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Unlocking the mystery of the strange metal state has become the focal point of high-Tc research, not because
of its importance for superconductivity, but because it appears to represent a truly novel phase of matter
dubbed “quantum supreme matter.” Detected originally through high magnetic field, transport experiments,
signatures of this phase have now been uncovered with a variety of probes. Our high resolution optical data
of the low-Tc cuprate superconductor, Bi2−xPbxSr2−yLayCuO6+δ allows us to probe this phase over a large
energy and temperature window. We demonstrate that the optical signatures of the strange metal phase persist
throughout the phase diagram. The strange metal signatures in the optical conductivity are twofold: (i) a low
energy Drude response with Drude width on the order of temperature and (ii) a high energy conformal tail with
a doping dependent power-law exponent. While the Drude weight evolves monotonically throughout the entire
doping range studied, the spectral weight contained in the high energy conformal tail appears to be doping and
temperature independent. Our analysis further shows that the temperature dependence of the optical conductivity
is completely determined by the Drude parameters. Our results indicate that there is no critical doping level
inside the superconducting dome where the carrier density starts to change drastically and that the previously
observed “return to normalcy” is a consequence of the increasing importance of the Drude component relative to
the conformal tail with doping. Importantly, both the doping and temperature dependence of the resistivity are
largely determined by the Drude width.

DOI: 10.1103/PhysRevB.106.054515

I. INTRODUCTION

Since the discovery of cuprate high-Tc superconductivity
thirty-five years ago, numerous studies of the optical proper-
ties were published. It may appear as an exhausted affair—
everything that could be measured has been measured—and
this is reflected in the reduced output over the last ten years or
so [1–9]. Nevertheless, high-Tc superconductivity continues to
be a fertile source of surprises [10]. If anything, the profundity
of the mystery pointing at a fundamentally different type of
physics has become more manifest in recent years. One aspect
is that the theoretical view on the physics behind transport
phenomena has been on the move. During the early history
of the subject, it was taken for granted that the transport
originates in a very dilute gas of thermally excited quasiparti-
cles as in conventional Fermi-liquid metals. Catalyzed by the
understanding of strongly interacting quantum critical states
of matter [11] and further elaborated by insights coming from
the AdS/CFT correspondence of string theory [12,13], it was
realized that in his regard Fermi liquids are singularly spe-
cial. Yet other states of strongly interacting quantum matter
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may be formed, characterized by dense many body quan-
tum entanglement [14]. Rooted in the advancements in the
general understanding of quantum (eigenstate) thermalization
[15], one expects that such non-Fermi liquids are character-
ized by extremely rapid thermalization and the absence of
quasiparticle excitations [14]. One then expects that the trans-
port in such systems eventually rests on the highly collective
flows described by hydrodynamics, or otherwise in the form
of “incoherent” transport. The latter should reflect simple
scaling properties related to what is found at thermal phase
transitions.

On the experimental side, doubts regarding the Fermi liq-
uid arose early in the form of the famous linear-in-temperature
DC electrical resistivity, ρ(T ) ∼ T . This linearity of the re-
sistivity in optimally doped cuprates extends all the way from
the superconducting Tc up to the melting point of the crys-
tal, with ρ becoming larger than what is expected from the
Mott-Ioffe-Regel minimal conductivity criterium expected in
normal metals. Given the high-Tc of these materials, one could
argue that the normal state is always in the phonon scattering
dominated regime. However, this linearity extends to sub-
kelvin temperatures when superconductivity is suppressed in
high magnetic fields [16]. The problem of principle has been
all along to explain why this behavior is so simple—dealing
with quasiparticles the resistivity should be a more interesting
function of temperature. Recently the “Planckian dissipation”
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[17] came into the limelight [18,19]. Taking for granted that
the DC transport is of the Drude kind, it was deduced that
the current relaxation (scattering) time τJ � τh̄. The Planckian
dissipation time τh̄ = h̄/(kBT ) is the quantum physical time
scale associated with dissipative physics at finite temperature
which appears naturally in the context of the quantum ther-
malization of densely entangled states of matter [20]. Claims
appeared recently that it is a remarkably ubiquitous property
present in hole-doped and electron-doped cuprates alike [21],
showing up also in a variety of noncuprate strange metal
systems [22].

In this recent era, the focus in cuprate research shifted to
the overdoped regime where especially DC magnetotransport
experiments revealed yet other anomalous properties. Initially
reported in electron doped cuprates [23], anomalous behav-
ior around a critical doping p∗ in the Hall resistivity was
observed. It was claimed that this indicates that the carrier
density jumps discontinuously from a semiconductor behavior
∼x (doping) to the Luttinger volume ∼1 + x associated with a
large Fermi surface [24]. Other groups subsequently reported
that there may not be a jump [25]. Regardless, the carrier
density in the overdoped regime as revealed by recent Hall
measurements develops in an anomalous way suggestive of
two charge reservoirs existing in parallel, a notion getting fur-
ther support by a highly anomalous magnetoresistance [26].
Contrary to the long standing belief that Fermi-liquid physics
resurrects beyond optimal doping, the evidence is now mount-
ing that the overdoped metallic state is yet another theatre to
study the “strange” physics.

Compared to DC transport, AC transport reveals much
more information regarding the fundamentals of transport. In
homogeneous media, linear response principles dictate that
the optical conductivity σ̂ (ω, T ) = σ1(ω, T ) + iσ2(ω, T ).
The dissipative [σ1(ω)] and reactive [σ2(ω)] parts, related
to each other through causality, can both be measured and
the DC conductivity corresponds with no more than the zero
frequency asymptote σ1(ω = 0, T ). The essence of what fol-
lows is that the analytical properties of the complex function
σ̂ (ω, T ) are a rich source of quintessential phenomenological
information. Having even not the faintest clue regarding the
microscopic physics one can extract some tight bounds that
are eventually rooted in symmetry principles.

Already when the first optical conductivity data appeared
in the late 1980’s [27,28] the large peak centered at zero
frequency observed in the strange metal regime was assigned
immediately to the Drude response, ubiquitous in normal
metals. It became gradually clear that the width of this peak
(the current relaxation rate) ∼1/τh̄ [29,30], while the Drude
weight is to good approximation temperature independent.
Since ρ(ω = 0, T ) = (ω2

pτJ )−1 in a Drude conductor, this
constitutes the evidence for the Planckian momentum life
time.

In text books, this Drude response is typically tied to
quasiparticles—by reference to the Sommerfeld model—and
it was conceptualized like this in this early era. However, such
a Drude response is actually completely generic for any finite
density charged fluid living in a spatial manifold characterized
by a weak translational symmetry breaking [20]. It just reflects
the fact that the total momentum of the fluid is long-lived
(see Sec. II). For instance, the “unparticle” fluids of AdS/CFT

also exhibit a Drude response under such circumstances
[31,32].

