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Multicomponent spin-singlet superconductors with competing 0- and 7 -pairing couplings, as in s, and si
phases, are close to instabilities with a spontaneous breaking of time-reversal symmetry. We demonstrate that the
modification of the kinetic energy of superconducting electrons in a doubly connected superconducting cylinder,
determined by the applied flux, generally drives transitions from chiral superconducting states to configurations
that are time-reversal symmetric. This magneto-topological-induced changeover is investigated by means of a
Ginzburg-Landau approach for a two-band superconductor with interband interactions and impurity scattering
investigated for the case of a sample in the form of a mesoscopically thin-walled cylinder. We find that the
application of a magnetic flux can convert a chiral sy + is,, state into a s configuration and vice versa or
tune the energy splitting of chiral states having inequivalent pairing amplitudes. We discuss signatures for the
detection of these phases and of the corresponding transitions in mesoscopic superconducting loops.

DOLI: 10.1103/PhysRevB.106.054517

I. INTRODUCTION

One of the major challenges in condensed matter physics
is to unravel the fundamental structure of the electron pairing
in unconventional superconductors. This problem is of special
relevance for correlated electron materials where pairing with
either breaking of time reversal or inversion symmetry can
occur. Paradigmatic examples in this context are represented
by strontium ruthenate [1,2], iron-based [3-5], noncentrosym-
metric [6], and heavy-fermion superconductors [7].

Since most unconventional superconductors are marked
by a mult-orbital electronic structure, emergent anomalous
behaviors are expected due to the multicomponent character
of the superconducting order parameter. A typical manifesta-
tion is given by intrinsic m-phase shift or 7 pairing, i.e. an
antiphase relation between the superconducting order param-
eters in different bands. This type of band-dependent phase
rearrangement is at the heart of unconventional supercon-
ductivity in iron-based [5,8], oxide interface superconductors
[9,10], electrically or orbitally driven superconducting phases
[11-14], and multiorbital noncentrosymmetric superconduc-
tors [9,11,15,16].

Clear-cut challenges in this framework are to assess
whether the superconducting phase frustration in the presence
of competing 0 and 7 pairings leads to time-reversal sym-
metry breaking [5,8,17] and, in turn, to single out specific
detection schemes for accessing the complexity of multicom-
ponent superconductors.

To these aims, in this paper we demonstrate that for a
superconductor with competing pairing channels with 0 and
7 coupling, the response to an external magnetic flux, in a
suitably designed nonsimple connected mesoscopic geometry
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(see Fig. 1), generally leads to transitions from phases with
broken time-reversal symmetry (BTRS) to time-reversal sym-
metry conserving states. The analysis is based on a two-band
superconducting model whose repulsive interband interac-
tions and interband impurity scattering set out a chiral phase
with the chiral order parameter having si + is;4 symmetry.
We unveil how the modification of the kinetic energy of the
superconducting electrons in a doubly connected supercon-
ducting cylinder drives a transition between chiral phases
and time-reversal conserving configurations with m pairing
(s+). Interestingly, the application of the magnetic flux can
also tune the energy difference between chiral phases with
a different amplitude of the superconducting order param-
eter. These findings are characteristic of any configuration
with nonsimple connected geometry and indicate a general
transition behavior when a superconductor, with time-reversal
symmetry breaking associated to a phase frustration of the
internal degrees of freedom, is subjected to a magnetic flux
in a superconducting ring.

II. FORMALISM AND METHODOLOGY

We use the Ginzburg-Landau (GL) theory applied to a dirty
two-band superconductor. For this physical case, by means of
the Usadel equations one can deduce the Gibbs free energy G
[18,19] which is generally expressed as

(rot A —H)* ,
G=F+F+F,+ Td r, (D)

where F; are the partial contributions of the ith band, and
Fy, is the component arising from the interband interaction

©2022 American Physical Society


https://orcid.org/0000-0002-6026-5700
https://orcid.org/0000-0002-7325-8331
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.054517&domain=pdf&date_stamp=2022-08-24
https://doi.org/10.1103/PhysRevB.106.054517

