
PHYSICAL REVIEW B 106, 064203 (2022)

Exponential size scaling of the Liouvillian gap in boundary-dissipated
systems with Anderson localization

Bozhen Zhou ,1,2,* Xueliang Wang,1,2,* and Shu Chen 1,2,3,†

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3Yangtze River Delta Physics Research Center, Liyang, Jiangsu 213300, China

(Received 11 January 2022; revised 28 July 2022; accepted 29 July 2022; published 9 August 2022)

We carry out a systematical study of the size scaling of the Liouvillian gap in boundary-dissipated
one-dimensional quasiperiodic and disorder systems. By treating the boundary-dissipation operators as a per-
turbation, we derive an analytical expression of the Liouvillian gap, which indicates clearly the Liouvillian gap
being proportional to the minimum of boundary densities of eigenstates of the underlying Hamiltonian, and
thus give a theoretical explanation why the Liouvillian gap has different size scaling relation in the extended and
localized phase. While the Liouvillian gap displays a power-law size scaling �g ∝ L−3 in the extended phase, our
analytical result unveils that the Liouvillian gap fulfills an exponential scaling relation �g ∝ e−κL in the localized
phase, where κ takes the largest Lyapunov exponent of localized eigenstates of the underlying Hamiltonian. By
scrutinizing the extended Aubry-André-Harper model, we numerically confirm that the Liouvillian gap fulfills
the exponential scaling relation and the fitting exponent κ coincides pretty well with the analytical result of the
Lyapunov exponent. The exponential scaling relation is further verified numerically in other one-dimensional
quasiperiodic and random disorder models. We also study the relaxation dynamics and show the inverse of the
Liouvillian gap giving a reasonable timescale of asymptotic convergence to the steady state.
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I. INTRODUCTION

In the past years, advances in manipulating dissipation
and quantum coherence in laboratory have led to a renewed
interest in the study of open quantum systems with intrigu-
ing dissipative dynamics [1–10]. Understanding dynamical
processes evolving to steady states in open quantum systems
driven by boundary dissipations is a central problem of out-of-
equilibrium statistical physics attracted intensive theoretical
studies [11–30]. Within the Markovian approximation, the
density matrix of the system evolves according to the Lindblad
master equation with the Liouvillian gap �g defined as the
smallest modulus of the real part of nonzero eigenvalues of the
Liouvillian superoperator. Usually, the inverse of the Liouvil-
lian gap gives an estimation on the timescale of the relaxation
time [4,6,13]. Although discrepancy between the inverse of
the Liouvillian gap and the relaxation time is found in some
recent works [10,13,31–33], the Liouvillian gap is still an
important quantity characterizing the asymptotic convergence
to the steady state [30,33,34]. Numerical results have demon-
strated that the Liouvillian gap scales with the system length
L in terms of L−z for various boundary-dissipated systems
[12–14,33], where z ∈ [1, 2) for chaotic systems and z = 3
for integrable systems.

While most previous studies focus on the homogeneous
systems, less is known for the relaxation dynamics in disorder
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systems with boundary dissipation. As localization has been
recognized as important physical implication of interference
of waves in dissipative media, recently there is growing inter-
esting in the disorder effect on non-Hermitian physics [35–43]
and open quantum systems [44–46], as well as the dynamical
effect of Anderson localization induced by the Markovian
noise [47,48]. In Ref. [6], Prosen has provided numerical
evidence that the Liouvillian gap of the boundary-dissipated
disordered XY chain is exponentially small, i.e., �g ∝ e−L/�

with � being the localization length of normal master mode.
Although the numerical result in Ref. [6] suggests that the
Liouvillian gap should fulfill an exponential scaling relation
with the system length, a theoretical analysis and systematic
study of the Liouvillian gap for disorder systems with bound-
ary dissipations are still lacking. For a 1D disordered system,
the localization length of a localized eigenstate is usually
energy dependent, and thus the localization length of normal
master mode is expected to be mode dependent, so the mean-
ing of � is somewhat ambiguous. Natural questions arising
here are how to understand the role of normal master modes
in the formation of the Liouvillian gap and the connection of
the Liouvillian gap to the localization lengths of eigenstates
of the underlying disordered chain?

To understand how the Liouvillian gap is affected by
the disorder, we first carry out a perturbative calculation by
treating the boundary-dissipation operators as a perturbation
and give an analytical derivation of the Liouvillian gap on
the basis of perturbation theory. Our analytical result indi-
cates that the size of the Liouvillian gap is proportional to
the minimum of boundary densities of eigenstates of the
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underlying Hamiltonian, and thus the Liouvillian gap displays
an exponential size scaling when the underlying system pos-
sesses localized eigenstates. To get an intuitive understanding
from concrete examples, we then study the scaling relation of
the Liouvillian gap numerically for various one-dimensional
quasiperiodic and disorder systems with boundary dissipa-
tions described by the Lindblad master equation. The first
example we consider is the extended Aubry-André-Harper
(AAH) model with boundary dissipations. One of the reason
for choosing the extended AAH model is that it exhibits rich
phase diagram with extended (or delocalized), critical and
localized phases depending on the quasiperiodical modulation
parameters [49–52], and the other reason is that the Lyapunov
exponent (inverse of the localization length) of the localized
eigenstate of the model has an analytical expression which is
very helpful for checking our numerical fitting results. Our
numerical results illustrate that Liouvillian gap �g displays
different features in the underlying distinct phase regions.
While �g ∝ L−3 in the extended phase, the Liouvillian gap
scales with L in an exponential way e−aL in the localized
phase, where a is identified to be identical to the Lyapunov
exponent κ of the localized state. To confirm the validity of
the exponential scaling relation, we further study a quasiperi-
odical model with mobility edge and the 1D Anderson lattice,
in which the localization length of a localized eigenstate is
energy dependent. Our numerical results show that the Liou-
villian gap displays similar exponential scaling relation e−aL

with a determined by the Lyapunov exponent of states in the
band edges.

