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Exact bounds on the energy gap of transverse-field Ising chains by mapping to random walks
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Based on a relationship with continuous-time random walks discovered by Iglói, Turban, and Rieger [Phys.
Rev. E 59, 1465 (1999)], we derive exact lower and upper bounds on the lowest energy gap of open transverse-
field Ising chains, which are explicit in the parameters and are generally valid for arbitrary sets of possibly
random couplings and fields. In the homogeneous chain and in the random chain with uncorrelated parameters,
both the lower and upper bounds are found to show the same finite-size scaling in the ferromagnetic phase and
at the critical point, demonstrating the ability of these bounds to infer the correct finite-size scaling of the critical
gap. Applying the bounds to random transverse-field Ising chains with coupling-field correlations, a model which
is relevant for adiabatic quantum computing, the finite-size scaling of the gap is shown to be related to that of
sums of independent random variables. We determine the critical dynamical exponent of the model and reveal
the existence of logarithmic corrections at special points.
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I. INTRODUCTION

There is a class of one-dimensional quantum lattice models
which have in common that the excitation energies are given
by the eigenvalues of certain tridiagonal matrices. The most
prominent example is the transverse-field Ising chain (TFIC),
which can be mapped to a fermion chain with quadratic
terms by the well-known Jordan-Wigner transformation [1].
A closely related model is the spin- 1

2 XY chain [2], which
can be mapped to two independent TFICs [3–5]. Another
representatives of this class are the fermionic hopping models
on a one-dimensional lattice. In this paper, we focus on the
energy gap between the ground state and the first excited state
of the TFIC. The relevance of studying the gap is given by the
existence of a continuous phase transition of the model from
a paramagnetic to a ferromagnetic phase when the strength of
the transverse field is decreased. In the ferromagnetic phase,
the energy gap closes exponentially with the system size L and
the ground state and first excited state become asymptotically
degenerate, showing the spontaneous symmetry breaking of
the infinite system. In the critical point, the gap closing is
slower than exponential, in general a power law, ε ∼ L−z,
where z is the critical dynamical exponent, except for the
TFIC with uncorrelated random [6] or certain aperiodically
modulated [7,8] couplings, in which the gap vanishes accord-
ing to a stretched exponential law, ε ∼ e−const·L�

, with � < 1.
The paramagnetic phase is gapped in general, but the uncorre-
lated random model is an exception also in this respect: in the
Griffiths-McCoy phase, the gap vanishes algebraically with
a nonuniversal dynamical exponent depending on the control
parameter [9–12]. Recently, the interest in the scaling of the
energy gap has increased from the side of adiabatic quantum
computing [13,14]. Due to its solvability in polynomial time,
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the TFIC is an ideal testing ground for different quantum
annealing protocols in which the TFIC is slowly driven from a
large initial transverse field through the critical point to a clas-
sical target Hamiltonian with a zero transverse field [15–21].
A crucial difficulty of quantum annealing is the breaking of
adiabaticity at finite annealing rates; i.e., the system will be
excited from the instantaneous ground state to higher-lying
states during the procedure so that the end state may contain
defects with some probability [22–25]. The rate of formation
of defects which are to be avoided from the point of view of
adiabatic quantum computing is more enhanced at small in-
stantaneous gaps: according to the adiabatic theorem [13,26],
the necessary computation time is the maximum of the transi-
tion matrix element of the time derivative of the instantaneous
Hamiltonian divided by the square of the instantaneous gap.
The knowledge of the gap of the static TFIC, especially the
minimal gap experienced during the annealing procedure, is
thus important for estimating the efficiency of the protocol or
for devising an optimal protocol which minimizes the prob-
ability of defect formation. We note here that, due to the
parity symmetry of the TFIC, the gap which is relevant for
quantum annealing is the gap between the ground state and
the first excited state within the ground-state sector, the other
sector being unavailable for the dynamics. Nevertheless, the
finite-size scaling of this energy difference at the critical point
is, in general, similar to that of the lowest gap.

Apart from the homogeneous chain, the eigenvalue prob-
lem of which is analytically solvable [1,2,27], there does not
exist a closed form of the lowest gap for a general set of
couplings and transverse fields. Therefore, various numerical
methods and analytic approximations have been developed
to estimate the gap. For the TFIC with uncorrelated random
parameters, the known results on the energy gap are obtained
mainly by the strong-disorder renormalization group (SDRG)
method [6,28–31] and by numerical diagonalization [32]. In
addition to this, there exists an approximative formula for
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the gap of the open chain obtained in Refs. [33,34], which
is accurate in the ferromagnetic phase and yields the correct
finite-size scaling of the gap even at the critical point. This for-
mula is similar to that obtained perturbatively for the periodic
chain in Ref. [7]. In Ref. [35], the terms of the characteristic
polynomial beyond the second-order one were neglected and
the resulting quadratic equation was solved to estimate the
scaling of the gap of the random TFIC to the second excited
state. Reference [36] went further in this direction and used
the truncated characteristic polynomial of much higher order
to obtain very accurate numerical estimates of the lowest gap
at the critical point and in the ferromagnetic phase. Further-
more, in Ref. [36] the Laguerre bound for the smallest root of
the characteristic polynomial, which can be calculated from
the first three coefficients of the characteristic polynomial,
was studied and found to correctly reproduce the finite-size
scaling of the exact gap at the critical point and in gapless
phases.