YERIN, DRECHSLER, CUOCO, AND PETRILLO

PHYSICAL REVIEW B 106, 054517 (2022)

which is also affected by the presence of interband impurity
scattering. The last term describes the contribution of an exter-
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nal magnetic field. The expressions for F; and Fj, are provided
below:
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Here, A; = |A;|exp(iy;) are complex order parameters and
¢ = x» — x1 is the phase difference. The coefficients of the
Gibbs free energy functional are reported in Appendix A.
The coefficients b, c;j, and k> in Eq. (4) are absent in the
case of a clean two-band superconductor. They are a direct
consequence of the contribution of the interband impurities,
whose strength is characterized by the interband scattering
rate I", being proportional to the impurity concentration.

The main idea behind the magneto-topological transitions
is to exploit a combined use of doubly connected topology
and external magnetic field. To this end, as an illustrative
example of such physical scenario we consider a long tube
(L is the length) with a thin wall, with a thickness d that is
assumed to be much smaller than the characteristic coherence
length(s) &, &, while the radius R = I# has to be larger

(Fig. 1). When the condition % < 1 is fulfilled, where A is
the weak-field penetration depth, the Meissner effect is small
(for more details, see Ref. [22]). The cylindrical coordinates
(r, @, z) are introduced, where the z axis coincides with the

axis of a cylinder. The constant external magnetic field H

FIG. 1. Sketch of the geometrical configuration for the examined
problem [20,21] with a thin cylinder. H is the applied magnetic field
along the z axis of the cylinder. The ring has an internal (external)
radius which is given by R; (R,), respectively.

2 2
+ (mv - —eA) A’{(—ihV _ —eA) A2:| }d3r. (4)
C C

(

is applied along the symmetry axis with the vector potential
A=(0,A,(r),0), Ay,(r)= % [Fig. (1)]. This allows us to
neglect the r and z dependencies of the order parameter,
which are relevant for thick short tubes. Also, these conditions
preclude the formation of vortices in the wall of the cylinder
and guarantee that self-induced magnetic fields are small.

Bearing in mind the doubly connected topology of the
superconductor, we diagonalize the Gibbs free energy and
reduce it to the following expression (see details of the deriva-
tion in Appendix B):

G 1 1
V= Fo+|:(§k11 |A; |2+§k22|A2|2+k12|A1||A2| <305<15>h2612

+2(an| A1l Ag] + cii | AP Az] + el Al Az*) cos ¢
+c12|A1|2|A2|20052¢1|, (5)

where V; = 27 RLd is the volume of the material part of a
cylinder and Fj is

Fy = an|Ar* + anl|Axl + b1 | A + by Ay

+ b2l AP As (6)

Here, we introduce the wave vector g(®) = % miny (N — % ),

which is expressed through the winding number N. The wind-
ing number N arises from the topological properties of the
cylinder (its double connectedness) and the quantization rule
for the order parameter phases

f Vi - dl = 27N, %)
C

where C is an arbitrarily closed contour that lies inside the
wall of the cylinder and encircles the opening and N; =
0, £1, 42, ... are winding numbers for the ith component
of the order parameter. The expression for the Gibbs free
energy Eq. (5) is obtained within the assumption of a ho-
mogeneous state, i.e., Ny = N, = N, taking into account the
symmetry of the problem and the continuity conditions. We
will not consider different inhomogeneous solutions for the
examined problem when N; # N, (see Appendix B). We
note that inhomogeneities add extra complexity to the prob-
lem as several unconventional states can arise. For instance,
in the bulk of a multicomponent superconductor fractional
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vortices can occur [19,23-27], while in the case of a doubly
connected topology, with magnetic vortices in the volume
of the superconductor being energetically unfavorable, an
inhomogeneous state of solitons type can form [22,28-30].
Solitons also occur in the case of planar geometry generating
a phase kink of the sine-Gordon type [31-34]. Moreover,
some inhomogeneous solutions are marked by nonequilib-
rium phase textures [35,36], domain walls [37], or unusual
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing [38-40]
and other configurations arise from the interplay of the ge-
ometry of the superconductor and the spatial dependence of
the magnetic field in the superconductor [41—43].