There is however excess spectral weight at higher fre-
quencies coined “midinfrared absorptions” (or generalized
Drude) [29,33,34]. However, in Refs. [30,35], it was shown
that conductivity response function in the energy range 0.1 <

ω < 1 eV has a special analytical form: it follows the branch
cut,

σ (ω) ∼ 1/(iω)α, (1)

where the “anomalous scaling dimension” α ≈ 0.7 at optimal
doping in the bilayer BSSCO system. This demonstration de-
mands the experimental availability of both σ1(ω) and σ2(ω);
next to the fall-off according to |σ (ω)| ∼ |ω|−α the property
of the branch cut that the phase angle is frequency indepen-
dent and set by απ/2 has to be reflected in the data and this
requires knowledge of both σ1(ω) and σ2(ω). Such a branch
cut is a typical scaling form associated with some form of
quantum criticality—it has been nicknamed the ‘conformal
tail’ referring to conformal invariance.

However, to which degree is the view that we just sketched
accurate? Are the transport phenomena in these strange met-
als reflected by hydrodynamical principle as suggested by
the recent theoretical advances? Is it rooted in quasiparticles
according to the long standing belief, or is it yet something
else? Given the gravitas of this affair, we do find that the
data deserve an interpretational scrutiny reminiscent of the
standards in for instance high energy physics or cosmology.
Instead of attempting to use the data to fit it with the expecta-
tions originating in a particular theory or model, one departs
from generic constraints associated with the measurement
process to arrive at bounds pertaining to the interpretational
models. Which information can be extracted from the data
that relates to a particular interpretation, and what are the
limitations?

Resting on strictly phenomenological means independent
of theoretical notions, here we wish to make a start with such
an endeavor inviting the readership to arrive at further im-
provements. Besides general requirements of symmetry, sum
rules and causality (Kramers-Kronig consistency) we exploit
the analytical properties of σ (ω) as sketched in the above
to aim at a confidence level in the interpretation in terms
of bounds we can extract from the data. The outcomes are
surprising, to a degree adding precision to the conventional
view but also showing that these contain flaws.

In addition, in light of the present interest in the overdoped
regime, we ask how the optical functions evolve as a function
of overdoping. We focus on the single layer bismuth cuprates
(Bi2−xPbxSr2−yLayCuO6+δ , BSCO for short), because it is
comparatively easy to change the carrier density in the over-
doped regime through oxygen or vacuum annealing. Using
high quality reflectivity experiments, and for some crystals
additional ellipsometry data, we can reconstruct with high fi-
delity both σ1 and σ2 over a frequency range of 0.01 to ∼4 eV,
a temperature range 10–300 K and a doping range spanning
the phase diagram from nonsuperconducting, underdoped to
nonsuperconducting overdoped crystals (p = 0.05–0.28).

Our findings are as follows. (1) Is the low energy (including
DC) transport actually of the Drude kind? Resting on a high
precision analysis, we will derive in Sec. IV an upper bound
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for non-Drude contributions to the DC transport being �10%
over the whole doping range, up to room temperature. We
confirm that the low frequency momentum relaxation rate (the
Drude width) is of Planckian magnitude. As is impossible
from the DC transport measurements, we can unambiguously
determine the carrier density from the data in the form of the
Drude weight. We find this to increase in a smooth, linear
way from the slightly underdoped to the strongly overdoped
regime. There is no sign of any irregularity at the critical
doping pc. Claims of the kind based on the Hall effect are
therefore based on a flawed interpretation.

(2) How does the conformal tail evolve with doping? Its
fingerprint is the algebraic falloff setting in at ω � 200 meV,
characterized by the constancy of the phase angle as discussed
in the above. We will show in Sec. V that this persists over
the full doping range into the strongly overdoped regime. The
spectral weight associated with this conformal tail is rather
doping independent, demonstrating that even at the very high
doping level where the superconductivity has disappeared the
metals continue to exhibit unconventional behavior, at least
in this regard. Most significantly, we find that the anomalous
dimension α shows a considerable variation as a function of
doping, reminiscent of what is expected in a quantum critical
phase of matter. Yet again, nothing special is found at the
doping pc where the putative quantum phase transition should
reside.

(3) That there is a high energy (conformal tail) and low
energy (Drude) regime is beyond doubt, but how to charac-
terize the crossover around 100 meV between these distinct
behaviours? Here we face an ambiguity, the question being
whether these should be viewed as conductors in series or in
parallel. We will explore both scenario’s. In the first case, one
should add up the conductivities of both sectors and this turns
out to be tightly constrained by the requirement that both σ1

and σ2 as related by Kramers-Kronig should be reproduced.
As we will show in Sec. VI A, a consistent fit can be obtained
by a form where the incoherent part terminates at a broadened
gap, Eq. (8). On the other hand, for the “in series” case a
single optical self-energy (memory function) will be in effect
(Sec. VI D). This reveals equally well the presence of the
crossover energy scale, resting on the fact that this self-energy
contains the information regarding the decoupling of the elec-
trical current from momentum upon entering the conformal
tail regime. This however introduces subtle ambiguities for
the physics. In the second interpretation, the momentum re-
laxation rate acquires a frequency dependence in the Drude
regime that may be of the type envisaged in, e.g., the marginal
Fermi-liquid phenomenology. However, in the first scenario
an energy dependence of 1/τJ cannot be resolved since the
deviations of a simple Drude could well be entirely due to the
spilling over of the incoherent spectral weight due to the gap
smearing.

This summarizes our main results. The organization of the
paper is as follows, we will first present a short reminder of
the gross principles underlying transport in Sec. II, followed
by a short overview of the experimental optical response
(Sec. III, Appendix A). We will then continue analyzing
the various spectral regimes: the low energy Drude response
(Sec. IV), the high energy branch cut part (Sec. V), and
the crossover regime (Sec. VI). In Sec. VII, we will discuss

the ramifications of these results for the various theoretical
proposals.

II. GENERALITIES OF TRANSPORT: A REMINDER

Before we turn to the data analysis, it may be beneficial for
some readers to get reminded of the highly generic nature of a
Drude response. Given the way it is taught in elementary solid
state courses one may have gotten the impression that this type
of response is special for an extremely dilute gas formed from
quasiparticles loosing individually momentum by scattering
from obstacles—the Drude-Sommerfeld affair. This is mere
folklore—although accurate for the transport in normal metals
it is in fact in the general context of the dynamics of fluids
unlikely to hold.