The rest of paper is organized as follows. In Sec. II A, we
introduce the formalism for the calculation of Liouvillian gap
and present the analytical derivation of the Liouvillian gap
in the scheme of perturbation theory. In Sec. II B, we first
study the scaling relation of Liouvillian gap in the boundary-
dissipated extended AAH model, and then extend our study
to the boundary-dissipated quasiperiodic model with mobility
edge and the 1D Anderson model. In Sec. II C, we discuss
the relaxation time by numerically studying the dynamical
evolution of average occupation number. A summary is given
in the last section.

II. FORMALISM, MODELS AND RESULTS

A. Formalism and perturbative calculation
of the Liouvillian gap

We consider open systems with the dissipative dynamics
of density matrix ρ(t ) governed by the Lindblad master equa-
tion [53,54]:

dρ

dt
= L[ρ] = −i[H, ρ] +

∑
μ

(2LμρL†
μ − {L†

μLμ, ρ}), (1)

where H is the Hamiltonian governing the unitary part of
dynamics of the system and Lμ are the Lindblad operators de-
scribing the dissipative process with the index μ denoting the
dissipation channels. Particularly, we consider the boundary-
dissipated systems with the Lindblad operators acting only on
the first and the last site of the lattice and taking the form of

L1 = √
γ1c1, LL = √

γLcL, (2)

where c j is the fermion annihilation operator acting on the
site j and γ1 (γL) denotes the boundary dissipation strength.
In this work, we shall consider 1D quasiperiodic and disorder
fermion systems with quasiperiodic or random on-site poten-
tials described by the Hamiltonian

H =
L−1∑
i=1

Ji(c
†
i ci+1 + c†

i+1ci ) +
L∑

i=1

Vic
†
i ci, (3)

where Ji represents the hopping amplitude between the ith and
(i + 1)th sites and Vi denotes the chemical potential on the
ith site. Since the Hamiltonian is quadratic in fermionic oper-
ators, Eq. (1) with linear dissipations also takes a quadratic
form. For a quadratic open fermionic model with L sites,
solving for the Liouvillian gap of the quantum Lindblad
equation can be reduced to the diagonalization of a 4L ×
4L antisymmetric matrix [6] or L × L non-Hermitian matrix
[7,8].

In Ref. [8], it is shown that the Liouvillian gap can be
obtained by

�g = min[2Re(−βn)], (4)

where βn is the eigenvalue of damping matrix given by [8]

X = ihT − (M1 + ML )T (5)

with (h) jk = Jj (δ j,k+1 + δ j+1,k ) + Vjδ jk , (M1) jk = δ j1δk1γ1,
and (ML ) jk = δ jLδkLγL. By numerical diagonalization of the
damping matrix X for systems with different L, we can
explore the size scaling relation of the Liouvillian gap for
the quasiperiodic or disorder chain with boundary dissipa-
tions. Before studying the concrete models, we shall use
perturbation theory to derive an analytical expression of the
Liouvillian gap under the weak dissipation limit, which is very
helpful for understanding the scaling relation of the Liouvil-
lian gap.

By using Jordan-Wigner transformation to replace fermion
creation and annihilation operators with spin operators, c†

i =
Piσ

+
i , ci = Piσ

−
i , Pi = ∏i−1

k=1 σ z
k , and introducing the Choi-

Jamiolkwski isomorphism [56–59], which turns the matrix
into a vector:

ρ =
∑
mn

ρmn|m〉〈n| → |ρ〉 =
∑
mn

ρmn|m〉 ⊗ |n〉,

the Lindblad equation can then be rewritten into the vectorized
form

d|ρ(t )〉
dt

= L|ρ(t )〉 = (L0 + L1)|ρ(t )〉, (6)

where explicit forms of L0 and L1 are given in Appendix.
By virtue of the parity operator Q = ∏L

k=1 σ z
k τ z

k , which
satisfies [Q,L] = 0 and has eigenvalues of ±1, we can de-
fine the projection operators Q± = (1 ± Q)/2 such that L =
L+

⊕
L− = (Q+LQ+)

⊕
(Q−LQ−). Since the parity opera-

tor only appears in L1, we have Q+L0Q+ = Q−L0Q− = L0.
It can be proved that in the specific model we studied, the
Liouvillian gap is not affected by the choice of parity when
only considering perturbation to first-order correction, so we
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only need to consider L+ = L0+ + L1+ with

L0+ = L0 = −i(H̃ ⊗ I − I ⊗ H̃T ),

L1+ = Q+L1Q+ =
∑

μ

[2L̃μ ⊗ L̃μ
∗ − (L̃μ

†
L̃μ) ⊗ I

− I ⊗ (L̃μ
†
L̃μ)T ], μ = 1, L (7)

where H̃ , L̃1, L̃L differ from H, L1, LL only by replacing
fermion operators ci, c†

i with spin operators σ−
i , σ+

i (see
Appendix for details).