The calculation of the functional derivatives dG/d¢ = 0,
dG/9|A1| =0, and 0G/3d|A;,| = 0 leads to equations for |A,|
and allows us to obtain solutions for the parameter ¢ (see
details of the derivation in Appendix B):

which corresponds to s 4 and s+ symmetry, respectively. The
most interesting case is the BTRS solution with an arbitrary ¢
and the accompanied chiral symmetry sy + is,

kiah*q* + 2(ain + el A1 * + exnlAsl?)
cos¢p = — )]
4cia| Ar]A,|

which gives rise to two solutions for the phase difference and
consequently leads to a sort of frustration with two degener-
ate ground states and spontaneously broken Z, time-reversal
symmetry.

For g = 0 and for the BTRS states, one can derive analyti-
cal solutions for the amplitudes of the superconducting order

sing=0=¢=0, ¢=m, ®) parameters. There are two solutions which are expressed as
|
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The subsequent substitution of the expression for the phase difference in the BTRS state given by Eq. (9) into Eq. (5) yields

the following fourth-order polynomial of ¢
G_, 1 [kfzh“q“
8

0
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III. PHASE DIAGRAM

By solving Eq. (9) for ¢ in the BTRS state one can
determine its domain of stability as a function of tempera-
ture and interband scattering rate I" in the equilibrium phase
when g = 0, i.e., without a magnetic field. Such case is the
initial point for the demonstration of the magneto-topological-
induced transitions of the order parameter. To construct the
phase diagram we choose the first set of the expressions for
the order parameter moduli as given by Eqs (10) and (11)
and substitute them into Eq. (9). Based on the microscopic
expressions for the coefficients provided in Appendix A we
show the boundary line of the BTRS state for the intraband
A1 = 0.35, Ay = 0.347 and for weak repulsive interband
interaction constants Ay = Ay = —0.01 (Fig. 2).

The narrow region in Fig. 2 corresponds to the BTRS state
with si +isy symmetry, while the red and blue regions
indicate the emergence of s+ and s, respectively. We point

(

out that the lower bound of the temperature interval in the
phase diagram shown in Fig. 2 may be out of range of the
applicability of the GL theory for a dirty two-band supercon-
ductor. Thus, one has to apply the microscopic theory for the
description in the whole temperature range [44]. Nevertheless,
as we will see below this does not significantly affect our
conclusions. Moreover, for a given value of the interband
scattering rate we choose the temperature in such a way that it
is sufficiently close to 7. to obey our phenomenological model
calculations (see details in Appendix C).

It should be noted that according to numerical calculations
the second set of expressions for the order parameter moduli
Egs. (12) and (13) leads to a similar phase diagram in Fig. 2
with the BTRS domain slightly shifted to larger values of
I". In the following we will use the phase diagram based on
Egs. (10) and (11) since the corresponding solution exhibits
the lower energy as shown (discussed) below.
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FIG. 2. Phase diagram of the ground state for a dirty two-band
superconductor determining the phase difference ¢ as a function of
interband scattering rate I" and temperature 7 (normalized for critical
temperature Ty of a clean two-band superconductor) with the set of
intra- and interband constants A;; = 0.35, Ay, = 0.347, and A}, =
A1 = —0.01. For the sake of clarity the zoom of the BTRS domain
is shown in the inset.

Finally, the borders of the BTRS domain are determined by
the stability conditions deduced from the positive definiteness
of the determinant of the Hessian matrix that is composed by
the second derivatives of the Gibbs free energy with respect to
the phase difference and the order parameter moduli.

IV. MAGNETO-TOPOLOGICAL TRANSITIONS

Now we proceed to the main outcome of our paper. We
demonstrate that the application of the magnetic field can
lead to competing superconducting configurations marked by
a change of the amplitude or the phase of the superconducting
order parameter. As a hallmark of the magneto-topological
scenario, we find periodic transitions as a function of the
magnetic flux. To illustrate the main outcomes, we choose a
representative set of parameters for which the phase diagram
has been determined in the equilibrium state (Fig. 2). The tem-
perature and the corresponding value of I" are chosen in the
region of the parameter space associated to the BTRS state,
where the “width” of this region is not vanishing. To comply
with such a condition we assume that 7 = 0.7, and I" =
0.079 82T,. For the given value of T the critical temperature
of a two-band superconductor is approximately 7. = 0.857;
as can be evaluated from the microscopic calculations (see
details of the derivation in Appendix C and Fig. 4 therein).