What is Drude transport about? One is actually measuring
the response of the macroscopic charged fluid sourced by an
electrical field. This sets an electrical current in motion and all
one has to assert is that this current �J lives for a finite time τJ .
Assuming a charge density ne and a microscopic (band) mass
mb this results in the simple equation of motion,

∂ �J
∂t

+ 1

τJ

�J = ne2

mb

�E . (2)

Defining the longitudinal conductivity σ through �J = σ �E
and invoking a source oscillating at frequency ω, one finds for
the conductivity in full generality,

σ (ω) = ω2
p

4π

i

(ω + M(ω))
. (3)

This is the Drude optical response, characterized generi-
cally by an overall Drude weight parametrized here in terms
of the plasma frequency ωp =

√
4πne2/mb, where n is the

carrier density. In full generality, M(ω) = M1(ω) + iM2(ω) is
the memory function (also called the optical self-energy), a
Kramers-Kronig consistent complex function. Next to energy
and charge conservation, the breaking of translational invari-
ance plays a key role. This current may partially overlap with
the total macroscopic momentum �Ptot: �J = ne �Ptot/mb. In the
Galilean continuum for finite rest mass, this overlap is com-
plete as �Ptot is the conserved Noether charge associated with
the continuous space translations. The optical conductivity in
the continuum will be a delta function at zero energy describ-
ing the perfect metal. Upon breaking translational symmetry
in a solid, the spectral weight contained in the delta function
will redistribute to finite frequency, involving for instance in-
terband transitions or the intraband response of Fermi liquids
associated with the dissipation of the current, τJ . Dealing with
a simple relaxational response one identifies M2 = 1/τJ (and
M1 = 0) to find

σ (ω) = ω2
pτJ

4π

1

1 − i(ωτJ )
,

σ1(ω) = ω2
pτJ

4π

1

1 + (ωτJ )2
(4)

coincident with the response that follows directly from the
simple EOM, Eq. (2). This is the Drude conductivity quoted in
the textbooks. It follows immediately that the DC conductivity
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σ (ω = 0) = ω2
pτJ/4π : the combination of Drude weight and

the momentum relaxation time is measured in transport exper-
iments. To obtain these quantities separately one has to inspect
the finite frequency response. This is the “half-Lorentzian”
Eq. (4) with a Drude-weight set by the total area, while the
Drude-width reveals 1/τJ .

As spelled out by the Mori-Zwanzig formalism this gener-
alizes to a frequency dependent memory function when one is
dealing with a multitude of relaxation times. For instance, in a
Fermi liquid exposed to an Umklapp potential the momentum
relaxation is set by the quasiparticle collision rate resulting in
M2(ω, T ) ∼ (1/h̄EF )((h̄ω)2 + (2πkBT )2) [36].

The take home message is that a Drude response is generic.
One measures the motion of the macroscopic (q → 0) fluid at
a finite temperature. When h̄ω � kBT (i.e., the DC measure-
ment) the thermal fluid formed at finite temperature has to be
governed by classical stochastic dynamics. At a finite density,
the electrical currents will overlap with momentum for any
fluid and momentum life time is then the universal limiting
factor. The information regarding the microscopic physics en-
ters via the parameters of the macroscopic theory—the Drude
weight and width—but also in the frequency dependence of
σ (ω) when h̄ω > kBT . In conventional metals, the momen-
tum relaxation times are directly linked to the single particle
momentum life times but this is actually a highly special
affair linked to the extreme dilute gas circumstances rooted
in the zero temperature Fermi liquid microscopics. Given the
now rather well understood quantum thermalization mecha-
nisms operative in the densely entangled non-Fermi liquids,
the expected rapid thermalization will render the macroscopic
fluid to be ruled by Navier-Stokes hydrodynamics even in the
presence of substantial disorder. This is then characterized
by unusual hydrodynamical parameters such as the “minimal
viscosity” [20]. The punch line is that upon interrogating such
a fluid with optical means one will see the same typical Drude
peak as expressed in Eq. (4). The only meaningful question
that remains is how the Drude parameters depend on the
physical circumstances.

As a final caveat, dealing with very special circumstances
such as charge conjugation symmetry (e.g., graphene at zero
density) or a diverging momentum susceptibility [37] the
electrical current can decouple from total momentum and
this will show as an incoherent response. Dealing with what-
ever form of quantum criticality one then expects to find
branch cuts instead in the optical response, and these should
obey generically energy-temperature scaling. However, in the
known cases where this is well understood, the exponents are
strongly constrained by, e.g., the conservation of charge [19].
The conformal tail is somehow of this kind although we are
not aware of any explanation that makes sense.

III. A BRIEF SURVEY OF THE EXPERIMENTAL
OPTICAL RESPONSE

We focus on the optical properties of BSCO crystals
grown using a floating zone method as described elsewhere
[38,39]. The as-grown samples were annealed under oxygen
or vacuum conditions to obtain different carrier concentra-
tions. The critical temperature was determined from resistivity
measurements and for some samples from ac susceptibility

(a)

(b)

(c)

(d)

FIG. 1. [(a)–(d)] Real part of the optical conductivity for a selec-
tion of temperatures and doping levels. σ1(ω) at all doping levels and
temperatures is characterized by a peak centered at zero frequency
and interband transitions above 1 eV. The arrows indicate the energy
�0.1 where at low temperature a clear change of slope takes place
signaling the presence of two components. (c) also shows the corre-
sponding imaginary part σ2(ω).

experiments. We use the Presland formula to assign doping
levels to our crystals. The validity of this approach has been
disputed for BSCO crystals [40], but we have recently shown
that changes in transport properties and changes in the ARPES
spectral functions for the same crystals as measured here
are largely consistent with results obtained for other cuprates
[41]. Samples were cleaved immediately before optical ex-
periments were conducted. As described in Appendix A, we
use a Kramers-Kronig consistent routine (based on Ref. [42])
to transform reflectivity data to the complex optical conduc-
tivity, σ̂ (ω, T ). The result is presented in Figs. 1(a)–1(d) for
doping levels spanning the superconducting dome. The optical
conductivity of BSCO follows a “hierarchy of energy scales”
[43] where there is a high energy component (the interband
response) and two low energy components associated with
the valence electrons. In the following, we will start at high
energy and comment on each of the three components indi-
vidually.

The high energy, interband response starts around 1.25 eV
with a weak structure, followed by a stronger transition. In
Ref. [39], the latter transition was shown to be part of a
broader structure with a maximum around 5.5 eV, based on
ellipsometry measurements. The new data presented in Fig. 1
are based only on reflectivity experiments and are consis-
tent with these earlier measurements. In what follows, we
include the data from Ref. [39] (results reproduced in Ap-
pendix A) and find that our observations do not depend on
data based on reflectivity only or combined reflectivity and el-
lipsometry measurements. As shown in Ref. [44], one can use
the Clausius-Mossotti relation to estimate the impact of the
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FIG. 2. Comparison of DC resistivity values obtained by optical
and transport experiments. Red squares indicate the resistivity values
obtained from the Hagen-Rubens analysis (see Appendix A). Green
squares are taken from Ref. [46], while orange circles are measured
on similar crystals as used for the optical experiments and are taken
from Ref. [26]. Blue squares are obtained by extrapolating the optical
conductivity to zero frequency. Open symbols indicate the compari-
son between transport and optics at 50 K.

polarizability of oxygen on the dielectric function:

ε∞,IR ≈ 1 + 4πNα/V

1 − 4π
3 Nα/V

= 1 + α0

1 − γα0
(5)

using the cell parameters for Pb doped BSCO from Ref. [45]
and the polarizability of oxygen (α = 3.88×10−24 cm−2) we
estimate that ε∞,IR ≈ 4.7 ± 0.1. As explained in Appendix A,
we use Drude-Lorentz models as a first step in the Kramers-
Kronig transformation of the reflectivity data. From these
models, we obtain an estimate of the contribution of interband
transitions to the dielectric function. By summing the contri-
butions of the interband transitions together, we find values for
ε∞,exp ranging from 4.2 to 5 with no clear trend. The average
value obtained from all samples is ε∞,exp ≈ 4.6, which is in
good agreement with the estimate obtained from the Clausius-
Mossotti relation. The main interest of this paper is in the
intraband response associated with the valence electrons. At
room temperature, σ1(ω, T ) below 1 eV is characterized by a
single Drude-like peak centered at zero frequency, with an ex-
trapolated DC conductivity that is in excellent agreement with
previously published transport data, see Fig. 2. We note that
for all doping levels studied, the room temperature response
is manifestly non-Drude in the sense that we never see a ω−2

falloff. Instead, we find a steadily increasing exponent from
−0.5 for UD sample to close to −1 for OD samples. These de-
viations from classical Drude behavior have previously given
the impetus to describe the data in terms of a generalized
Drude response [47–51]. However, as temperature decreases
it becomes apparent that the optical conductivity below 1 eV
consists of two components. To highlight this, σ1(ω, T ) is pre-
sented in Fig. 1 on a log-log scale. At low temperature, a clear
change of slope is visible around 0.1 eV (highlighted by an

arrow). At low temperature (40 K, sufficiently far away from
Tc), the slope of the conductivity approaches the Drude slope
of −2 and changes around 0.1 eV to approach the same value
as seen in the room temperature data. A similar two compo-
nent response has been inferred previously in bi-layer BSCCO
and LSCO [9,29,30]. In Sec. IV, it will become clear that these
two components do indeed correspond with a genuine Drude
response at low energy crossing over to the conformal tail.
What is new here is that the low Tc of BSCO combined with
high quality data makes the two components clearly visible
in the raw data without any need for further analysis. We
can therefore analyze these two components in detail as a
function of energy, temperature and carrier concentration. As
announced, we will first zoom in on the Drude part, then turn
to the conformal tail and finally we will analyze the nature of
the crossover between these two very distinct regimes.

IV. THE LOW ENERGY RESPONSE: THE NO-FRILLS
DRUDE INTERPRETATION

Let us first zoom in on the low energy regime, below h̄ω �
0.1 eV. As discussed already in relation to Fig. 1, a peak is
observed centered at ω = 0 that becomes quite sharp at low
temperature and which was assigned to a Drude response early
on [52]. An important question to answer is: to which degree
is this a Drude peak? Given the high quality of our optical
data, together with their large dynamical range we are in the
position to analyze it with precision.

Let’s first find out how well the data can be interpreted
in terms of the elementary Drude form Eq. (4), character-
ized by a frequency independent but temperature dependent
momentum relaxation time τJ . In Sec. VI D, we will turn to
the possible frequency dependence of the optical self-energy
as defined in Eq. (3). There we will find that because of the
overlap with the conformal tail around 0.05–0.1 eV such a
frequency dependency cannot be extracted with confidence.
The take home message is that within a restricted tempera-
ture range the peak can be assigned with high confidence to
this elementary Drude response governed by a Planckian-type
momentum relaxation rate.

The real part σ1(ω) of this “no-frills” Drude describes
a half-Lorentzian. As shown in Figs. 3(a) and 3(b), this
has a characteristic shape, which in a log-log plot consists
of a frequency independent plateau followed by a ω−2 fall
off (the dashed lines in the figure; more data presented in
Appendix B). In order to determine whether such a Drude
behavior is present in the data one should have enough dy-
namical range to see both at least part of the plateau as well as
the ω−2 fall off. As can be seen for the UD6K data presented in
Fig. 3(a), and in this case, the Drude response is always broad
and the ω−2 falloff is masked by the conformal tail. However,
this criterion is fulfilled by the experimental data for optimally
to overdoped samples. Although we do not have data below
∼5 meV, the extrapolated DC values are consistent at high and
low temperature with the available transport data (see Fig. 2)
leaving no doubt that the plateau is present. The data also
reveal the ω−2 falloff over a small range of photon energies at
lower temperatures. This figure reveals that for energies above
approximately 40 meV, the frequency dependence changes
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FIG. 3. [(a) and (b)] Real part of the optical conductivity for an UD30K and an OD23K sample, plotted on a log-log scale. Dashed lines are
fits with a single Drude response of the low energy conductivity. (c) Estimate of the possible non-Drude contribution at the lowest energies for
the OpD35K sample. σ1(ω) is fitted with a sum of a frequency independent background and. Drude peak. The inset shows the quality of the fit,
χ 2, as a function of the percentage of background contribution to the DC conductivity. [(d)–(h)] False color plot of the logarithmic derivative
of the real part of the optical conductivity, ∂ ln σ1(ω)/∂ ln ω. The energy and temperature range where a Drude falloff with an exponent of
−2 is observed is indicated in red. For underdoped samples, no Drude response is observed, while close to optimal doping a narrow Drude
response becomes apparent. Vertical lines between 0.02 and 0.07 meV correspond to optical phonons.

and a slower fall off takes over, signaling the crossover to the
conformal tail.

To test the robustness with which we can assign the
response below 0.1 eV to a Drude peak, we model the ex-
perimental data as a combination of a Drude response and
a background contribution, see Fig. 3(c). This background
would be interpreted as the low energy extrapolation of the
mid-infrared response, which in principle could extend to
zero frequency. We use a standard least-square measure, χ2 =∑ √

[σ1(ωi ) − f (ωi, ωp, �, σBG)]2, to determine the close-
ness of the fit to the experimental data as we increase the
background value of the optical conductivity. The example
shown in Fig. 3(c) exhibits the Drude component in blue,
while the background is shown in green. The inset shows the
calculated χ2 as a function of the background contribution
expressed in percentage of the total DC conductivity. We
observe that at low temperature the quality of the fit quickly
deteriorates when we add a background. At room temperature,
the quality of the fit remains independent of the background
contribution up to 50%. From this analysis we can conclude (i)
as temperature approaches Tc the low energy Drude response
constitutes more than 90% of the total conductivity below
0.1 eV and (ii) at higher temperatures we loose the sensitivity
to determine whether a Drude response is operative.

For energies larger than the current relaxation rate, the
Drude response becomes approximately:

lim
ω
�

σ1(ω) ≈ ω2
p

ω2
. (6)

From this it follows that the logarithmic derivative,
∂ ln σ1(ω)/∂ ln ω should approach the value of −2 for a Drude
response. Figures 3(d)–3(h) shows this logarithmic derivative
in a false color scale. The scale is chosen such that an expo-
nent of −2 has a red color. For the OpD35K sample, the Drude
response is clearly visible at low temperature. As temperature
increases, the ω−2 response moves to higher energy, corre-
sponding with the increasing relaxation rate. Around 150 K,
the Drude response has broadened to the point where it starts
to merge with the incoherent high energy response. At high
temperature and low energy, the exponent approaches zero
which is consistent with a plateau in the optical conductivity
[see Figs. 3(a) and 3(b)].