In this paper, we extend the results concerning the gap of
the open TFIC by providing exact lower and upper bounds
which are generally valid for any set of possibly random
couplings and fields, and are explicit in the parameters of the
model. Due to this latter property, they are promising starting
points of possible analytic treatments toward the determina-
tion of the finite-size scaling of the gap. We demonstrate the
power of these bounds by obtaining the finite-size scaling of
the gap of the random TFIC with coupling-field correlations,
which is relevant in the context of adiabatic quantum com-
puting and has been studied by several authors [35,37–41].
The derivation rests on an exact relationship between the open
TFIC and continuous-time random walks with an absorbing
boundary. Some elements of this relationship were discovered
in Ref. [11], but, in the most complete form, it was formulated
by Iglói, Turban, and Rieger in Ref. [42]. In addition to this,
the derivation uses properties of the quasistationary distribu-
tion of Markov processes and known expressions of the mean
time to absorption.

The paper is organized as follows. In Sec. II, we recapitu-
late the bases of the derivation of the bounds: the calculation
of excitation spectrum of the TFIC, the mapping to a Markov
process, and the relation of the spectral gap to the mean
time to absorption. The lower and upper bounds are derived
in Secs. III and IV. Next, these bounds are applied to the
homogeneous chain and the random chain with correlated
and uncorrelated randomness. Finally, results are discussed
in Sec. VI. Some of the calculations are presented in the
Appendices.

II. THE ROUTE FROM TFIC TO MARKOV CHAINS

A. Excitation spectrum

We consider the transverse-field Ising chain with L > 1
spins and with the open boundary condition:

H = −
L−1∑
n=1

Jn

2
σ x

n σ x
n+1 −

L∑
n=1

hn

2
σ z

n , (1)

where σ x
n and σ z

n are Pauli operators at site n, and the cou-
plings Jn and the external fields hn are assumed to be nonzero
unless stated otherwise.

By the Jordan-Wigner transformation,

c†
n + cn =

(∏
m<n

−σ z
m

)
σ x

n ,

c†
n − cn = i

(∏
m<n

−σ z
m

)
σ y

n ,

n = 1, 2, . . . , L, (2)

the Hamiltonian in Eq. (1) can be written in a quadratic form
of fermion creation (c†

n) and annihilation (cn) operators [1,2]:

H = −
L−1∑
n=1

Jn

2
(c†

n − cn)(c†
n+1 + cn+1) −

L∑
n=1

hn

(
c†

ncn − 1

2

)
.

(3)
A subsequent Bogoliubov-Valatin transformation,

ηk =
L∑

n=1

[
φkn + ψkn

2
cn + φkn − ψkn

2
c†

n

]
k = 1, . . . , L,

(4)
with the appropriately chosen coefficients φkn and ψkn brings
the Hamiltonian in Eq. (3) to a diagonal form,

H =
L∑

k=1

εk

(
η

†
kηk − 1

2

)
. (5)

The ground state of the model is the vacuum state of ηk

fermions, and the positive excitation energies εk are obtained
as the ±εk eigenvalue pairs of the symmetric, tridiagonal
matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 h1

h1 0 J1

J1 0 h2

h2 0 . . .
. . .

. . .

0 JL−1

JL−1 0 hL

hL 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

Equivalently, the excitation energies εk are the singular values
of the bidiagonal matrix [43]

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h1

J1 h2

J2
. . .
. . .

JL−2 hL−1

JL−1 hL

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (7)
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or the squared excitation energies ε2
k are the eigenvalues of the symmetric, tridiagonal matrix

MMT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h2
1 h1J1

h1J1 h2
2 + J2

1 h2J2

h2J2 h2
3 + J2

2
. . .

. . .
. . .

hL−1JL−1

hL−1JL−1 h2
L + J2

L−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

We note that, instead of MMT , one can use MT M equally well, since they are similar matrices, and the latter is obtained from
the former (in a reversed order of rows and columns) by the replacements

hi ↔ hL−i+1, Ji ↔ JL−i, (9)

which amounts to an inversion of the original model.

B. Mapping to a Markov chain

The essence of the relationship revealed in Ref. [42] is that the positive matrix MMT given in Eq. (8) is similar to the transient
part of the rate matrix of a stochastic process (up to a global minus sign). To be more concrete, let us introduce the diagonal
matrix S = diag{α1, α2, . . . , αL} with elements α1 = 1 and αn = ∏n−1

i=1 (− hi
Ji

), n = 2, . . . , L, by which the matrix MMT can be
transformed to

T ≡ −S−1MMT S

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−h2
1 h2

1
J2

1 −h2
2 − J2

1 h2
2

J2
2 −h2

3 − J2
2

. . .
. . .