Then, we compare the Gibbs free energy of BTRS and non-
BTRS states with s+ + is, 4 and s+ symmetry, respectively, as
a function of applied magnetic flux when g # 0. We perform
numerical solutions for |A;| and |A,| on a dependence of ¢
that are then substituted into expressions for G of the non-
BTRS state with s pairing symmetry, Eq. (5), and of the
BTRS state with s+ + is;4 symmetry, Eq. (14). The behavior
of these energies is shown in Fig. 3. One can see that G of
the BTRS state (blue and red lines) either crosses (blue line)
the curve of the G for the non-BTRS state (black line) or just
touches it (red line). In the latter case the intersection occurs
at the boundary of the stability region of the BTRS state (see
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FIG. 3. (a) The Gibbs free energy of a dirty two-band supercon-
ducting cylinder in units of N, E%VS with Ay = 0.35, Xy, = 0.347,
Ap = Ay = —0.01, and " = 0.07982/T,, for two splitting BTRS
states (red and blue lines correspond to solutions with different
amplitude of the superconducting order parameter) and for the non-
BTRS state (black line). Orange and cyan regions separate domains
with different pairing symmetries. (b) Zoom of the phase diagram
for values of the magnetic flux associated to the first sequence of
transitions. The ratio of diffusion coefficients D,/D; = 2.
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FIG. 4. The critical temperature 7. of a dirty two-band super-
conductor as a function of the interband scattering rate I with
A = 0.35, Xy = 0.347, and A, = Ay; = —0.01. The values of T,
and I are calibrated to the critical temperature of a two-band super-
conductor without impurities 79 and I' = 0, respectively. The blue
dot corresponds to the value of I' = 0.079 827, (and consequently
T. = 0.8485T,y), which is used in the main paper for the illustration
of the order parameter symmetry oscillations.
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the zoom of Fig. 3). Hence, we demonstrate that a periodic
oscillation from s+ + is,  to s+ and vice versa is achieved in
the doubly connected topology due to the magnetic field.

At first glance it may seem somewhat surprising to
have two different stable energy states in the BTRS domain.
However, firstly we recall the existence of two stable solutions
for |A;| in the equilibrium state as given by Egs. (10)—(13),
and as a consequence of them there are two distinct boundary
lines. Secondly, the BTRS is a superposition of two different
superconducting components. They behave like a doublet
and the presence of interband impurities acts as an effective
magnetic field thus inducing inequivalent configurations.
This scenario is based on the assumption that the impurity
scattering is weak enough not to induce a transition to an
s+ state in the bulk. To the best of our knowledge this issue
has not yet been addressed for the case of weak repulsive
interband couplings in the literature. In this context, one has
to refer to other studies which have been developed within the
framework of Eliashberg theory [45,46]. For our approach,
one can use the 7.-value obtained for vanishing repulsive
interband couplings and very small attractive interactions
yielding 0.817735T,, in the weak-coupling case and the
intraband parameters considered above [see Egs. (D1) and
(D2) in Appendix D]. Such value is still well below the
point (blue) corresponding to 0.84857; as shown in Fig. 4
in Appendix C. The analysis for realistic impurity couplings
and configurations is left for future investigations.

Our numerical calculations admit the onset of oscillations
between the s + is; 1 and s, type symmetries of the order
parameter for large values of I', at the upper border of the
BTRS domain (see Fig. 2). However, within the microscopic
consideration it has been shown already that for the strong
interband scattering effect (large values of I') a two-band
superconductor can behave as an effective one-band dirty
superconductor [47]. Since the magneto-topological scenario
is introduced within the phenomenological approach we focus
on transitions from an sy 4+ is state to an s1 state and vice
versa, which occur for small values of I".