V. TRACKING THE BRANCH CUT

As we argued in the above the fingerprint of the branch
cut response Eq. (1) is an asset for the analysis of the data.
As we will see in the next section, there is an ambiguity with
regard to the precise nature of the crossover from the Drude- to
conformal tail regimes. However one can invariably identify
an energy scale below which the conformal tail is suppressed.
Although the origin of the conformal tail is presently com-
pletely in the dark its gross properties may be best understood
as reflecting some form of bound optical response—it may be
viewed as the analog of interband transitions in the strongly
interacting electron soup.

The first task is to find out whether the conformal tail fin-
gerprints (power-law conductivity and constant phase angle)
characterize the optical conductivity of our single layer BSCO
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at 40 K.

samples. In the bilayer BSCCO system, this was previously
investigated, indicating that the conformal tail appears to be
present at all doping levels with varying exponent [30,53].

In Figs. 4(a)–4(g), we show an overview of the phase angle
for our single layer BSCO samples. As in the bilayer system,
we find that in the range ∼0.2–0.8 eV both σ1(ω) and σ2(ω)
are characterized by an algebraic fall-off, as well as a near
frequency independent phase angle that is consistent with the
exponent determined from the algebraic fall-off (indicated by
the grey line). Similar to the two previous works, we ob-
serve a small deviation from a perfect frequency independent
phase below optimal doping. We also observe that at elevated
temperature the phase angle becomes more curved. Impor-
tantly, the branch cut tail persists over the whole doping range
and is well discernible in even the most strongly overdoped
samples.

This is adding impetus to the notion that the highly
overdoped cuprate metals are far from being just weakly inter-
acting Fermi liquids. Intriguingly, we do resolve yet another
notable doping dependence: as shown in Fig. 4(h), there ap-
pears to be a rather sizable dependence of the “anomalous
scaling dimension” (exponent) α characterizing the branch
cut as a function of doping in the overdoped regime. Being
rather doping independent in the underdoped regime, we find
that it increases roughly proportional to the increasing carrier
density upon entering the overdoped regime. We do find that
α � 0.57 close to optimal doping, somewhat smaller than
what is found in the two layer BSSCO (�0.7).

When the conformal tail is originating in some form of
quantum critical behavior one expects for very general rea-
sons that this should be governed by energy-temperature
(h̄ω/2πkBT ) scaling. Based on Eq. (1), one expects that en-
ergy and temperature appear on equal footing following a

quadrature form. This should result in a scaling collapse of
the following form,

[(2πkBT )ασ1(ω)]−1 =
(

h̄ω

2πkBT

)α

. (7)

The result is shown for an overdoped and underdoped sam-
ple in Figs. 5(a) and 5(b) (other doping levels are shown
in Appendix B). At first glance, the temperature exponent
derived in this way agrees reasonably well with frequency
exponent extracted from the phase angle of Fig. 4. However,
the deviations below optimal doping are significant and we
notice that the scaling collapse is far from perfect in the energy
range where we expect it to work best. We will see in the next
section that this arises from an additional energy scale in the
problem.
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tivity for an underdoped and an overdoped sample. The dashed line
is the calculated scaling form based on the temperature exponent.
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VI. THE CROSSOVER REGIME: ARE THE CONDUCTORS
IN SERIES OR PARALLEL?

Arrived at this point we have confirmed the case presented
in Refs. [30,35] that the low frequency optical response (ω <

0.05 eV) of single layer BSCO is captured by a simple Drude
response characterized by a seemingly frequency independent
momentum relaxation time while the high energy response
(ω > 0.1 eV) carries the tell tale signs of an “incoherent” con-
formal tail response implying a complete decoupling of the
electrical currents from momentum. However what happens in
the middle, how does the crossover between these two distinct
responses work?

The crucial observation is that there has to be an energy
scale associated with the onset of the incoherent response. Ex-
trapolating |ω|−α to ω → 0 would imply a divergent response
while instead we find that the Drude response completely
dominates. Given that there is no clear signature of this
crossover, we have to resort to modeling.

A crucial question is, do the Drude- and incoherent parts
behave like conductors in parallel (“Anti-Matthiessen,” AM)
or in series (“Matthiessen,” M)? As we already emphasized,
the first possibility seems to make more physical sense.
Metaphorically, it is like the division of the free carrier re-
sponse (the Drude part) and the “bound” interband excitations
in conventional systems where the latter are by default de-
coupled from total momentum. This implies that one has to
add the conductivities of the two subsystems. This is the
antithesis of what is often assumed in transport experiments.
Asserting that the temperature dependence of the resistivity is
rooted in the sum of different relaxational contributions, these
different channels add in series and for the optical response
this would manifest itself in a memory function type behavior,
Eq. (3).

In Sec. VI D, we will take up the analysis of the crossover
in this memory function guise, but let us first see how far we
can get with the AM interpretation of the optical response.

A. Anti-Mathiessen interpretation

In the anti-Mathiessen interpretation, we assume two con-
tributions to the optical conductivity and use the following
model:

σ̂ (ω) = σ̂ D(ω) + σ̂ inc(ω),

σ̂ D(ω) = DDr

�Dr − iω
, (8)

σ̂ inc(ω) = −iDincω

(�2 − ω2 − i�incω)β

for the complex optical response with DDr, Dinc referring to
the Drude and incoherent spectral weight, respectively. �Dr

is the Drude width. σ̂ inc(ω) is inspired by a simple Lorentz
oscillator at energy � and with damping �inc: when β = 1,

this form is precisely that of a Lorentz oscillator. In a sense,
this line shape can be considered to represent a generalized in-
terband response. For large ω, this has some resemblance to a
line shape considered for dielectric relaxation [54], but the low
frequency asymptote is quite different as we now demonstrate.
In the case considered here, we assert that the “engineer-
ing” dimension turns anomalous, β �= 1. For ω 
 �,�inc the

branch cut, Eq. (1), is recovered. Comparing to Eq. (1), we
find the scaling dimension β = (α + 1)/2 with the conformal
tail exponent α. Thus σ̂ inc(ω) is no more than a phenomeno-
logical way to wire in in a flexible way a branch cut that is
disappearing below a characteristic scale. At high energy, it
is characterized by a “relevant” exponent α > 0 such that σ1

diverges for ω → 0. This is interrupted at some energy scale
below which the low energy spectral weight is suppressed.
Importantly, this is done in a Kramers-Kronig consistent form
and we will use this powerful constraint on the data to our
advantage.

�inc = 0 encodes for a “hard gap” in σ̂ inc(ω). The real part
of σ̂ inc(ω) vanishes for ω < � to jump up discontinuously at
�, with a divergence that goes as 1/ε(α+1)/2 at ω = � + ε.
This merges smoothly into the conformal tail when ω becomes
large [see the case � = 0 in Fig. 6(a)]. The effect of a �inc <

� is to just smear this hard gap over a scale ∼� as Fig. 6(a)
shows.

