nonre-
ciprocal tunnelings. However, we stress that this localization
is suppressed by strong disorder in the MBL phase [Fig. 5(c)].
It is worth mentioning that the suppression of the NHSE-
induced localization at strong disorder is also observed in the
eigenstate properties, as discussed in Sec. III C.

We further investigate the dynamics of a half-chain von
Neumann entanglement entropy which is defined as

SE (t ) = −Tr[ρA(t ) ln ρA(t )], (10)

where the two subsystems are denoted as A and B with
ρA(t ) = TrB[|ψt 〉 〈ψt |] being the reduced density matrix of
subsystem A. Here TrB is the trace over degrees of freedom
of subsystem B. The time evolution of SE (t ) for various lim-
its of K and W is shown in Fig. 6(b). For strong disorder
strength we find the long-time evolution of SE (t ) exhibits
a logarithmic growth, which is reminiscent of nonergodicity
in the Hermitian many-body localization [69,70]. For weak
disorder, however, SE (t ) can decrease after t ≈ 5 in the com-
plex eigenenergy phase (K = 0.5), but remain steady in the
real eigenenergy one (K = 6). This long-time behavior of
SE (t ) signifies the real-complex transition unique to open
non-Hermitian chains.

E. Experimental realization

The spectral and localization transitions reported in the
present work can be qualitatively realized in a two-chain
fermionic lattice with asymmetric hoppings. Recently it has
been proposed that such nonreciprocal hopping can be ef-
fectively implemented by reservoir engineering [71–73]. It
is worth mentioning that the implementation of a single
Hatano-Nelson chain in cold-atom experiments has already
been proposed [4]. Using a similar strategy in the imple-
mentation of two-component fermionic systems (such as a
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non-Hermitian Su-Schrieffer-Heeger model or two-chain sys-
tem considered here) and allowing a Rabi-coupling K is
feasible for cold atoms trapped in optical lattices [74–79].
The model Hamiltonian of the present work can be mapped
to an effective non-Hermitian dissipative model. In particular,
the Hamiltonian Eq. (1) can be rewritten into Hermitian Ĥ1 =
(Ĥ + Ĥ†)/2 and anti-Hermitian Ĥ2 = (Ĥ − Ĥ†)/2 parts

Ĥ1 = −J (egσ + e−gσ )

2

∑
j,σ

(ĉ†
j+1,σ ĉ j,σ + ĉ†

j,σ ĉ j+1,σ )

−
∑

j

K (ĉ†
j,↑ĉ j,↓ + ĉ†

j,↓ĉ j,↑)

+U
∑

j

n̂ j,↑n̂ j,↓ +
∑
j,σ

ε jσ n̂ j,σ , (11a)

Ĥ2 = −J (egσ − e−gσ )

2

∑
j,σ

(ĉ†
j+1,σ ĉ j,σ − ĉ†

j,σ ĉ j+1,σ ). (11b)

The Hermitian part of the Hamiltonian Ĥ1 in Eq. (11)
with a random disorder potential can be constructed by su-
perimposing an optical speckle field onto an optical lattice
[80,81]. The disorder strength is proportional to the speckle
field strength and therefore can be tuned. Moreover, with
current advancement of ultracold atom experiments, it is pos-
sible to generate a spin-dependent disorder potential by using
laser beams of different polarizations. The on-site interac-
tion strength is tunable by adjusting the s-wave scattering
length between two fermionic components using a Feshbach
resonance [82]. Note that the implementation of a two-leg
ladder system in a clean system is already performed in recent
experiments [83–87], where the interchain tunneling of atoms
can be controlled by the Raman transitions between the states.

The anti-Hermitian part Ĥ2 can be implemented by con-
sidering the jump operator that includes a collective one-body
loss [4]

L̂ j,σ =
√

J |egσ − e−gσ |[ĉ j,σ + i sgn(gσ )ĉ j+1,σ ], (12)

where sgn(gσ ) indicates the sign of gσ and controls the di-
rection of nonreciprocal tunnelings. Under no-jump condition
or post-selection [15,68], the dynamics of the density matrix
is solely governed by the following effective non-Hermitian
Hamiltonian:

Ĥeff = Ĥ1 − i

2

∑
σ

L∑
j=0

L̂†
j,σ L̂ j,σ

= Ĥ1 + Ĥ2 − i
∑

σ

L∑
j=1

J | sinh gσ |ĉ†
j,σ ĉ j,σ , (13)

where the last term represents the on-site atom decay and
we have considered the open boundary conditions at j =
0 with L̂0,σ = √

J|egσ − e−gσ |isgn(gσ )ĉ1,σ and j = L with
L̂L,σ = √

J |egσ − e−gσ |ĉL,σ . It is evident that two chains have
different decay terms at g↑ �= g↓. To compensate for this
discrepancy, two chains should couple to different reservoirs
to have the same on-site decay rate. In this case, the final
effective non-Hermitian Hamiltonian differs from our model
Hamiltonian in Eq. (1) by an overall decay term. Nevertheless,
it would not affect the dynamics of the system as long as the

no-jump condition holds, or the post-selection is considered,
where the wave function is given by Eq. (8). In experiments
such novel nonlocal loss can be engineered by nonlocal Rabi
coupling as recently proposed in Ref. [4]. A nonreciprocal
hopping effectively creates imaginary gauge fields and in-
duces a non-Hermitian Aharonov-Bohm effect. More recently,
the unique signatures of NHSE in many-body systems are
observed [11], the implementation of a random disorder po-
tential in such experimental settings could be a possible step
towards realization of the model of the present study. We
believe our results are within reach of current experimental
progress and techniques.

IV. CONCLUSIONS

We discussed the eigenspectrum, level statistics, and lo-
calization properties of two coupled non-Hermitian chains.
We unveiled the occurrence of two complex-real spectral
transitions. One transition is induced by the interplay of
nonreciprocal hoppings and interchain coupling which is ab-
sent under periodic boundary conditions, while the other
one is driven by a random disorder potential and present
under both open and periodic boundaries. Furthermore, we
have studied both spectral transitions using level statistics,
inverse participation ratio, and fractal dimension. We have
shown the suppression of the non-Hermitian skin effect in
the many-body localized phase. Finally, the time evolution
of the local particle density, spin imbalance, and entangle-
ment entropy corroborates the pivotal role of boundaries
and characterizes the many-body localization. We believe
the characteristics and results of our coupled-chain model
are timely and pertinent, and can be readily implemented in
various non-Hermitian systems. Our findings pave a way to
further investigate the interplay of the boundary conditions,
the disorder-driven localization, and the many-body dynamics
in other non-Hermitian systems.
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APPENDIX A: FINITE-SIZE EFFECTS OF
COMPLEX-ENERGY FRACTION AND ROLE

OF BOUNDARY CONDITIONS

The eigenenergies of the model Hamiltonian [Eq. (1)] for
L = 8 under OBC are shown in Figs. 7(a)–7(f). Since the
system respects time-reversal symmetry and belongs to the
symmetry class AI, the complex spectrum is symmetric with
respect to the real axis. With the increase in K [Figs. 7(a)–
7(c)] and W [Figs. 7(d)–7(f)], the imaginary parts of the
energies are suppressed. The complex-real transition exists
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FIG. 7. Eigenenergies of the non-Hermitian coupled Hatano-
Nelson open chains for L = 8 as a function of (a)–(c) the interchain
coupling K at W = 2 and (d)–(f) the disorder strength W at K = 1.
These are shown corresponding to Figs. 2(a)–2(f) of the main text.
The decrease in the fraction of complex energies with K and W are
evident. (g) and (h) The disorder-averaged complex energy fraction
fim as a function of (g) K and (h) W for different system sizes and
g↑/g↓ = 0.2.

for g↑ �= g↓ in a coupled non-Hermitian chains. For g↑ = g↓,
however, the spectrum remains real, because the imaginary
gauge transformation is valid for this special case.