V. DISCUSSION

We argue that the unveiled magneto-topological transi-
tions are not only relevant for multiband superconductors
but also for artificially engineered systems with compet-
ing 0- and m-Josephson couplings [48,49]. Moreover, while
the results have been demonstrated for the case of a cylin-
der, they can be directly extended to other superconducting
loops having an Euler characteristic that is zero like for
the torus and the Mobius strip. In the latter case, one may
expect a richer scenario of transitions from chiral to nonchi-
ral configurations thus augmenting the manifestations of the
magneto-topological-induced scenario. It should be noted that
this topological requirement of zero Euler characteristic is
essential for the quantization of phases of the multicomponent
order parameter.

Let us point out that inhomogeneous states, like phase
solitons due to additional degrees of freedom of the multi-
component order parameter, have significantly higher energies
compared to the homogeneous states addressed here [20-22].
Therefore, we excluded them from the present study.

Although the analysis has been performed for a two-
component superconductor, the form of Eq. (14) suggests
another generalization of our results. Indeed, Eq. (14) for-
mally reminds one of the structure of the GL energy in the
case of an FFLO state due to its fourth-degree polynomial
in terms of g [50,51]. This analogy indicates the possibil-
ity of having magneto-topological-induced transitions for the
FFLO state in conventional superconductor-ferromagnetic (S-
F) heterostructures with the doubly connected geometry [52].
There, instead of inducing transitions by means of temper-
ature or material parameters (e.g., thickness of the S or F
layers, conductivity, etc.) one can manipulate homogeneous
non-FFLO and FFLO states by means of the magnetic flux.

Another interesting perspective is to consider a dynami-
cal manipulation of the chiral and time-reversal symmetric
states. It is known that ultrafast light allows one to control
different states of matter, also encompassing the phenomenon
of superconductivity. For instance by light pulse, one can
cause a superconducting state to appear for a short period
even at temperatures that are higher than 7. [53-57]. Here,
we envision the possibility of inducing either amplitude or
phase oscillations by employing a time-dependent perturba-
tion which can couple the s + is; and sy superconducting
configurations. Thus, we argue that a sort of dynamical chiral
superconductivity can be obtained by suitably using a combi-
nation of static and time-dependent electromagnetic fields.

From an experimental point of view, the periodic tran-
sitions of the superconducting phases can be detected by
probing the current-induced magnetic flux response. Since the
supercurrent j in the loop is given by j ~ dG/dq it directly
follows that a magnetic flux should induce jumps in the cur-
rent density.

VI. CONCLUSIONS

We have demonstrated that a superconducting phase with
BTRS arising from a phase frustration between 0 and m
pairing will undergo a transition into a time-reversal sym-
metric state by applying a magnetic field in a nonsimple
connected geometry. This finding can be qualitatively under-
stood by observing that the interband phase frustration can
be released by the presence of the magnetic flux because the
magnetic vector potential directly affects the relative phase
of the superconducting components. Then, a time-reversal
symmetric configuration dominated by one of the two pair-
ing channels becomes energetically favorable. In this context,
one can also expect that a transition from sy + is; 4 to sy
might emerge in suitable microscopic conditions. The un-
veiled magneto-topological transitions resemble the case of
triangular spin-frustrated systems where the application of
magnetic field leads to a transition from a chiral (noncollinear)
spin state to a collinear one. Along this line, we argue that dy-
namical effects can be exploited for accessing the structure of
unconventional superconductors by searching for transitions
between chiral states having different amplitudes of the order
parameter or from chiral to nonchiral phases.
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APPENDIX A: GL COEFFICIENTS

The coefficients of the GL theory, derived from the microscopic Usadel equations, are defined as follows [18,19]:

Ajj - o+ Ajj 1 T r 1
i = N; I 2nT - YV |= N; o In ( ) — — N Al
“ <det)»,~j T gw(w+f‘,~j +Fj,')) |:detki_j A + Y3 T[T v 2 (AD

Aii “e T
ajj = —N; . +271TZ—/ , (A2)
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~ oo+ T +Tj)
D; ['ji)+ D; I
klj — 2N sznTZ (a)+ J )"f‘ ((1)+ j)’ (A8)

~ oo+ T +T)
where w = (2n + 1)z T are Matsubara frequencies, w, is the cut-off frequency, V; are the densities of states at the Fermi level,
Aij and I';; are coupling constants and interband scattering rates that characterize the strength of the interband impurities, and D;
are diffusion coefficients. For the sake of simplicity and without loss of generality we put ;o = A1, [';p = ['p;, and Ny = N, in
the main paper.