. . .

h2
L−1

J2
L−1 −h2

L − J2
L−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

One can see that the nondiagonal elements of this matrix are
nonnegative, and the sums of the elements in all but the last
row are zero. Extending T with the L-component column
vector a = (0, 0, . . . , h2

L )T and the L-component row vector
0 = (0, 0, . . . , 0) in the form

Q =
(

T a
0 0

)
, (11)

one obtains a stochastic matrix Q of order L + 1. This can
be interpreted as the infinitesimal generator of a continuous-
time Markov process (random walk) on the states labeled
by 1, 2, . . . , L + 1, with transition rates Qn,n+1 = h2

n for n =
1, . . . , L and Qn+1,n = J2

n for n = 1, . . . , L − 1. Thus, state
L + 1, having a zero exit rate, is an absorbing state. The
matrix Q has a zero eigenvalue λ0 = 0 which corresponds
to the (absorbing) stationary state (pL+1 = 1, pn = 0 for n =
1, . . . , L), while all other eigenvalues are negative and given
by −λk = −ε2

k due to the similarity of −T and MMT .

C. Mean time to absorption and the spectral gap

The key point of formulating bounds on the top eigenvalue
−λ1 = −ε2

1 is its relation with the mean time to absorption
(also known as first-passage time [44]) when the equivalent
stochastic process is initiated in its quasistationary distribu-
tion. To see this, we use well-known properties of irreducible
continuous-time Markov chains with a finite number of states
[45,46]. In this case, the top eigenvalue −λ1 is unique,

simple, and, due to the similarity to a symmetric matrix, it
is real. Moreover, the associated left eigenvector of T can
be chosen to be componentwise positive. A distribution q =
(q1, q2, . . . , qL ) is called quasistationary if it remains constant
under the condition of nonabsorption when q is the initial dis-
tribution. Finite, irreducible Markov chains are known to have
a unique quasistationary distribution which is the (unique)
left eigenvector of T associated with the eigenvalue λ1: qT =
−λ1q, normalized as

∑L
n=1 qi = 1. One can then show that the

row vector with L + 1 components q = (q1, q2, . . . , qL,−1)
is a left eigenvector of Q: qQ = −λ1q. Considering the dis-
tribution P(t = 0) = q + s = (q1, q2, . . . , qL, 0), where s =
(0, 0, . . . , 0, 1) denotes the stationary distribution (left eigen-
vector of Q with zero eigenvalue) as an initial distribution
of the master equation dP(t )

dt = P(t )Q, we obtain for the time
evolution

P(t ) = P(0)eQt = s + e−λ1t q. (12)

The probability of not being absorbed on site L + 1 up to time
t is then 1 − PL+1(t ) = e−λ1t and the mean time to absorption
(mean first-passage time) is

τqs = 1

λ1
. (13)

Here the subscript qs refers to that the initial distribution was
the quasistationary one.
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III. LOWER BOUND ON THE GAP

The mean time to absorption when the process starts from
site n, denoted by τn, can be analytically calculated for the
Markov process defined by Q. As it is well-known, the mean
times to absorption τ1, τ2, . . . , τL satisfy the so-called back-
ward master equations [47], which can be written in the
compact form

T τ = −1, (14)

with the column vectors τ = (τ1, τ2, . . . , τL )T and 1 =
(1, 1, . . . , 1)T . These can be solved to give the following:1

τn =
L∑

l=n

l∑
m=1

1

h2
l

l−1∏
i=m

J2
i

h2
i

, (15)

with the convention that the product is 1 whenever m = l . Ob-
viously, the mean times to absorption monotonically increase
with decreasing indices n (being farther from the absorbing
site):

τm < τn if m > n. (16)

Since τqs = ∑L
n=1 qnτm, qn denoting the quasistationary dis-

tribution as before, we obtain immediately that

τqs < τ1. (17)

Thus, by Eq. (13) we have the following lower bound on the
gap:

ε1 >
1√
τ1

=
[

L∑
l=1

l∑
m=1

1

h2
l

l−1∏
i=m

J2
i

h2
i

]− 1
2

. (18)

This bound turns out to be closely related to the coefficients of
the characteristic polynomial of MMT , P(λ) = det(MMT −
λI) = ∑L

n=0 Cnλ
n. The constant term is C0 = det(MMT ) =

[det(M )]2 = h2
1h2

2 · · · h2
L, where we used Eq. (7). The coeffi-

cient of the linear term, as it is described in Appendix A, can
be shown to be

C1 = −τ1C0. (19)

On the other hand, from the factorized form of the character-
istic polynomial P(λ) = ∏L

n=1(λn − λ), it is clear that C1 =
−C0

∑L
n=1 λ−1

n (which is one of Viète’s formulas); therefore,
τ1 is simply the sum of reciprocal eigenvalues:

τ1 =
L∑

n=1

λ−1
n =

L∑
n=1

ε−2
n . (20)

Now we compare this bound to Laguerre’s lower bound λLb

of all roots used in Ref. [36], which is composed of the first
three coefficients of the characteristic polynomial as

1

λLb
= − 1

L

C1

C0
+

√
L − 1

L

√
(L − 1)

(C1

C0

)2

− 2L
C2

C0
. (21)

1For an interesting analogy between the solution of Eqs. (14) and
the SDRG procedure, see Ref. [48].