Taking L1+ as a perturbation to L0+ and considering
only the first-order perturbation, we assume that the eigen-
values η(0)

r,s without perturbation are d (r, s)-fold degenerate,
and the corresponding eigenvectors are denoted as set {|�r,s〉},
where |�r,s〉 := |ψr〉 ⊗ |ψs〉∗ is the right eigenvector of L0+
with both |ψr〉 and |ψs〉 being the eigenvectors of H̃ . It
can be known that the first-order perturbation to eigenval-
ues of Liouvillian superoperator L+, denoted by η(1)

r,s , are
the eigenvalues of matrix W with matrix elements Wk,k′ =
〈�k|L1+|�k′ 〉 := 〈�r,s|L1+|�r′,s′ 〉, where |�k′ 〉 ≡ |�r′,s′ 〉 and
|�k〉 ≡ |�r,s〉 have the same zero order eigenvalue η(0)

r,s .

Considering [H̃ , N] = 0, where N = ∑L
j=1 σ+

i σ−
i , we can

order the degenerate eigenstates |�r,s〉 with the same eigen-
value η0

r,s from the smallest to largest in order of Nr,s ≡
〈ψr |N |ψr〉 + 〈ψs|N |ψs〉. Simple analysis shows that the first
term of L1+ has no effect on the eigenvalues of W and thus
does not contribute to η(1)

r,s . Then we obtain the Liouvillian
spectrum

η = i(Er − Es) −
∑

μ

γμ

(
nr

μ + ns
μ

)
(8)

under the first-order approximation and the Liouvillian gap

�g = min
η

′{�(−η)} = 2min
r

′
{∑

μ

γμnr
μ

}
, (9)

in which both Er and Es being the eigenvalues of the Hamil-
tonian and nr

μ ≡ 〈ψr |σ+
μ σ−

μ |ψr〉, min
r

′{xr} ≡ min
r

{xr |xr 
= 0}.
In our model, μ = 1, L, it can be seen that the Liouvillian
gap corresponds to the minimum of nonzero sum of 2(γ1nr

1 +
γLnr

L ), where nr
1 (nr

L) represents the left (right) boundary den-
sity of the rth eigenstate of the underlying Hamiltonian H . For
the case γ1 = γL = γ , we have

�g = 2γ min
r

′(nr
1 + nr

L

)
, (10)

which indicates that the Liouvillian gap is proportional to the
minimum of boundary densities of eigenstates of the underly-
ing Hamiltonian.

Now we apply Eq. (10) to give a theoretical interpretation
for the different scaling relations of the Liouvillian gap in
localized and extended phases. For simplicity, we shall focus
on the case of γ1 = γL = γ in the following discussions and
calculations. Equation (10) does not rely on the details of un-
derlying Hamiltonian, and the Liouvillian gap is only relevant
to the boundary densities of eigenstates of H . For the noninter-
acting Hamiltonian described by Eq. (3), solving Liouvillian
gap only needs to consider the single-particle space of the
Hamiltonian. When the system is in a localized phase, the

modulus of a localized wave function can be approximately
described by |ψr ( j)| ∝ e−| j−r0|/ξr , where r0 is the index of the
localization center and ξr is the localization length. Then the
corresponding density distribution is given by nr

j ∝ e−2κr | j−r0|,
where κr = 1/ξr is the Lyapunov exponent of the localized
eigenstate. For the quasiperiodic system described by the ex-
tended AAH model [see Eq. (14)], all eigenstates have the
same localization length and Lyapunov exponent, and thus
we can denote the state-independent Lyapunov exponent as
κ [given by Eq. (15) for the extended AAH model]. The
different localized eigenstate with the same localization length
can be characterized by different localization center r0, i.e.,
nr

j ∝ e−2κ| j−r0|. Then we can estimate the Liouvillian gap by
using Eq. (10), which gives rise to

�g ∝ 2γ min
r0

′{e−2κ (r0−1) + e−2κ (L−r0 )} ∝ γ e−κL. (11)

In general, the Lyapunov exponent of a localized eigenstate
of quasiperiodic and disordered systems is state-dependent,
e.g., the Lyapunov exponent of a localized eigenatate of the
quasiperiodic model (18) is given by Eq. (19), which is energy
dependent. The Lyapunov exponent κ (E ) takes its maximum
in the top of energy band, and thus applying Eq. (10), we can
estimate

�g ∝ γ e−κ (Etop )L, (12)

where Etop represents the eigenvalue of the localized eigen-
state on the top of energy band.

Now we apply Eq. (10) to give a theoretical interpretation
for the scaling relation of the Liouvillian gap �g ∝ L−3 in the
extended phase. For simplicity, we consider an extreme case
of Hamiltonian (3) with Ji = 1 and Vi = 0, then we have nr

μ =
2

L+1 sin2(krμ), where kr = rπ
L+1 . By using Eq.(10), it follows

�g = 2γ
(
n1

1 + n1
L

) = 8γ

L + 1
sin2

( π

L + 1

)
≈ 8γπ2L−3 ∝ γ L−3, (13)

which is consistent with results in references [6,13].

B. Liouvillian gap in boundary-dissipated quasiperiodic
and disorder systems

Our perturbative derivation of the Liouvillian gap does not
depend on the details of Hamiltonian. Equation (10) suggests
that the Liouvillian gap is closely related to the minimum of
boundary densities of eigenstates of the underlying Hamil-
tonian. As long as H supports localized eigenstates, similar
argument holds true by following the procedure of deriving
Eq. (12), and thus we expect the exponential scaling relation
of the Liouvillian gap is quite universal. To get an intuitive un-
derstanding, next we numerically study the scaling relation of
the Liouvillian gap in various boundary-dissipated quasiperi-
odic and disorder systems with equal boundary dissipation
strengthes γ1 = γL = γ .
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FIG. 1. (a) ln �g with respect to V and u for L = 200 and γ = 1. The dashed lines denote the phase boundaries of the underlying phase
diagram of the extended AAH model. (b) ln �g vs u for various size of lattices with V = 0.5. ln �g vs V for various size of lattices with
(c) u = 0.5 and (d) u = 1.5. Finite size scaling of the Liouvillian gap in (e) the extended phase and (f) the localized phase, where the black
dashed lines guide the value of �g = L−3 and �g = e−κL , respectively. Here L = 55, 89, 144, 233, 377 are chosen as the Fibonacci numbers.
Comparing the numerical fitting data a obtained from the finite size scaling with the analytical result of the Lyapunov exponent for (g) u = 0.5
and (h) u = 1.5. The data of (g) and (h) are the same as (c) and (d) in localized phase, respectively.