In principle, Egs. (A2)—(A8) admit exact summation and can be expressed in terms of polygamma functions. However, we do
not provide these expressions due to their cumbersome forms.

APPENDIX B: DIAGONALIZATION OF THE GIBBS FREE ENERGY AND THE DERIVATION OF MAIN EQUATIONS

To diagonalize the functional given by Eq. (1) we introduce new functional variables: the phase difference ¢ and the weighted
average phase 6 [58]:

xi—x2=¢, lhixi+hx=0, (B1)

where /| and /, are some coefficients to be determined below.
To determine the ratio between the new and old functional variables entering, Eqs. (B1) must be solved:
lz 1 [ 1
+ Vo, Vo= 0 —
TETARE AL A A
After the substitution of Eqs. (B2) the expressions for the partial and interband components of the Gibbs free energy entering
Egs. (2)-(4) transform to

Vo. (B2)

V=

1 1 1 L 2e
Fi = AP+ =bi A+ =k B AP Vo Vo — —A d3, B3
1 /|:6l11| 1l +2 1lA] +2 1A Ay L +ll+lz 0] 7 r (B3)
F =[ an|A |2+1b |A |4+1k B2 Ay 2 L yg_ N ¢——A 2 d°r (B4)
2 22 2 ) 22 2 ) 22 2 ll+12 ll+lz Ch )

F12=f[2(alz|A1||Az|+cu|A1|3|A2|+c22|A1||A2|3>cos¢+clz|A1|2|A2|2cos2¢+b12|A1|2|A2|2

1 o 2e 1 L 2e
+hkpR2| AL A ( Vo + v ——A)( Vo — ——A) cos ¢ |d’r. B5
1A Al Azl 14 pa—— ¢ 7 14 15 Vo ; ¢ (B5)
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Putting /; 4+ I, = 1 and setting zero the coefficient with the product term V8 - V¢ one can obtain explicit expressions for the
coefficients /; and /:
kil A1l + kio Al Azl cos ¢ knlAal® + kio A1 A cos ¢

T I 1A+ k| Ao+ 2k | AL 1A T R A P kol Ao + 2kl A 1A ' (56)
1AL + k| Ao ™ + 2k12| Ay Az cos ¢ 1A + k| Az |™ + 2ki2| A || Az cos ¢

L

Irrespective of a specific topology of a system under consideration after the diagonalization procedure for the density of the
Gibbs free energy, G can be rewritten in the compact form

G =F, +A<V9 - %A)z + B(V$)? 4+ Ccos ¢ + D cos2¢, (B7)
where
Fo = an|A1* + bl Arl* + an| Ax* + b Aa|* + bia| A1 P Az, (B8)
A= ($ki| A1 + k2| Aol” + kia| A ]| Az| cos @) 72, (B9)
B = (35ki| AP + 7kl Axl* — Libkin| Ay Az] cos @) A7, (B10)
C = 2(an| Al A2l + c11| AP | As] + el At Az ), (B11)
D = cip| AP A (B12)

The variational procedure applied to Eq. (B7) yields the Euler-Lagrange equations for the two phase variables 6 and ¢:

2e 2e
— (k1) A1 + ko | Ag|* + 2kia| Ay ]| As| cos¢>)v2(9 - c_hA> + 2k12| A1l A, sinqu(e — c_hA)V¢ =0,

8 (kiikay — k7 co8’@) | A1 A,
kil Ar1* + koo | Agl? + 2k1a| A ]| Az| cos ¢
 ki(ki ALl 4 1As] cos @) (kn| Aal 4 [Ai] cos §)| A1 Ag|* sin ¢
x (k11| A1 2 + koo Aal? + 2k12| Ay ] A cos )
+2(an| A1l As] + 1| AP Ag] + el At]| Az PP) sin g + 2¢12| A1 [*| Az | sin 2¢ = 0. (B13)