One can notice that formally substituting C2 = 0 in Eq. (21)
leads to 1/λLb(C2 = 0) = τ1. Since, according to Viète’s for-
mulas C2

C0
= ∑

i< j
1

λiλ j
, which is positive, the lower bound

obtained by the random-walk mapping is less sharp than La-
guerre’s lower bound:

1

τ1
< λLb < λ1. (22)

Nevertheless, we see later that even this weaker bound which,
on the other hand, has the advantage of being simpler than
Laguerre’s bound, is sufficient to infer the finite-size scaling
of the gap at the critical point.

We close this section with the comparison of the approxi-
mate formula for the gap derived in Refs. [33,34] to our lower
bound. As it is shown in Appendix B, the approximate gap
is below the lower bound, εapp < 1√

τ1
< ε1, so the latter is a

better approximation of the exact gap.

IV. UPPER BOUND

The relationship with random walks described in the pre-
vious sections also enables us to establish upper bounds on
the gap. We can obtain an upper bound immediately from the
monotonicity of τn, which implies τqs > τL, yielding the upper
bound

ε1 <
1√
τL

=
L∑

m=1

1

h2
L

L−1∏
i=m

J2
i

h2
i

. (23)

One can improve this bound by noting that using MT M rather
than MMT leads to a different bound τ L, which is related to
τL through the inversion in Eq. (9). Then ε1 < 1/τmax

L , where
τmax

L = max{τL, τL}. Yet, this upper bound is not sufficiently
sharp to have the same finite-size scaling as the exact gap at
the critical point in general.

Nevertheless, this requirement can be fulfilled with a
sharper bound constructed by the help of the stationary dis-
tribution of a modified Markov chain. Let us consider the
Markov process as before but with the restriction to sites
1, 2, . . . , L and with hL = 0. The corresponding rate matrix,
which is obtained from T by setting hL = 0, is denoted by T ′.
This process has a nontrivial stationary state (p1, p2, . . . , pL ),
which is the left eigenvector of T ′ associated with the zero
eigenvalue. By recursion, we obtain this distribution in the
form

pn =
∏n−1

i=1
h2

i

J2
i∑L

n=1

∏n−1
i=1

h2
i

J2
i

, n = 1, 2, . . . , L. (24)

Comparing the quasistationary distribution to this one, one
has the intuition that the steady loss of probability at site L
in the former case leads to a depletion of probabilities near
the absorbing site in favor of those near the opposite end of
the chain (keep in mind that q is a normalized distribution).
Indeed, as it is proved in Appendix C, there exists an index
1 < n∗ < L such that

qn > pn if n < n∗,

qn∗ � pn∗ , and

qn < pn if n > n∗. (25)
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This implies, together with the monotonicity of τn (see Ap-
pendix C), that the mean time to absorption in the original
process starting from the stationary distribution of the modi-
fied process

τs =
L∑

n=1

pnτn (26)

fulfills the inequality

τs < τqs. (27)

We obtain then the following upper bound on the gap:

ε1 <
1√
τs

=
[

L∑
n=1

n−1∏
i=1

h2
i

J2
i

] 1
2

×
[

L∑
n=1

(
n−1∏
i=1

h2
i

J2
i

)
L∑

l=n

l∑
m=1

1

h2
l

l−1∏
j=m

J2
j

h2
j

]− 1
2

. (28)

Note that, as opposed to the lower bound 1/
√

τ1, the upper
bound in Eq. (28) does not show the inversion symmetry,
therefore performing the replacement given in Eq. (9) yields
a different upper bound, 1/

√
τ s. We have then ε1 < 1/

√
τmax

s ,
where τmax

s = max{τs, τ s}.