To be concrete, we first consider the quasiperiodic system
with H described by the extended AAH model [49–51]:

H = J
L−1∑
j=1

{
1 + u cos

[
2π

(
j + 1

2

)
α

]}
(c†

j c j+1 + H.c.)

+ V
L∑

j=1

cos (2π jα)c†
j c j, (14)

where α = (
√

5 − 1)/2, the hopping strength J defines the
energy scale and is set to 1, c†

j (c j ) is the fermion creation
(annihilation) operator, u represents the modulation amplitude
for the off-diagonal hopping, and V is the strength of the
on-site quasiperiodic potential. In the absence of boundary
dissipations, the phase diagram of AAH model is shown in
the Fig. 1(a) with the regions I, II, and III corresponding to
extended, critical, and localized phases, respectively [49–51].
The phase boundaries can be obtained with finite-size scaling
analyses for the wavefunction properties and level statistics
[49–51]. For the extended AAH model (14), we note that the
Lyapunov exponent can be analytically expressed as [50,55]

κ =
{

max
{

ln
∣∣ |V |+√

V 2−4u2

2u

∣∣, 0
} |u| � 1,

max
{

ln
∣∣ |V |+√

V 2−4u2

2(1+√
1−u2 )

∣∣, 0
} |u| < 1.

(15)

By using the above analytical result, the phase boundaries
between localized phase and extended (critical) phase can be
analytically determined.

Without loss of generality, we fix γ = 1 and calculate
the Liouvillian gap for various parameters u and V . The
value of ln(�g) is displayed in the underlying phase diagram
in Fig. 1(a), which indicates the Liouvillian gap exhibiting
different features in different phase regions. As shown in
Figs. 1(b)–1(d), ln(�g) also displays an abrupt change in
the phase boundaries of the underlying phase diagram. By

analyzing the size scaling of �g as shown in Fig. 1(e), we
demonstrate that the Liouvillian gap in the extended region
fulfills

�g(L) ∝ L−3, (16)

which is consistent with Eq. (13). In the critical region, the
Liouvillian gap approximately fulfills the algebraic form

�g(L) ∝ L−η,

where η > 3 is a nonuniversal exponent sensitive to param-
eters of u and V . The sensitivity to parameter u can be also
witnessed by the oscillation behavior in Fig. 1(b). For the
localized phase, the finite size scaling of �g in Fig. 1(f) shows
the Liouvillian gap taking the exponential form:

�g(L) ∝ e−aL, (17)

where a is a parameter-dependent constant. Our numerical
results unveil that a is identical to the Lyapunov exponent
of the localized phase with κ given by Eq. (15), which is
obviously independent of eigenvalues of localized states. In
Figs. 1(g) and 1(h), we plot the Lyapunov exponent versus V
according to Eq. (15) by taking u = 0.5 and 1.5, respectively,
in comparison with the numerical fitting data a obtained from
the finite size scaling, which indicates clearly a ≈ κ in the
whole underlying localized region.

To scrutinize the scaling relation for more complex
quasiperiodic systems, next we consider a quasiperiodic
system with a mobility edge described by the following
Hamiltonian [60]:

H = J
L−1∑
j=1

(c†
j c j+1 + H.c.) + 2λ

L∑
j=1

cos (2πα j)

1 − b cos (2πα j)
c†

j c j,

(18)
where α = (

√
5 − 1)/2 and b ∈ (−1, 1), the hopping strength

J defines the energy scale and is set to 1. While Eq. (18)
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FIG. 2. (a) Energy spectrum of Eq.(18) with respect to λ for L =
200 with the color representing the value of the Lyapunov exponent
of the eigenstate with the corresponding eigenvalue. The blue solid
line represents the exact mobility edge. (b) ln �g vs λ for various
size of lattices with b = 0.2; (c) comparing the numerical fitting data
a obtained from the finite size scaling with the analytical result of
Lyapunov exponent. (d) Finite size scaling of ln �g for 1D Anderson
model by averaging 100 samples. The insert in (d) shows the Lya-
punov exponent of 1D Anderson model for L = 200 by averaging
1000 samples.

reduces to the AAH model for b = 0, the model with b 
= 0
exhibits an exact mobility edge following the expression E =
2 sgn(λ)(1 − |λ|)/b. The Lyapunov exponent for the localized
state can be obtained from κ (E ) = max{κc(E ), 0} with the
analytical expression of κc(E ) given by [61,62]

κc(E ) = ln

∣∣∣∣∣ |bE + 2λ| +
√

(bE + 2λ)2 − 4b2

2(1 + √
1 − b2)

∣∣∣∣∣, (19)

where E denotes the eigenvalue of Eq. (18). In Fig. 2(a), we
show the energy spectrum with respect to λ of Eq. (18) with
b = 0.2 and the value of κ (E ) is denoted by the color. The mo-
bility edge can be determined by κc(E ) = 0, as illustrated by
the blue solid line in Fig. 2(a), which separates the extended
states from the localized states above it. It can be seen that
the nonzero value of the Lyapunov exponent would appear in
spectrum as λ increases across the mobility edge.