292 : 2e :
h°Vv ¢)+k12|A1||A2|SIH¢) hv 9——hA
C

(AV)

The first integrals of Eq. (B13) take the form
2e
(kit|A1P 4 k2| Aol + 2ki2] A1]] Az | cos ¢)V (9 - 5A> =K,

2¢ \71? kiikay — kcos?@)| A1 Ao
X(k11|A1|2+k22|A2|2+2k12|A1||A2|COS¢)|:hV(9——A>:| + (2 2 )
ch kil AP + koo | As|* + 2kia| Ar]| As| cos ¢

—4(ap] Al Azl + el AP A2l + el Arl]AzP) cos ¢ — 2¢1| A1 Arl* cos 2¢ = Ko, (B14)

Vo)

where K; and K are constants of the integration.
The first equation of the system Eq. (B14) allows one to express the gradient V(6 — f—;A) as a function of the second variable
¢ and and to substitute it into the second equation, thereby obtaining a nonlinear differential equation of the first order for ¢:

K? N 1 (kyikoy — kiycos?@)| AP As Vo)
kil Ar? + koo As* 4 2kia| Afl| Azl cos ¢ kiy| Ay* 4 kol Asl? + 2kia| Ay || Az cos ¢
—4(anl Al Az] + entlAP1AL] + el Arl] Az} ) cos ¢ — 2¢12] At 12| As|* cos 2¢ = K. (B15)

Equation (B15) provides an important tool for the study of all possible inhomogeneous solutions like FFLO state, phase
solitons, and other possible exotic phases for dirty two-band superconductors [28,30—40,43]. We would like to note that the
theoretical prediction of phase solitons has been obtained in Ref. [28] for an open one-dimensional geometry within the sine-
Gordon model assuming the characteristic kink solution. There, phase soliton solutions for a ring are shortly discussed assuming
a single winding number only. Hereafter we consider the case where soliton solutions are parametrized by two winding numbers
corresponding to phases of the two-component order parameter.

Being topological defects, phase solitons are forbidden in the bulk due to divergent total energy in the spatially unlimited case,
but they can have finite energy in special doubly connected topologies like in a thin-walled cylinder. In this case introducing
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cylindrical coordinates Eqs. (B13) must be supplemented by boundary conditions for each phase y; of the order parameter:
% Vyxi-dl =2nN;, (B16)
c

where C is an arbitrary closed contour that lies inside the wall of the cylinder and encircles the opening and N; =0, £1, £2, ...
are winding numbers. As the result of the symmetry of the problem and the continuity conditions this gives

dxi dxip
X1.2lpm0r — X120 = 27Ny 2, . = ’ , Nip=0,%£1,£2,... (B17)
=2 =0 d(p ¢=0 d(p =27
with the corresponding boundary conditions for the phase variables 6,
de do
Olp=rr — Oly=o = 270 (LN) + LN2), — = — , Ni2=0,%£1,%2,... (B18)
d(ﬂ =0 d(p =27
and ¢
d¢ d¢
¢|<p:271_¢|¢:022nna - = - s nle_NZZOa :i:l,:l:Z,..., (Blg)
d(p =0 d(p =27

where ¢ is the polar angle.
Since we are interested in a homogeneous state of the system Ny = N>, i.e., ignoring boundary effects of the tube, Egs. (B13)
can be significantly simplified:

920 R [860 D\’
— =0, kp|AillAzsing—| — — —
o R*\d¢p

+2(an] ArllAz] + et | AP 1 Az] + el Ar]AzP) sin @ + 2¢12| Ay [*] As|* sin 2¢ = 0. (B20)

The solution of the first equation in the system of Eqgs. (B20) for 6 is represented by a linear function of the winding number
N=N =N,

0(p) = Ny + 6(0). (B21)
In the case of a thin-walled cylinder the Gibbs free energy acquires the form