There is however yet a different way of manipulating the
low energy spectral weight. Note that we obtain a Drude form
by setting � = 0 and β = 1, corresponding to the green line
in Fig. 6(c). What happens when the scaling dimension β turns
anomalous? Figure 6(c) show that for decreasing α the Drude
response is “pushed” away from ω = 0. From Eq. (8) we find
that the incoherent conductivity simplifies to

σ̂ inc(ω) = Dinc

(iω)α
1

(1 + i(�inc/ω))(α+1)/2
, (9)

we read off that for ω 
 �inc, we recover the conformal tail.
However, zooming in on the low energy regime ω � �inc, this
becomes

lim
ω→0

σ̂ inc(ω) = Dinc

�
(α+1)/2
inc

1

(iω)(α−1)/2
. (10)

We see that this describes yet another branch cut but with
an altered scaling dimension. For α < 1, this turns irrelevant,
with the spectral weight in σ1 decreasing to zero in a branch
cut fashion when ω → 0. This models the flow from an “UV”
(high energy) CFT to an “IR” (low energy) CFT characterized
by different scaling dimensions, capturing a smooth crossover
from the different scaling behavior at high- and low energy.
This is illustrated in Fig. 6(c) for a representative α = 0.5 and
varying �inc. The crossover at ω � �inc manifests itself as a
peak in the real part of σ̂ inc(ω). Such details of σ̂ inc(ω) in the
low energy regime are completely shrouded from σ1(ω) given
the domination of the Drude part. From σ1(ω) alone, it is diffi-
cult to get any detailed information on what to take for � and
�inc beyond a crude estimate for the damping of the gap—an
infinitely hard gap would give rise to a discontinuity in the to-
tal σ1(ω) that is not present. However, this changes drastically
considering the imaginary part of the conductivity σ2(ω). In
Figs. 6(b), 6(d), and 6(f), we present the σ2(ω) corresponding
to the previously discussed representative cases. When the
“hard” gap dominates (� > �inc) one finds the typical large
“wiggle” in σ2(ω) imposed by Kramers-Kronig consistency.
Similar to σ1(ω), the divergent response is smoothed out as
�inc increases. As we will see next, the combination of real
and imaginary components of the optical response will allow
us to make concrete statements about the ratio �inc/�.
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FIG. 6. [(a) and (b)] Real (a) and imaginary (b) components
of σinc(ω) for � �= 0 and increasing �. For � = 0, σ1(ω) vanishes
below � and has a divergence ∝ ε−(α+1)/2 at �. As � increases, the
divergence is smoothed out and shifts away from �. At high energy
we recover the conformal tail as indicated by the dashed line. [(c) and
(d)] σ̂ inc(ω) for � = 0 and fixed � for a range of experimentally
relevant exponents. For α = 1, we retrieve a Drude response. As
α decreases a finite frequency peak develops. [(e) and (f)] Same
but now for � = 0 and increasing �. The maximum conductivity
decreases with increasing �. Note that there are now two regimes
where the conductivity follows a power law (dashed and dash-dotted
lines), but with two different exponents. In (a), (b), (e), and (f), we
used α = 0.5.

To illustrate the fitting, we show in Fig. 7 the details
of the analysis for an underdoped and overdoped example.
Figures 7(a) and 7(b) compare the fit (solid lines) using the
two component model of Eq. (8) with the experimental opti-
cal conductivity (symbols). Also indicated are the individual
components (dashed and double dashed lines). In all data
presented here, we have assumed � = 0, but we can obtain
reasonable fits for � < 25 meV, as long as �inc > 3�. To
obtain this bound requires the use of both real and imaginary
components of the optical response. For smaller values of
�inc, the strong divergencies in Eq. (8) give rise to structures
not observed in the experimental optical conductivity. This is
best seen by looking at the phase angle [Figs. 7(c) and 7(d)].
The blue line shows the best fit to experimental result (red

FIG. 7. [(a) and (b)] Decomposition of σ1(ω) and σ2(ω) of the
UD30K and OD23K samples at 40 K in a Drude response (dashed)
and conformal tail (double-dashed). [(c) and (d)] Corresponding
experimental phase angle compared to the phase angle of the two
individual components and the anti-Mathiessen result. To obtain
these fits, we have taken � = 0 in both cases (see text for details).

circles). The experimental “peak-dip” structure in the phase
angle around 0.1 eV, is directly related to the conformal tail
and controlled by the ratio of �inc/�. To reproduce the exper-
imental phase angle requires �inc/� > 3. For smaller ratios of
�inc/� and/or values of � > 25 meV, the peak-dip structure
in the phase angle becomes more and more violent and we lose
the agreement with the experimental data. Comparing the two
sample, we find a much more pronounced peak-dip structure
at low energy for the UD30K sample, which we trace back to
a significantly larger �inc (�inc ≈ 115 meV for UD30K versus
�inc ≈ 80 meV for OD23K).

Despite the importance of the conformal tail response to
reproduce the data in the crossover region, Figs. 7(a) and
7(b) emphasizes that the low energy spectral weight is over-
whelmingly that of the Drude component, leaving intact our
conclusion from the previous section. The possibility that
there is an ‘IR CFT’ type response at work associated with
the incoherent response should not to be taken too seriously.
The simple form Eq. (9) is just a convenience to get σ1(ω) and
σ2(ω) in balance in the high energy regime and we have no
argument rendering the extrapolation at low frequencies to be
of this simple kind. It is very well possible that at low energy
the response is modified, leaving room for a finite DC contri-
bution [26]. On the basis of only the data, it is just impossible
to specify how it behaves at low frequency. However, it does
stress that the constancy of the high energy phase angle setting
in rapidly above the cross over scale requires quite special
analytical properties of this response.

Taking this for granted, this analysis brings three interest-
ing and significant points to the front that appear to be rather
independent of these ambiguities. In the first place, the energy
scale associated with �inc is at least of order 70–80 meV. This
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is essentially the Debye frequency of the cuprates, where the
highest phonon mode is the Cu-O stretching mode visible
in the data presented in Fig. 12(a). We find that this is the
minimum �inc needed for overdoped samples. For optimally
doped and underdoped samples, �inc increases and the largest
value found �inc ≈ 0.2 eV for the UD10K sample.

The second interesting point is summarized in Fig. 8: the
actual conformal tail exponent can be quite a bit smaller than
what one would expect based on the experimental data. We
find that the observed phase angle is set by the conformal
tail exponent and the ratio of the spectral weights DDr and
Dinc. Based on our analysis, we find that the exponent at
optimal doping is close to α ≈ 0.5, which is similar to the
power law exponents observed in the self-energy of angle
resolved photoemission experiments [55,56]. Also the doping
dependence agrees well with the observed dependence in
these experiments.