By fixing the boundary dissipation strength γ = 1, we
display the Liouvillian gap with respect to λ in Fig. 2(b)
for different system sizes. When λ exceeds a critical value,
corresponding to the emergence of mobility edge, the size
scaling relation of the Liouvillian gap has an obvious change.
The finite size analysis demonstrates that the Liouvillian gap
fulfills an exponential form �g ∝ e−aL. The exponent a with
respect to λ extracted from the exponential fitting of the data is
shown in Fig. 2(c), which is found to agree well with κ (Etop),
where Etop denotes the eigenvalue in the top of the energy
band with the corresponding Lyapunov exponent taking the
largest value. It turns out that the size scaling of Liouvillian
gap for this quasiperiodic model can be well described by

�g ∝ e−κ (Etop )L, consistent with Eq. (12) as predicted by our
theoretical analysis.

Finally, we study the boundary-dissipated 1D Anderson
model [26] with H described by

H = J
L−1∑
j=1

(c†
j c j+1 + H.c.) +

L∑
j=1

Vjc
†
j c j, (20)

where the on-site random potential Vj uniformly distributes
among [−V,V ], the hopping strength J defines the energy
scale and is set to 1. For the 1D Anderson model, the state
is always localized for arbitrarily weak disorder strength V .
By taking γ = 1 and V = 1, we calculate the Liouvillian gap
numerically and find it also fulfills exponential size scaling
relation �g ∝ e−aL with a ≈ 0.562, as shown in Fig. 2(d).
As no analytical expression for the Lyapunov exponent of the
Anderson model is available, we can numerically calculate the
Lyapunov exponent by using κ (E ) = ln(max(θ+

i , θ−
i )), where

θ±
i represents eigenvalues of the matrix � = (T †

L TL )1/(2L) and

TL(E , θ ) =
L∏

j=1

T j =
L∏

j=1

(
E − Vj −1

1 0

)
is the transfer matrix [39]. The numerical value of the Lya-
punov exponent versus E for V = 1 is displayed in the inset
of Fig. 2(d). The numerical result indicates that the Lyapunov
exponent for the Anderson model takes its maximum on the
band edges. Since the center of localized wave function ran-
domly distributes on the lattice site, we take an average over
10 states close to the band edges, which gives a mean value of
the Lyapunov exponent κ̄ ≈ 0.589 ± 0.066. It can be seen that
κ̄ matches well with a ≈ 0.562, i.e., the decaying exponent
can be described by the mean value of the Lyapunov exponent
close to band edges of the 1D Anderson model.

C. Relaxation dynamics

To see clearly how the relaxation timescale related to the
Liouvillian gap, we study the dynamical evolution of the
average occupation number for the extended AAH model
with boundary dissipation. The average occupation number
is defined as n(t ) = ∑L

j=1〈n j (t )〉/[
∑L

j=1〈n j (t = 0)〉], where

〈n j (t )〉 = Tr[ρ(t )c†
j c j]. We demonstrate n(t ) versus t for the

system of L = 30, u = 0.2, γ = 1, and various V with the
initial state chosen as the state localized at the center site 16
in Fig. 3(a) and a fully occupied state in Fig. 3(b), respectively.
For the open system with pure loss dissipation, the nonequi-
librium steady state is the empty state with n(t → ∞) = 0.
Since the late-stage dynamics of the system near a steady state
is governed by eigenmodes of Liouvillian whose eigenvalues
are close to zero, the relaxation times can be estimated by the
inverse of Liouvillian gaps, which are labeled by the black
lines in the Fig. 3 for guidance. It can be observed that the
inverse of the Liouvillian gap gives a reasonable timescale for
estimating the time of asymptotic convergence to the steady
state. With the increase in V , the relaxation time in the lo-
calized phase increases quickly in terms of τ ∝ eκL, which
can be approximately represented as τ ∝ |V |L and is much
longer than the relaxation time in the extended state as shown
in Fig. 3(c).
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FIG. 3. The average occupation number n(t ) in the localized
region of boundary-dissipated generalized AAH model for the initial
state chosen as (a) the state localized at the center site 16; (b) the
fully occupied state. (c) n(t ) in the extended region with the fully
occupied initial state. The black lines guide values of the inverse
of the Liouvillian gaps corresponding to different V . Here we have
taken L = 30, u = 0.2, and γ = 1.

Next we show the evolution of n(t ) for the boundary-
dissipated 1D Anderson model with L = 30, γ = 1 and
various V . The initial state in Fig. 4(a) is chosen as the state
localized at the center site 16, and in Fig. 4(b) is the fully
occupied state. For guidance, we also mark the values of the
inverse of Liouvillian gaps by the black dashed lines in the
figures. The dynamical evolution displays similar behaviors
as in the localized phase of the quasiperiodic system. In can
be found that the relaxation time increases quickly as the
strength of random potential V increases. Since the states in
the 1D Anderson model are always localized, the relaxation
time increases exponentially with the increase of system size
for any nonzero disorder strength V .

FIG. 4. The average occupation number n(t ) of 1D Anderson
model for the initial state chosen as (a) the state localized at the center
site 16; (b) the fully occupied state. The black lines guide values of
the inverse of the Liouvillian gaps corresponding to different V . Here
we take L = 30 and averaged 1000 samples for V > 0.