F F+f2ﬂd¢ 1k |A|2+lk |A)? + kia| Aq]] Az cos ¢ (e @
— = —_— — — COS —_— — — —
Vs 0 ) 27_[ ) 11 1 ) 22 2 12 1 2 R2 8(p (DO

1, , 1, 5 12 (9¢\*
+(§lzk11|A1| +§llk22|A2| —lllzk12|A1||A2|COS¢)ﬁ 90

+2(anl Al Az] + ci1l AP As] + el Atl]1AzP) cos ¢ + c12|A1|2|A2|2cos2¢}, (B22)

that after the substitution of Eq. (B21) and % = 0 leads to Eq. (5).
Minimization of the functional Eq. (5) yields equations for the order parameter moduli and the phase difference ¢:

kioH?
R2

|A1]]A2]g% sing + 2(an] Arl]As] + el At P Az + el Arl] A P) sing + 2¢12| A2 A, |* sin 2¢ = 0, (B23)

kil q?

k h2q2
<a11+ “2 >|A1|+b11|A1|3+b12|A1||A2|2+(a12+ +3C11|A1|2+622|A2|2>|A2|COS¢
+c12l Al Azl* cos 2¢ = 0, (B24)

kiah*q?
+ c11lA11? + 3¢l A ) |Af| cos ¢

kzzhzqz 3 2
axn + > [Az] + bl Aol” + bia| Af|7| Az + | a2 +

+ci2l AP Azl cos2¢ = 0. (B25)
The structure of the linear terms in Eqs. (B24) and (B25) indicates a formal redefinition of the coefficients and their periodic

dependence on the magnetic field due to the chosen topology.

APPENDIX C: MICROSCOPIC DESCRIPTION OF THE CRITICAL TEMPERATURE AS A FUNCTION OF IMPURITIES

The expression for the critical temperature as a function of the impurity scattering rate I can be obtained within the linearized
Usadel equations supplemented by the self-consistent equations for the energy gaps. The procedure of the derivation for a
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multicomponent superconductor has been described already in detail in Ref. [59]. Here we only give the final expression
without showing the suppression of the critical temperature 7, with respect to the critical temperature T,y of a clean two-band
superconductor without impurities when I' = 0:

r _ 2{lwAiInt 4+ A(A1; 4+ Ap) — 2w]Int
7T.)  2wilnt 4+ A1+ An — Az — Ay) — 2w’

(ChH

where we have introduced the new function U (x) = 1//(% +x) — ¥ ( %) expressed via the digamma function ¥ (x), t = T./T,o, A
is the largest eigenvalue of the matrix of intra- and interband coefficients, and w = det A;; = A11A2 — AppAog.

The numerical solution of Eq. (C1) is shown in Fig. 4. For the sake of clarity, we have marked with a blue filled dot the point
corresponding to the selected values of I and 7, used in the main text of the paper.

APPENDIX D: ESTIMATE FOR A TRANSITION TO AN s, STATE IN THE BULK

Within the weak-coupling approximation the critical temperature of a clean two-band superconductor is governed by the
exponential factor containing the involved four coupling constants A;; [see, for instance, Eq. (12) in Ref. [45]]:

T; ocexp(—1/4o), (DD

where Ao = “”2”\22 + \/ “”74’\22)2 + A12X21. Assuming a constant bosonic prefactor in Eq. (D1) as well as a tiny residual interband

attraction ¢ — +0, i.e., A;p = A12 + € and Ay; = Ay + &, the ratio of the transition temperature for a limiting s, ; state we look
for is given explicitly by

RS
T+t )»11/2—)»22/2—\/“”% + A2 o)
— A exp ,
T )»11()»11/24‘)»22/24‘\/@ + A12A21)

thereby X1, > A, has been assumed for the sake of certainty in accord with the adopted parameter set in the main text. Without
the auxiliary residual interband coupling we would arrive formally at a single-band superconductor given by the system “1”
decoupled from/coexisting with a system “2” remaining in the normal state at 7 = 7. In this sense Eq. (D2) provides a lower

bound for 7,** with always present residual attractive interband couplings.
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