V. APPLICATION OF THE BOUNDS

A. Homogeneous chain

First, we test the bounds obtained in the previous sec-
tions for the homogeneous transverse-field Ising chain with
couplings Jn = J > 0 and fields hn = h > 0. Then the sum-
mations in Eq. (15) can be performed and, introducing the
ratio r = J2/h2, we obtain

τn = 1

h2

(L − n + 1)(1 − r) + rL+1 − rn

(1 − r)2
(29)

if r �= 1, while for r = 1, i.e., at the critical point, we find

τn = 1

2h2
(L − n + 1)(L + n). (30)

Performing the summation in Eq. (26) with pn = 1−r
1−rL rL−n

results ultimately in

τs = 1

h2

1 − r2L+1 + (2L + 1)rL(r − 1)

(1 − rL )(1 − r)2
(31)

for r �= 1, while for r = 1 we find

τs = 1

h2

(
L2

3
+ L

2
+ 1

6

)
. (32)

Let us now check the validity of the lower and upper
bounds in the different phases of the model. In the ferro-
magnetic phase (r < 1), the gap closes exponentially with the
system size in leading order as [1] ε1 	 J ( h

J )L. The lower

bound in this phase is 1√
τ1

	 (J − h2

J )( h
J )L, thus the prefactor

is smaller than the exact one, while the leading term of the
upper bound agrees with that of the exact gap: 1√

τs
	 J ( h

J )L.
In the paramagnetic phase (r > 1), the gap is nonzero in

the limit L → ∞: ε1 = h − J . The lower bound is vanishing

with L as 1√
τ1

	
√

h2−J2√
L

, thus it is not useful here, whereas the

upper bound is asymptotically constant: limL→∞ 1√
τs

= (h −
J )(1 + J

h ).
At the critical point, J = h = 1, the gap vanishes with the

system size as [1] ε1 = 2 sin( π
2

1
2L+1 ) = π

2
1
L + O(L−2). For

the lower and upper bounds we find here the following in
leading order:

1√
τ1

	
√

2

L
,

1√
τs

	
√

3

L
. (33)

Thus, at the critical point both bounds show the same
finite-size scaling, and the scaled gap in the large-L limit
limL→∞ ε1L = π

2 = 1.57 . . . is bounded relatively tightly by√
2 = 1.41 · · · and

√
3 = 1.73 · · · . Finally, it is interesting to

note that, for J = h = 1, τ1 is the sum of natural numbers up
to L, whereas τs is the sum of the squares of natural numbers
up to L, divided by L.

B. Random chain with local coupling-field correlations

Next, we apply the bounds obtained in the previous sec-
tions to infer the finite-size scaling of the gap of the random
TFIC in which the fields are correlated with neighboring
couplings. We consider a general form of such correlations
used in Ref. [41]: the couplings are independent, identically
distributed random variables, while the fields are fixed by
neighboring couplings as

h1 = J1−s
1 ,

hn = Js
n−1J1−s

n , 1 < n < L,

hL = Js
L−1. (34)

Here, the parameter s is in the range 0 � s � 1. The special
case s = 0 was studied in Refs. [37–40], while the symmetric
case s = 1

2 was considered in Ref. [35]. By the choice of
the fields as given in Eq. (34), the model is critical, and
the fluctuations of the sample-dependent control parameter
uL = ∑L−1

n=1 ln(Jn/hn), which follow the central limit theorem
for uncorrelated randomness, become independent of L. The
relevance of this for adiabatic quantum computing is that,
for such a choice of fields (multiplied by a global driving
field), the minimal gap during the annealing process, which
closes stretched exponentially for uniform fields, will be less
tiny, closing only algebraically with L. According to numer-
ical results [38,39] obtained with a power-law distribution of
couplings,

ρ(J ) = 1

D
J−1+ 1

D , (35)

with the support 0 < J < 1 and the parameter D > 0 which
controls the strength of disorder, the critical dynamical expo-
nent is z = 1 for weak enough disorder D < Dc, and it is z > 1
otherwise. Later it was confirmed by an exact lower bound on
the dynamical exponent [41].

We now show that the lower bound and the upper bound
derived in this paper show the same typical finite-size depen-
dence and determine thereby the dynamical exponent of the
model. Expressing the fields with the couplings as given in
Eq. (34), we obtain the following for the sums relevant for the
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lower and upper bounds:

τ1 =
L∑

l=1

l∑
m=1

J−2(1−s)
l J−2s

m−1 (36)

and

τs =
[

L∑
n=1

J−2s
n

]−1 L∑
n=1

L∑
l=n

l∑
m=1

J−2s
n−1J−2(1−s)

l J−2s
m−1, (37)

with the convention J0 = JL = 1. To shorten the notation we
introduce xn ≡ J−2

n . Extending the upper limit of the second
sum in Eq. (36) to L, we have

τ1 < τ ′
1 =

[
L∑

m=1

xs
m

][
L∑

l=1

x1−s
l

]
, (38)

and we obtain thereby another lower bound 1/
√

τ ′
1 < ε1,

which is less sharp than the original one but more appropriate
for our purposes.