III. SUMMARY AND OUTLOOK

In summary, we study the size scaling relation of Liouvil-
lian gap of boundary-dissipated 1D quasiperiodic and disorder
systems both analytically and numerically. In the framework
of perturbation theory, we give an analytical derivation of the
Liouvillian gap by taking the boundary-dissipation terms as a
perturbation. Our analytical result unveils that the Liouvillian
gap is proportional to the minimum of boundary densities of
eigenstates of the underlying Hamiltonian, and thus gives a
theoretical explanation why the Liouvillian gap fulfills differ-
ent size scaling relations when the underlying system is in the
extended, critical and localized phase. When the underlying
Hamiltonian has localized eigenstates, the Liouvillian gap
displays an exponential size scaling with the decay exponent
determined by the largest Lyapunov exponent of the localized
eigenstates. The exponential size scaling relation was numer-
ically verified in various quasiperiodic and disorder systems.
By studying the dynamical evolution of average occupation
number, we show that the inverse of Liouvillian gap gives a
reasonable timescale for estimating the relaxation time.

The quasiperiodic optical lattices have provided an ideal
platform for studying the localization transition in one di-
mension [63,64], and schemes for engineering quasiperiodic
optical lattices in open quantum systems are proposed through
purely dissipative processes [65,66]. Manipulation of laser-
induced dissipations [67] at the boundaries allows us to study
the relaxation dynamics of the quasiperiodic lattices. As the
localization length in quasiperiodic optical lattice can be tuned
by engineering the strength of incommensurate potential, we
expect that the relation between the relaxation time and the
localization length of boundary-dissipated quasiperiodic lat-
tice could be unveiled in the experiment. By considering the
interaction effect, it is interesting to study the stability of the
many-body localized phase subjected to boundary dissipation
both theoretically [68] and experimentally.
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APPENDIX: FIRST-ORDER DEGENERATE
PERTURBATION OF THE LIOUVILLIAN GAP

In this Appendix, we give details of the perturbative calcu-
lation of the Liouvillian gap.

1. Matrix representation of Liouvillian superoperators

We consider a dissipative quantum system governed
by the Lindblad equation with the Hamiltonian given by
Eq. (3) and the boundary dissipation operators described
by the form of Eq. (2). Applying the Jordan-Wigner
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transformation to replace fermion operators with spin oper-
ators, c†

j = Pjσ
+
j , c j = Pjσ

−
j , Pj = ∏ j−1

l=1 σ z
l , we get

H (spin) =
L−1∑
j=1

Jj (σ
+
j σ−

j+1 + σ+
j+1σ

−
j ) +

L∑
j=1

Vjσ
+
j σ−

j , (A1)

L(spin)
1 = √

γ1σ
−
1 L(spin)

L = √
γLPLσ−

L . (A2)

In order to give the matrix representation of Liouvillian su-
peroperator, we introduce the Choi-Jamiolkwski isomorphism
that turns the matrix into a vector: ρ = ∑

mn ρmn|m〉〈n| →
|ρ〉 = ∑

mn ρmn|m〉 ⊗ |n〉, the Lindblad equation can then be
rewritten into the vectorized form d|ρ(t )〉

dt = L|ρ(t )〉 = (L0 +
L1)|ρ(t )〉 with

L0 = −i(H (spin) ⊗ I − I ⊗ H (spin)T )

= −i

[
L−1∑
j=1

Jj (σ
+
j σ−

j+1 + σ+
j+1σ

−
j − τ+

j τ−
j+1 − τ+

j+1τ
−
j )

+
L∑

j=1

Vj (σ
+
j σ−

j − τ+
j τ−

j )

]
(A3)

L1 =
∑

μ

[
2L(spin)

μ ⊗ L(spin)∗
μ − (L(spin)†

μ L(spin)
μ ) ⊗ I

−I ⊗ (
L(spin)†

μ L(spin)
μ

)T ]
= 2σ−

1 τ−
1 + 2Qσ−

L τ−
L −

∑
μ=1,L

(σ+
μ σ−

μ + τ+
μ τ−

μ ) (A4)

where σα
j , τ α

j (α = +,−, z) are the Pauli matrices, Q =∏L
j=1 σ z

j τ
z
j is the parity operator which satisfies [Q,L] =

0. Since the operator Q has two eigenvalues 1 and −1,
we can define the projection operators Q+, Q−, and di-
vide the Liouville superoperator space into two parts, thus
we have L = L+

⊕
L− = (Q+LQ+)

⊕
(Q−LQ−). We will

see later that if we consider only the first-order perturbation,
the part

∑
μ L(spin)

μ ⊗ L(spin)∗
μ that parity Q can affect does not

contribute to the Liouvillian spectrum, so we only need to
consider L+.

We label H̃ = ∑L−1
j=1 Jj (σ+

j σ−
j+1 + σ+

j+1σ
−
j ) +∑L

j=1 Vjσ
+
j σ−

j , L̃1 = √
γ1σ

−
1 , L̃L = √

γLσ−
L , then we

have

L0+ = Q+L0Q+ = −i(H̃ ⊗ I − I ⊗ H̃T ),

L1+ = Q+L1Q+ =
∑

μ=1,L

[2L̃μ ⊗ L̃μ
∗ − (L̃μ

†
L̃μ) ⊗ I

− I ⊗ (L̃μ
†
L̃μ)T ]. (A5)

The difference between H, L1, LL and H̃ , L̃1, L̃L is just
replacing c j, c†

j with σ−
j , σ+

j , we will drop the superscript
′′ ∼′′ of H̃, L̃μ in the following discussion.