We present the finite-size effects on the complex energy
fraction fim. Our analysis is restricted to the system size
amenable to the exact diagonalization. We estimate the finite-
size effects by comparison of fim for smaller system sizes.
We first discuss the interchain coupling driven spectral tran-
sition under OBC at weak disorder. The evolution of fim

with K at g↑/g↓ = 0.2 and W = 2 for different system sizes
are shown in Fig. 7(g). While the eigenenergies of a single
Hatano-Nelson open chain are real, an infinitesimal coupling
K between the chains with g↑ �= g↓ leads to complex energies.
In this analysis we have varied the value of K from a small
(K = 0.3) to a strong (K = 8) coupling limit. As seen from
Fig. 7(g), the fim shifts to a larger value as L increases, and
at L = 8 the fraction of the complex energies fim ≈ 1. This
suggests the stability of the complex energy phase in the
thermodynamic limit for small K . On the other hand, at strong
interchain coupling, the fim converges to zero as L increases.
This shows the robustness of the spectral transitions shown in
Fig. 1(b) of the main text. We believe the qualitative features
of the spectral transitions holds in the thermodynamic limit,
however the critical interchain coupling strength Kc might
vary for larger system sizes.

We further discuss the finite-size effects on the spectral
transition due to the disorder potential. The fim for different
system sizes as a function of W is shown in Fig. 7(h). Here we
consider K = 1 and g↑/g↓ = 0.2. For the considered parame-
ters, at weak disorder strengths, the system possesses complex
energies and remains in the delocalized phase. As disorder

strength increases, we find a complex-real spectral transition
beyond a critical value of W . It is important to note that a
similar transition also appears in a single Hatano-Nelson chain
under PBC [15]. Note that a single-chain under OBC does not
possess such transition because of the real spectrum at weak
disorder due to NHSE. Here, in the considered two-chain
model, the transition occurs under OBC due to the interplay of
K and gσ ’s. At weak W , the fim converges to unity as system
size increases and with increases in W the fim approaches
zero signifying the complex-real transition. This confirms that
the real spectrum at strong W shown in Fig. 1(c) is robust to
change in L. Since the system sizes considered in the present
work are small and the extrapolation to an infinite system
size is difficult, hence we refrain from extracting the critical
disorder strength Wc using a finite-size scaling approach. It is
noteworthy that a similar argument also holds for a Hermitian
MBL system where an asymmetric scaling is predicted to
govern the localization transition [66,88–91]. Considering the
subtleties of finite-size scaling near MBL transition, here we
tentatively identify the Wc of the localization transition by the
crossing of fim curves for the largest system sizes available.
This lead to Wc ≈ 9 (see the crossing of curves for L = 7 and
L = 8) at K = 1 and g↑/g↓ = 0.2, which is consistent with
the similar analysis done using a complex level-spacing ratio
in the main text [Fig. 3(b)].

We now discuss the role of boundary conditions in terms
of the model parameters K and W . The disorder-averaged fim

for L = 6 is shown in Fig. 8. For larger system sizes, the
qualitative behavior of the energies does not change, however
the critical value of the transitions might vary.

Under OBC, as discussed previously (and in the main text),
the complex-real spectral transition induced by interchain
coupling or by disorder is evident in Figs. 8(a)–8(c). For
open coupled chains with unequal non-Hermiticity parame-
ters or for hybridized chains (g↑ = 0, g↓ �= 0 and vice-versa)
the system possesses complex energies. While the system
remains delocalized at W = 2, it exhibits the complex-real
transition due to the interplay of non-Hermiticity and inter-
chain coupling. Hence, we predict an eigenspectral transition,
which does not coincide with the localization transition. As
the g↑/g↓ approaches unity, the fraction of complex energies
decreases and at g↑ = g↓ the system exhibits real spectrum
and is devoid of dynamical instability. For periodic chains, the
eigenspectrum remains complex as a function of K at weak
disorder, as illustrated in Figs. 8(d)–8(f). The complex nature
of the energies with PBC is related to the plane-wave character
of the eigenwave function and the prevailing role of nonrecip-
rocal tunnelings. At strong disorder, the wave functions are
localized (as ascertain by the eigenstate properties in the main
text), and delocalization-localization transition coincides with
the complex-real transition. In short, the K-driven transition is
absent in the PBC case, whereas the W -driven is present for
both boundary cases.