Considering the upper bound, we rewrite Eq. (37) as τs =
[
∑L

n=1 xs
n]−1 ∑L

l=1

∑l
n=1

∑l
m=1 x1−s

l xs
n−1xs

m−1. By restricting
the lower limit of the first sum and the upper limits of the
remaining two sums of the triple sum to [L/2] + 1, where
[L/2] denotes the integer part of L/2, we have

τs > τ ′
s =

[
L∑

n=1

xs
n

]−1[ L∑
l=[L/2]+1

x1−s
l

][
[L/2]∑
n=0

xs
n

]2

, (39)

and we obtain the upper bound ε1 < 1/
√

τ ′
s . We can see that

both τ ′
1 and τ ′

s are expressed in terms of sums of independent
random variables of the form

Sσ =
∑

n

xσ
n , (40)

with N = O(L) terms and σ is either s or 1 − s. The large-N
behavior of such a sum is well known [49,50] to depend on the
exponent μ characterizing the large-y tail of the distribution of
y ≡ xσ , ρ(y) ∼ y−1−μ. Using the distribution of couplings in
Eq. (35), this exponent is expressed as

μ = 1

2Dσ
. (41)

For 0 < μ < 1, the expected value y is infinite, and the typical
value of Sσ , defined as [Sσ ]typ = exp ln Sσ , is in leading order
proportional to N1/μ: [Sσ ]typ ∼ N1/μ. For μ = 1, y is still infi-
nite, and [Sσ ]typ ∼ N ln N . For μ > 1, y is finite, and both the
typical and mean values are proportional to N : [Sσ ]typ ∼ N ,
Sσ = yN . We can see from Eqs. (38) and (39) that the typical
values of τ ′

1 and τ ′
s are in leading order proportional to a

product of typical sums:

[τ ′
1]typ ∼ [τ ′

s]typ ∼ [Ss(L)]typ[S1−s(L)]typ. (42)

As a consequence, the leading-order L dependence of the typ-
ical gap must be the same as that of the following combination
of typical sums:

[ε1]typ ∼ 1√
[Ss(L)]typ[S1−s(L)]typ

. (43)

Using this relation, Eq. (41), and the known L dependence of
typical sums, we find the following for the L dependence of
the typical gap:

[ε1]typ(L) ∼ L−z fs(L) f1−s(L), (44)

with the dynamical exponent

z = max
{
Ds, 1

2

} + max
{
D(1 − s), 1

2

}
(45)

and logarithmic factors for special points:

fσ (L) =
{ 1√

ln L
if 2Dσ = 1,

1 otherwise.
(46)

The lower bound for the dynamical exponent obtained in
Ref. [41] from an upper bound on the average gap coincides
with z in Eq. (45), but that treatment does not account for
the logarithmic factors. For the asymmetric case s = 0, there
is a special point, D = Dc = 1/2, at which the logarithmic
correction appears as [ε1]typ ∼ 1

L
√

ln L
and this explains why

the numerically estimated dynamical exponents presented in
Ref. [38] deviate from the asymptotic value around this point.
In Ref. [41], similar deviations of numerically estimated dy-
namical exponents appear in the case D = 1 at the symmetric
point s = 1

2 , where according to our results [ε1]typ ∼ 1
L ln L .

C. TFIC with uncorrelated randomness

Finally, we consider the TFIC with independent, identi-
cally distributed random couplings and fields and compare the
upper and lower bounds with the gap obtained by the SDRG
approximation. First, we write τn in terms of the cumulative
control parameter defined in Eq. (B1) as

τn =
L∑

l=n

l∑
m=1

1

h2
l

e2(ul −um ). (47)

For uncorrelated disorder, un is a random walk in dis-
crete time n and its mean value behaves as un ∼ n in the
ferromagnetic phase, un ∼ −n in the paramagnetic phase,
and un = 0 at the critical point. The fluctuations around
the average are O(

√
n). The energy gap obtained by

the SDRG method [6] is εRG = min1�m<l<L{ JmJm+1···Jl−1

hmhm+1···hl
} =

[max1�m<l<L{ 1
hl

eul −um}]−1. Thus the SDRG gap is essen-
tially determined by the maximal difference in un, umax =
max1�m<l<L{ul − um}, as εRG ∼ e−umax . In the ferromagnetic
phase umax ≈ ln(J/h)L, which yields an exponentially clos-
ing gap. At the critical point, the maximal difference scales
as umax ∼ √

L, resulting in the stretched exponential scaling
εRG ∼ e−C

√
L, where C is an O(1) random variable [29]. In the

paramagnetic Griffiths-McCoy phase umax ∼ ln L, leading to
an algebraic decay εRG ∼ L−z with a nonuniversal dynamical
exponent [9,10,30]. Beyond the Griffiths-McCoy phase, in the
conventional paramagnetic phase, umax is bounded from above
and a finite gap opens.