The third point concerns the temperature dependence of
the optical data. For all samples studied, the conformal tail
parameters are within our experimental resolution tempera-
ture independent. To accurately reproduce the temperature
dependence requires optimization of the Drude component,
and thus DDr and �Dr only. We will discuss this temperature
dependence in the next sections.

B. The Drude width: the near Planckian relaxation rate

Given that the signature of the Drude peak in the form of
the ω2 fall off is no longer discernible at temperatures �150 K
(Fig. 3) it can surely not be claimed that at higher temperatures
we are still dealing with a simple single relaxation time Drude
response. However, by using Eq. (8) we just assert this to be
the case and it suffices to quantify the data with fits that are
especially of high quality in the low energy regime at all tem-
peratures and doping levels. Once again, we assume a single
relaxation rate, ignoring a possible energy dependence of the
optical self-energy that should manifest itself as a deviation
of the Drude line form at higher energies. We will see that

FIG. 9. Temperature dependence of �Dr for different doping lev-
els. At high doping, the data approache the Planck limit (dashed line).
Below optimal doping the curvature of the scattering rate becomes
convex.

according to the Mathiessen fitting procedure where we assert
that this is entirely due to such a frequency dependency it
is a small correction at low energy. In the AM fitting, this
is completely masked by the ‘spill over’ of the incoherent
spectral weight.

Given these caveats, we can address the question: assuming
that the DC resistivity is given by the simple Drude form
ρ = �Dr/DDr (as is often done) what is the origin of the
temperature dependence of ρ? As we will discuss next, the
Drude weight can be accurately determined and we find it
to be weakly temperature dependent. Hence, the temperature
dependence is nearly entirely due to the current relaxation rate
�Dr = 1/τJ .

The results for �Dr are show in Fig. 9. We find that this
closely tracks the temperature dependence of the DC resis-
tivity [26,46]. Ignoring the (strongly) underdoped regime we
find that it becomes nearly linear in temperature at optimal
doping. It is well known that even at optimal doping the
resistivity in the single layer BSCO has a small but discernible
curvature even at optimal doping. Upon increasing doping,
this curvature is getting more pronounced and this is reflected
in the behavior of �Dr.

As a reference, we also show the Planckian relaxation rate
(dashed line). The residual resistivity is comparatively large
at optimal doping in this family but we see that the slope of
�Dr is here very close to the Planckian value. Perhaps more
surprising, the main effect of overdoping is that the residual
resistivity is decreasing. Ignoring the (small) curvature, the
overall magnitude of the slope continues to be very close to
the Planckian value up to the highest doping levels. Relying
on the Planckian dissipation as the main signature of strange
metals, also in this regard the (strongly) overdoped cuprate
metals are not at all different from the optimally doped ones.

C. The spectral weight distributions:
the smooth evolution of the Drude weight

To complete the connection to transport experiments, we
turn to the doping and temperature dependence of the optical
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spectral weight. The f-sum rule states that the free charge
spectral weight is obtained by integrating the measured optical
conductivity,

D f =
∫ ωc

0
dωσ1(ω). (11)

For the cuprates, the cutoff frequency ωc is often chosen to
be of order 1 eV to separate the “free charge” from “interband
transitions.” The quotation marks are a caution: one should not
interpret these words in terms of the (usual) noninteracting
band structure language. The notion of “bound” excitations
associated with interband transitions survives in the strongly
interacting context dealing with transitions that are in the
band structure between completely occupied- and unoccupied
bands, setting in around 1 eV. However, the free charge now
refers to the physics ruled by doping the Mott insulator which
is by itself eventually revolving around the interplay of the
Umklapp potential and dominating interactions, that is in all
likelihood of the origin of the mysterious conformal tail.

Making use of the unit cell volume, the optical spectral
weight can be converted to an effective number of free charge
carriers per Cu-O plaquette (Neff/m∗). This optically deter-
mined charge carrier density is unambiguous dealing with a
Drude response. Next to its intrinsic importance, it can also
be used to test claims regarding the carrier densities as follow
from interpreting Hall experiments [24–26,40]. We start with
the “conventional” approach, which is to integrate σ1(ω) to
h̄ωc = 1 eV. The corresponding effective carrier density per
plaquette, NDr/m∗, is shown in Fig. 10 by the black circles.
The values shown are the room temperature values, while the
vertical error bars indicate the change in NDr/m∗ over the
entire temperature range. As was pointed out before [57,58],
the normal state spectral weight follows an approximate T 2

decrease and the magnitude of this change is less than a few
percent.

In Secs. IV and VI A, we have obtained a second estimate
of NDr/m∗ through the estimation of the plasma frequency
of the Drude component. As pointed out in Sec. IV, there is
an error bar associated with the determination of the plasma
frequency due to the presence of a second component. This
conformal tail contribution to the low frequency σ1(ω) was
estimated in Sec. VI A. Figure 10 shows NDr/m∗ obtained
from the AM decomposition of Sec. VI A (blue squares). The
upper error bar indicates the value obtained from fitting the
low energy response with a single Drude component (the fits
presented in Fig. 3).

The Drude weight is quite weakly temperature depen-
dent and changes by at most 5% up to room temperature
for overdoped samples. With decreasing doping the tempera-
ture dependence increases somewhat, but never exceeds 15%.
These estimates are irrespective of the method used to deter-
mine the Drude weight. This excludes directly claims to the
effect that the carrier density would be strongly temperature
dependent [59]. Focussing on the doping dependence, we find
that NDr/m∗ exhibits a very smooth dependence on the doping
p, independent of the method used to estimate NDr/m∗. Both
the full integrated spectral weight and the Drude weight show
in the slightly underdoped - strongly overdoped range a simple
linear increase with p.

The next remarkable fact is that from Fig. 10, it follows
that the spectral weight in the incoherent conformal tail Dinc

(red triangles) is roughly doping independent up to the highest
doping levels. This indicates that even the strongly overdoped
cuprate metals are in this regard as strange as they are at
optimal doping.

D. The Mathiessen interpretation: the frequency dependence
of the optical self-energy

The memory function M(ω), as discussed in Sec. II, en-
codes the fact that current relaxation processes are in general
frequency dependent. The anti-Mathiessen interpretation of
the low energy optical response of Sec. VI A puts the exper-
imental determination of such frequency dependencies in a
difficult spot: when the intraband response overlaps with gen-
eralized interband transitions, this automatically introduces
spurious frequency dependence in M(ω). In addition, earlier
works (Refs. [47,49,50] among many others) used the inte-
grated spectral weight at 1 eV as a measure of the plasma
frequency. However, in Sec. VI C, we have seen that the AM
derived plasma frequency is in fact quite a bit smaller. This
difference has a profound impact on the extracted memory
function, especially on the real part of M(ω).