2. Perturbation theory

We consider the boundary dissipation term as a pertur-
bation. The unperturbed part of the Liouvillian is a unitary
part, L0+ := −i[H, ρ], while the perturbation term is L1+ :=∑

μ(2LμρL†
μ − {L†

μLμ, ρ}) = γ
∑

μ(2L′
μρL′†

μ − {L′†
μ L′

μ, ρ})
with L′

μ = Lμ/
√

γ , where γ is a small quantity of dissipative
strength, which can be taken as the maximum of γμ. Here
the introduction of a perturbation parameter γ is for the
purpose of the convenience of perturbation calculation.
The vectorized form of the Liouville superoperator
L+ = L0+ + L1+ = L0+ + γL′

1+ can be written as

L0+ = − i(H ⊗ I − I ⊗ HT ), (A6)

L′
1+ =

∑
μ

[2L′
μ ⊗ L′∗

μ − (L′†
μ L′

μ) ⊗ I − I ⊗ (L′†
μ L′

μ)T ].

(A7)

The right eigenvectors of the unperturbed part L0+ can be
written as

|�r,s〉 := |ψr〉 ⊗ |ψs〉∗, (A8)

with both |ψr〉 and |ψs〉 are the eigenvectors of the Hamil-
tonian. The right eigenvalues of |�r,s〉 are η(0)

r,s = i(Er − Es),
where Er and Es are the eigenvalues of H with respect to the
eigenvectors |ψr〉 and |ψs〉, respectively. We assume that the
eigenvalue η(0)

r,s without perturbation is d (r, s)-fold degenerate,
and the corresponding eigenvector is denoted as set {|�r,s〉}.
Let P0 be a projection operator onto the space span of {|�r,s〉},
P1 = 1 − P0 to be the projection onto the remaining states.
Let |�r,s〉 denote the right eigenvectors of L+ with right
eigenvalues ηr,s, i.e.,

L+|�r,s〉 = ηr,s|�r,s〉. (A9)

Then it follows

0 = (ηr,s − L0+ − γL′
1+)|�r,s〉

= (
ηr,s − η(0)

r,s − γL′
1+

)
P0|�r,s〉

+ (ηr,s − L0+ − γL′
1+)P1|�r,s〉. (A10)

We note that [P0,L0+] = 0, [P1,L0+] = 0, P2
0 =

P0, P0P1 = 0. By applying P0 and P1 on Eq. (A10) respec-
tively, we can get two equations:(

ηr,s − η(0)
r,s − γP0L

′
1+

)
P0|�r,s〉 − γP0L

′
1+P1|�r,s〉 = 0,

(A11)

−γP1L
′
1+P0|�r,s〉 + (ηr,s − L0+ − γP1L

′
1+)P1|�r,s〉 = 0.

(A12)

Equation (A12) can be rewritten as

P1|�r,s〉 = γP1L′
1+P0

ηr,s − L0+ − γP1L′
1+P1

|�r,s〉. (A13)

Substituting it into Eq. (A11), we get

(
ηr,s − η(0)

r,s − γP0L
′
1+P0 − γ 2P0L′

1+P1L′
1+P0

ηr,s − L0+ − γP1L′
1+P1

)
P0|�r,s〉 = 0. (A14)
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For the eigenvalues to the first order of γ and eigenvectors to
the zero order, we obtain(

ηr,s − η(0)
r,s − γP0L

′
1+P0

)
P0|�r,s〉 = 0. (A15)

Define W = γP0L′
1+P0 = P0L1+P0 and η(1)

r,s = ηr,s − η(0)
r,s ,

then Eq. (A15) becomes

W (P0|�r,s〉) = η(1)
r,s (P0|�r,s〉). (A16)

The first-order Liouvillian spectrum correction η(1)
r,s is the

eigenvalue of the d (r, s)-dimensional square matrix W with
matrix elements Wk,k′ = 〈�k|L1+|�k′ 〉 := 〈�r,s|L1+|�r′,s′ 〉.

3. The Liouvillian gap

We assume [H, N] = 0, where N = ∑L
j=1 σ+

j σ−
j and L is

the system size, then the eigenstates of Hamiltonian have a
definite total number of particles. We can label the eigen-
states of the Hamiltonian in terms of energy eigenvalues, total
number of particles, and other expected values of physical
quantities: |ψr〉 = |Er, Nr, . . . 〉, r = 1, 2, . . . , 2L.

Considering the case with all dissipations taking the form
of loss: Lμ = √

γμσ−
μ , we have

(Lμ ⊗ L∗
μ)|�r,s〉 = Lμ|ψr〉 ⊗ L∗

μ|ψs〉∗ =
∑
r′,s′

gr′,s′ |�r′,s′ 〉.

(A17)
The operators Lμ will reduce the particle number of state |ψs〉,
and |�r,s〉 := |ψr〉 ⊗ |ψs〉∗ has a fixed total particle number
Nr,s = Nr + Ns. Using formula (A17), we have Nr′,s′ < Nr,s.
We can order the degenerate eigenstates |�r,s〉 with the same
eigenvalue η(0)

r,s from the smallest to largest in order of Nr,s.
For convenience, we relabel |�k〉 := |�r,s〉 with the double
index r, s replaced by a new index k, and Nr′,s′ < Nr,s can be
substituted by k′ < k. So only if k′ < k, we have 〈�k′ |(Lμ ⊗
L∗

μ)|�k〉 
= 0.