We can see in Eq. (47) that the dominant term in τ1 is
max1�m<l<L{ 1

h2
l
e2(ul −um )} = ε−2

RG. Therefore, the lower bound

is expected to scale with L in the same way as εRG. Further-
more, we can establish that 1/

√
τ1 is a lower bound also for

the SDRG gap: 1/
√

τ1 < εRG. In fact, numerical results of
Ref. [36] indicate that εRG exceeds the exact value of the gap.
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Next, let us consider the upper bound 1/
√

τs. The sta-
tionary distribution in Eq. (24) can be written in terms
of un as

pn = N exp[2(unmin − un)], (48)

where nmin denotes the global minimum of un, unmin =
minn{un}. Due to the rapid decrease of pn with unmin − un, pn

is typically localized around site nmin and, consequently, the
normalization is N = O(1). Then τs can be written as

τs = N
L∑

l=1

l∑
n=1

l∑
m=1

1

h2
l

exp[2(unmin + ul − un − um)]. (49)

The dominant term of this expression is determined by
max{ul − un − um} under the conditions 1 � l � L and 1 �
n, m � L. Obviously, the optimal indices n and m must coin-
cide; therefore, we look for the following maximum:

max
1�n�l�L

{ul − 2un}. (50)

Denoting the indices which optimize Eq. (50) by l∗ and n∗,
the dominant term of τs is then

τs ∼ exp[2(unmin + ul∗ − 2un∗ )]. (51)

In the ferromagnetic phase, nmin ∼ 1, l∗ ∼ L, and n∗ ∼ 1. The
dominant term is thus τs ∼ e2uL , which leads to the same expo-
nential decrease of the upper bound 1/

√
τs ∼ e−uL (apart from

the prefactor) as that of the lower bound. At the critical point,
the dominant term in Eq. (51) is, in general, different from the
term related to the SDRG gap. It coincides with 1/ε2

RG only
if n∗ = nmin, otherwise they are different. Nevertheless, due
to the O(

√
n) fluctuations of un, the upper bound shows the

same type of stretched exponential scaling as the lower bound:
1/

√
τs ∼ e−C′√L. Finally, in the Griffiths-McCoy phase and

in the conventional paramagnetic phase nmin ∼ L, l∗ ∼ L and
n∗ ∼ L. Here, τs ∼ O(1), yielding an L-independent upper
bound, which fails to correctly reproduce the algebraic de-
crease of the gap in the Griffiths-McCoy phase.

VI. DISCUSSION

Based on an exact relationship with the spectrum of a
Markov process, we have formulated lower and upper bounds
on the lowest energy gap of open transverse-field Ising chains,
which are explicit in the parameters of the model and are valid
for arbitrary sets of (nonzero) couplings and fields.

In the ferromagnetic phase and at the critical point, both
bounds show the same leading finite-size dependence (with
different prefactors). In the homogeneous chain, the upper
bound reproduces the correct prefactor in the ferromagnetic
phase, while at the critical point, the prefactor of the lower
bound is slightly closer to the exact one. In the gapped para-
magnetic phase, both bounds tend to constants in the limit
L → ∞ (the lower bound to zero), and the upper bound
becomes more and more accurate farther from the critical
point. In the random TFIC with coupling-field correlations,
which is critical and which is a relevant model for adiabatic
quantum computing, we showed by the help of the bounds that
the finite-size scaling of the gap is related to that of sums of
independent random variables. Besides the algebraic closing

of the typical (as well as the average) gap, we revealed the
existence of logarithmic corrections at certain special points.
The relation of the gap to sums of independent random vari-
ables also indicates that, in the anomalous region z > 1, the
gap is essentially determined by the smallest coupling present
in the sample, the corresponding term dominating either of or
both the sums.

In the case of uncorrelated disorder, both bounds show
the same finite-size scaling in the ferromagnetic phase and at
the critical point. Furthermore the lower bound accounts for
the algebraically vanishing gap in the Griffiths-McCoy phase,
while the upper bound fails to reproduce this (giving a nonvan-
ishing limit). We found that the lower bound outperformed the
upper bound also at the critical point. The former is dominated
by the term provided by the SDRG approximation whenever
the gap vanishes, including the Griffiths-McCoy phase. In
the upper bound, which contains the sum τs ∼ ∑

n e−2unτn,
the effect of the weighting by e−2un is to enhance the term
τnmin at the minimum of the cumulative control parameter.
Therefore, the dominant term in the upper bound coincides
with the SDRG term (related to the maximal increase of un)
only if the starting index of the SDRG term is the same as the
global minimum position of un. Otherwise the upper bound
is dominated by some subleading increasing segment of un,
which nonetheless, has the same stretched exponential scaling
as the leading one.

The lower bound used in this paper, although it is less
sharp than Laguerre’s bound, still shows the same finite-size
scaling at the critical point as the exact gap and, due to its
simplicity, may be more appropriate for analytic treatments, as
it was demonstrated for the random TFIC with coupling-field
correlations.