APPENDIX B: LEVEL DISTRIBUTIONS FOR g↑ = g↓

For g↑ = g↓, the IGT maps the non-Hermitian coupled-
chain system to a Hermitian one [60]. In the meanwhile,
the spectral properties strongly depend on the symme-
tries of disorder potential. The correlated (spin-independent)

064208-8



NON-HERMITIAN MANY-BODY LOCALIZATION WITH … PHYSICAL REVIEW B 106, 064208 (2022)

FIG. 8. The disorder-averaged fim of open coupled chains are shown for (a) g↑/g↓ = 0.2, (b) g↑/g↓ = 0.6, and (c) g↑/g↓ = 1.0. For the
same values, the disorder-averaged fim under PBC are shown in the lower panel (d)–(f). Under OBC, the g↑/g↓ = 1.0 case (c) can be gauged
out using IGT and hence the spectrum remains real in the entire K-W plane. For an open non-Hermitian coupled-chain system, the interchain
coupling also drives the system into real eigenspectrum. Here the eigenspectrum is averaged over 500 disorder realizations.

disorder preserves SU(2) spin symmetry and leads to a Pois-
son level-spacing distribution at a delocalized regime. For the
Hermitian disordered systems, it has been shown that a sym-
metry breaking field or diagonalization of a single symmetry
block of the Hamiltonian leads to GOE-like behavior at weak
disorder strength [56,92]. The uncorrelated (spin-dependent)
potential breaks the spin symmetries and results into a GOE
distribution. The nearest-neighbor level-spacing distributions
for W = 2 and g↑ = g↓ using two different disorder potentials
are illustrated in Fig. 9.

FIG. 9. The nearest-neighbor level-spacing distributions as a
function of the interchain coupling strength K for g↑ = g↓. The
upper (lower) panel represents the distributions with correlated (un-
correlated) disorder for the system size L = 8. Here the disorder
strength W = 2 and the distributions are averaged over 100 disorder
realization. The green and blue lines represent the (real) Poisson and
GOE level-spacing distributions, respectively.

APPENDIX C: FINITE-SIZE EFFECTS OF INVERSE
PARTICIPATION RATIO

Here we discuss the disorder-averaged inverse partic-
ipation ratio as a function of the eigenstate index. As
discussed in the main text, for the non-Hermitian systems,
the IPR can be defined in two ways: Īn is defined using nth
left or right eigenstate while ĪnB is using the biorthogonal
basis. Here the overline denotes the disorder average. Fig-
ure 10(a) shows ĪnB and Īn in the whole energy spectrum. The

FIG. 10. (a) The disorder-averaged inverse participation ratio ob-
tained using nth right eigenstates (Īn) and biorthogonal IPR (ĪnB ) for
open coupled chains of L = 8. The averaged IPR is shown for two
disorder strengths: one in the delocalized (W = 2) and other in the
localized (W = 30) regime. The other parameters of the model are
K = 1 and g↑/g↓ = 0.5. (b) The finite-size effects of biorthogonal
IPR (averaged over both disorder realizations and Hilbert space)
as a function of the disorder strength (W ). At weak W , the IPR
approaches zero in the delocalized regime and at strong W , the IPR
of different system sizes converges to one. In the inset of (b) we show
the corresponding biorthogonal fractal dimension for different L.
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parameters considered are K = 1, g↑/g↓ = 0.5, and L = 8.
At weak disorder (W = 2), IPR is small, suggesting delocal-
ization. Interestingly, the IPR Īn shows a finite value while
ĪnB ≈ 0 for W = 2. As explained in the main text, the finite Īn

at weak disorder can be attributed to the presence of NHSE.
At strong W , the large values of IPR suggest many-body
localization. Furthermore, both definitions of IPR give similar
values, indicating the suppression of NHSE at strong disorder.
It is important to note that the choice of eigenstates for IPR
is only important for open chains. Under PBC, the results
from both definitions coincide due to the absence of NHSE.
We next present the finite-size effects on biorthogonal IPR
and corresponding fractal dimension in Fig. 10(b). Here we

consider the biorthogonal definitions so that the interference
of NHSE-induced phenomena can be eliminated and we could
inspect system-size effects on the role of disorder potential. At
weak disorder strengths, the averaged-IPR decreases with an
increase in L. The contrast behavior is also seen for biorthog-
onal fractal dimension. Hence, at weak disorder IB

avg → 0 (or
ηB → 1) with an increase in L, indicating the delocalized
regime. As W increases, the IPR tends to approach unity, and
converse behavior of FD is evident from the inset in Fig. 10(b).
The convergence in IPR and FD for different system sizes
confirms the disorder-driven many-body localization of non-
Hermitian coupled chains.
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