If η
(0)
k = i(Er − Es) = i(Er′ − Es′ ) = η

(0)
k′ , assume that the

eigenvalues of Hamiltonian has no degeneracy, then we have
δr,r′ = δs,s′ = δk,k′ . Labeling nr

μ = 〈ψr |σ+
μ σ−

μ |ψr〉, then we
have

〈�k′ |[I ⊗ (L†
μLμ)T ]|�k〉 = 〈ψr′ |ψr〉

(〈ψs′ |(L†
μLμ)†|ψs〉

)∗

= δk,k′γμns
μ, (A18)

〈�k′ |[(L†
μLμ) ⊗ I]|�k〉 = 〈ψr′ |(L†

μLμ)|ψr〉(〈ψs′ |ψs〉)∗

= δk,k′γμnr
μ. (A19)

It turns out that W is an upper triangular matrix with
eigenvalues of η(1)

r,s = −∑
μ γμ(nr

μ + ns
μ). Since the effect of∑

μ Lμ ⊗ L∗
μ appears in the off-diagonal part of W , the effect

of different parity is not reflected in the first-order perturbation
correction of the Liouvillian spectrum, but in the higher-order
perturbation correction.

We obtain the first-order modified Liouvillian spectrum

η = i(Er − Es) −
∑

μ

γμ

(
nr

μ + ns
μ

)
(A20)

and Liouvillian gap

�g = min
η

′{�(−η)} = 2min
r

′
{∑

μ

γμnr
μ

}
, (A21)

where min′
r{xr} ≡ minr{xr |xr 
= 0} means taking the mini-

mum among all nonzero elements of xr .
If all dissipations take the form of gain, Lμ = √

γμσ+
μ ,

following the similar calculation, we have

η = i(Er − Es) +
∑

μ

γμ

(
nr

μ + ns
μ − 2

)
,

�g = 2
′

min
r

{∑
μ

γμ(1 − nr
μ)

}
. (A22)

In the situation that we are considering here, we can see
that the Liouvillian eigenvalue, which determines the Liouvil-
lian gap, is given by adding perturbation to the zero eigenvalue
of L0.

Lemma 1. Given a one-dimensional Hermitian quadratic
Hamiltonian H composed of fermions (or bosons), its
single-particle eigenvalues and eigenstates are denoted as
ε j and |ϕ j〉, respectively. We select a sequence −→ν =
(ν1, ν2, . . . , νL ) with ν j ∈ {0, 1}(or ν j ∈ N) and label
the multiparticle eigenstate corresponding to the eigenvalue
E−→ν ≡ ∑L

j=1(ν jε j ) of H as |ϕ−→ν 〉, then we have ∀m ∈
{1, 2, . . . , L}, 〈ϕ−→ν |c†

mcm|ϕ−→ν 〉 = ∑L
j=1 ν j〈ϕ j |c†

mcm|ϕ j〉.
According to the Lemma 1, when the dissipation terms are

only loss, solving Liouvillian gap only need to consider the
single-particle space of the Hamiltonian. For the GAA model
in the localized phase, we have n j

μ ∝ e−2κ|μ− j0|. Considering
the dissipation L1 = √

γ c1 and LL = √
γ cL, we get

�g ∝ 2min
j0

′{γ e−2κ ( j0−1) + γ e−2κ (L− j0 )}

=
{

4γ eκe−κL, when L is odd,
2γ (1 + eκ )e−κL, when L is even,

(A23)

which gives rise to �g ∝ γ e−κL for any L.
Similar analyses can be carried out for the extended phase.

Consider the limit case of the extended AAH model with
V = u = 0, for which the expectation value of a local density
operator for the jth eigenstate under open boundary condi-
tion is given by n j

μ = 2
L+1 sin2(k jμ), where k j = jπ

L+1 with
j = 1, . . . , L and μ is the label of site. It can be found that the
boundary density at μ = 1 and μ = L is minimum for j = 1
or L, i.e.,

�g = 2γ
(
n1

1 + n1
L

) = 8γ

L + 1
sin2

( π

L + 1

)
≈ 8γπ2L−3.

(A24)
The last approximation holds if L is large enough. This deriva-
tion gives an explanation why the Liouvillian gap for the
extended state scales in terms of �g ∝ γ L−3.

Now we give the proof of lemma 1: We consider that the
Hamiltonian has quadratic fermionic (or bosonic) form:

H =
L∑

l, j=1

hl, jc
†
l c j, (A25)
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where h can be diagonalized with matrix P constructed from a single-particle eigenvector |ϕ j〉:
h = P�P−1, P = [|ϕ1〉 |ϕ2〉 · · · |ϕL〉]. (A26)

The Hermitian property of the Hamiltonian guarantees that P−1 = P†. The Hamiltonian can be written as a diagonal form in the
new fermion(or boson) operator dj ,

H =
∑

j

ε jd
†
j d j, (A27)

where we denote ε j as energy eigenvalues which are the entries of the diagonal matrix � and cm = ∑
j Pm jd j .

In the d-fermion (or boson) representation, the many-particle eigenvector can be written as

|ϕ−→ν 〉 := |ν1, . . . , νL〉 =
[
�L

j=1

(d†
j )ν j√
ν j!

]
|0〉, ν j ∈ {0, 1} (or ν j ∈ N ), (A28)

with the eigenvalue E−→ν = ∑L
j=1(ν jε j ) and |0〉 is the vacuum state. Then the occupation number of the many-particle state can

be calculated via

〈ϕ−→ν |c†
mcm|ϕ−→ν 〉 =

L∑
l, j=1

P†
l,mPm, j〈ν1, . . . , νL|d†

l d j |ν1, . . . , νL〉

=
L∑

l, j=1

P†
l,mPm, jδl, jν j =

L∑
j=1

ν jP
†
j,mPm, j =

L∑
j=1

ν j〈ϕ j |c†
mcm|ϕ j〉.
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