Although we formulated the bounds for the transverse-field
Ising chain, they apply also to the closely related XY spin
chains and free-fermion hopping models on an open chain.
Moreover, the bounds are generally valid for the lowest eigen-
value of tridiagonal matrices of the form T = BBT , where
B is a bidiagonal matrix with real and nonzero diagonal and
subdiagonal elements.
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APPENDIX A: LINEAR TERM OF THE
CHARACTERISTIC POLYNOMIAL

The relationship in Eq. (19) can be shown by rewriting
Eq. (14) as MMT Sτ = S1, or as MMT x = α with column
vectors x = Sτ and α = (α1, α2, . . . , αL )T . Then, according
to Cramer’s rule

τ1 = x1 = det[(MMT )1]/ det(MMT ), (A1)
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where (MMT )1 denotes the matrix obtained from MMT by
replacing the first column by α. On the other hand, us-
ing Jacobi’s formula for the derivative of a determinant
d

dλ
det A(λ) = tr[adjA(λ) dA(λ)

dλ
], where adjA denotes the ad-

joint matrix of A, we obtain C1 = d
dλ

det(MMT − λI)|λ=0 =
−tr[adj(MMT )]. Expanding the determinant in Eq. (A1) by
the first column one can see that the terms coincide with the
diagonal elements of adj(MMT ). We note that, for constant
transverse fields, the explicit forms of the coefficients of the
characteristic polynomial were also given in Ref. [35].

APPENDIX B: COMPARISON WITH
AN APPROXIMATIVE FORMULA

In Ref. [33] an approximative formula for the lowest gap
ε1, which is the smallest positive eigenvalue of H given
in Eq. (6), was used. Here, we provide a slightly different
derivation of this formula. First, an approximation, vapp, of the
eigenvector v1 associated with ε1 is determined. We set hL = 0
in H (denoted by HL), which results in ε1 = 0, and determine
the odd components of vapp recursively from HLvapp = 0.
Then we set h1 = 0 and determine the even components of
vapp in the same way from H1vapp = 0. Both odd and even
components are normalized to 1/2. The approximate gap is
then constructed as the expected value εapp = |vT

appHvapp|. To
compare it with the lower bound, it is expedient to introduce
the cumulative control parameter

un =
{∑n−1

m=1 ln Jm
hm

for n > 1,

0 for n = 1,
(B1)

and recast τ1 in Eq. (15) as

τ1 =
L∑

l=1

l∑
m=1

1

h2
l

e2(ul −um ). (B2)

In terms of un, the approximate gap can written as

1

ε2
app

=
L∑

l=1

L∑
m=1

1

h2
l

e2(ul −um ). (B3)

Here, the only difference from Eq. (B2) is that the upper limit
of the second sum extends to L. As a consequence, we have

εapp <
1√
τ1

< ε1. (B4)

APPENDIX C: MAJORIZATION OF THE
QUASISTATIONARY DISTRIBUTION

Let us consider the eigenvalue equations q(T + λ1I) = 0
and pT ′ = 0, which determine the quasistationary and the
stationary distribution, respectively. With the introduction of
the ratios Rn = qn+1/qn and R0

n = pn+1/pn, the above linear
equations lead to the following recursions for 1 < n < L:

Rn = h2
n + J2

n−1 − λ1

J2
n

− h2
n−1

J2
n

1

Rn−1
,

R0
n = h2

n + J2
n−1

J2
n

− h2
n−1

J2
n

1

R0
n−1

, (C1)

with the initial conditions R1 = h2
1−λ1

J2
1

and R0
1 = h2

1

J2
1
. We now

show by induction that Rn < R0
n for 1 � n < L. The statement

is obviously fulfilled for n = 1, since λ1 > 0. Let us now
assume that the statement is valid for n − 1: Rn−1 < R0

n−1.
Comparing the terms in the right-hand sides of Eqs. (C1), we

see that
h2

n+J2
n−1−λ1

J2
n

<
h2

n+J2
n−1

J2
n

and − h2
n−1

J2
n

1
Rn−1

< − h2
n−1

J2
n

1
R0

n−1
, and

consequently Rn < R0
n holds.

Considering the differences of logarithmic probabilities,
we have then

ln qn+1 − ln qn < ln pn+1 − ln pn (C2)

for 1 � n < L. Since both q and p are normalized, q1 > p1

and qL < pL must hold. Furthermore, the inequalities (C2)
obviously imply that there is only one “crossing point” n∗ of
the two distributions, as anticipated in Eq. (25).

The inequality (27) can then be easily proved. We can split
the difference τqs − τs = ∑L

n=1(qn − pn)τn into a positive and
a negative part:

τqs − τs =
n∗∑

n=1

(qn − pn)τn +
L∑

n=n∗+1

(qn − pn)τn. (C3)

Due to the monotonicity of τn [see inequalities (16)], we have
the lower bounds for the two parts:

n∗∑
n=1

(qn − pn)τn > τn∗

n∗∑
n=1

(qn − pn),

L∑
n=n∗+1

(qn − pn)τn > τn∗

L∑
n=n∗+1

(qn − pn). (C4)

By adding them, we obtain that τqs − τs > τn∗
∑L

n=1(qn −
pn) = 0.
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