For a Drude type response, we have [cf. Eqs. (3) and (8)],

M(ω) = �p

4π

i

σ̂ D(ω)
− ω (12)

=
(

�p

ωp
− 1

)
ω + i

�p

ωp
�Dr, (13)

where �p is the plasma frequency determined, for example,
from the integrated spectral weight. We see that errors in the
determination of the spectral weight (i.e. �p �= ωp), leads to a
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FIG. 11. Real [(a) and (b)] and imaginary [(c) and (d)] com-
ponents of the memory function [M(ω)] at 40 K. The blue circles
correspond to M(ω) determined using the integrated spectral weight,
while the red squares correspond to M(ω) determined using the
plasma frequency obtained from the AM decomposition. The solid
blue line indicates the memory function computed with the AM fits,
while the green line in (c) and (d) corresponds to �Dr..

spurious contribution in the real part of the memory function,
while the imaginary component only changes by an overall
scale factor. On the other hand, when the optical response is
dominated by a power law contribution to the conductivity,
with σ ∼ (iω)−α , it follows that

M1(ω) = �2
p

Dinc
sin(πα/2)|ω|α − ω,

M2(ω) = �2
p

Dinc
cos(πα/2)|ω|α. (14)

We see that in contrast to the Drude result, there always is a
ω term in the real part of the memory function, irrespective
of the chosen Dinc that, for α < 1, dominates at large ω.
With these preliminary observations, we now turn to the ex-
perimental memory function in Fig. 11. The memory function
is extracted from the experimental data by a simple inversion
of Eq. (3). Knowing the experimental σ̂ (ω, T ), one writes

M(ω, T ) = �p,exp

4π

i

σ̂ (ω, T )
− ω. (15)

Both the real and imaginary components are shown for two
samples that are representative for underdoped [Figs. 11(a)
and 11(c)] and overdoped samples [Figs. 11(b) and 11(d)].
Two experimental results are shown for data measured at 40 K
and for both cases we have subtracted the same contribution
for high energy interband transitions (see Sec. III). The first
result (blue circles) shows the memory function where �p,exp

is determined from the integrated spectral weight (labelled
as �c = 1 eV). Also shown is the memory function where
�p,exp is determined from the Drude weight obtained from the

anti-Mathiessen decomposition (red squares; labeled ωp,Dr).
In the following, we refer to these two different results as MSW

(black line) and MDr (red line).
The difference is quite significant, especially for M1(ω).

M1,SW(ω) initially increases and after a maximum goes to
a negative value at high energy. M1,Dr(ω) starts of almost
constant and equal to zero, before approaching M1(ω) ∝ −ω.
M2,SW(ω) and M2,Dr(ω) are also different, but this differ-
ence corresponds exactly to the ratio of integrated spectral
weight to ω2

p,Dr as expected. We see that when ωp,Dr is used,
the resulting experimental M2,Dr(ω) agrees well with the
Drude width (green line) determined from the fits. However,
M2,Dr(ω) starts to deviate from �Dr already around 14 meV
and this can be attributed to the conformal tail contribution.

The M(ω) obtained from the AM decomposition is also
shown Fig. 11 and accurately reflects the frequency depen-
dence of the experimental data. We can use this to determine
the origin of the remaining frequency dependence in M2,Dr(ω)
and find that this is mostly determined by �inc: the larger �inc,
the larger the “step” in M2,Dr(ω) around 0.1 eV. These re-
sults make it difficult, if not impossible, to determine whether
there is room for a frequency dependent momentum relaxation
rate. It may be possible that there is some room for this at
lower energy, but time-domain THz spectroscopy experiment
seem to agree equally well with a frequency independent �Dr

[60].

VII. DISCUSSION AND CONCLUSIONS

We have attempted to push the limits with regard to ex-
tracting the maximal amount of information from the optical
conductivity, resting on general principle trying to avoid any
form of theoretical bias. As we emphasized in the introduction
the optical conductivity (let alone the DC transport) reveals
transport properties on macroscopic spatial scales that are
controlled by macroscopic conservation principles. The mi-
croscopic physics enters only indirectly in determining the
numbers governing the q → 0 transport phenomena. A case
in point is that based on this data it cannot even be decided
whether the electrical transport is governed by a dilute gas of
quasiparticles, as in conventional metals but with anomalous
life times, or either in the highly collective hydrodynamical
flow principles suggested by the “unparticle” physics of the
densely entangled metals described by, e.g., the AdS/CFT
correspondence.

What are the bounds that we have established? In the
first place, we have much emphasized the remarkable power
of the exceedingly simple analytic structure of the complex
conductivity in the conformal tail regime to decompose it
in two very distinct regimes. Regardless even gross differ-
ences in the basic physics, like whether it is Matthiessen-
or anti-Matthiessen, just based on the way that the real- and
imaginary parts of the conductivity relate to each other: a high
energy branch cut regime can be distinguished from a low
energy “Drude-like” response. A characteristic energy scale
�50–100 meV is clearly discernible separating these two very
different responses.

As we repeatedly emphasized, the origin of the conformal
tail is plainly mysterious. All along, the intrigue with the
strange metals have been spurred by physical behaviours that
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are unreasonably simple when viewed from a conventional
theoretical perspective, the Planckian linear resistivity being
point in case [14,20]. We perceive the “unreasonable” simplic-
ity of the conformal tail as part of this agenda. Our analysis
in Sec. VI amplified this a bit further. The conformal tail is
just referring to the fact that experimentally, both σ1(ω) and
σ2(ω) show the same simple power law behavior where only
the relative weights are different by a factor consistent with
the exponent (the constant phase angle) over a large frequency
range. We do know that this conformal behavior comes to an
end at the crossover scale and we showed that in the anti-
Matthiessen interpretation it is quite nontrivial to reconcile
this with a phase angle becoming as frequency independent
as observed.

The other news with regard to the conformal tail pertains
to the doping dependence. Against our initial expectations, we
were quite surprised to find out that, if anything, the conformal
tail only seems to become more “perfect” when increasing
doping up to a level so high that even superconductivity
disappears. Strikingly, the spectral weight associated with
the conformal tail appears to be roughly doping independent
(Fig. 10). Although it is straddling the effective resolution of
our analysis, the only noticeable doping dependence appears
to be in the exponent that appears to increase significantly
as a function of doping in a continuous fashion, suggesting
a quantum critical phase like behavior.

Once again, this stresses that the “strangeness” of the
metallic state apparently persists up to the highest doping
levels. We are of the opinion that this issue should be on
the benchmark list of facts that a theory should explain—
presently, there appears to be not even a single candidate.

Let us now turn to the low energy regime which is directly
related to the DC transport properties, in the first place to the
(near) linear-in-temperature resistivity. Upon lowering tem-
perature the cuprate metals become quite good conductors.
Although it is often taken for granted that it is governed by a
simple Drude response our high precision analysis shows the
caveats. To be sure that one is dealing which such a response
one should be able to discern the low frequency plateaux
followed by the ω2 fall off as in Figs. 3(a)–3(c). The repre-
sentation in Figs. 3(d)–3(h) reveals precisely when this is the
case: it is no longer possible to claim a response governed by
a single relaxational pole at temperatures above �150 K. At
higher temperatures the width of the Drude peak becomes of
order of the crossover scale. Eventually, at the highest (room)
temperature the plateaux in σ1(ω) extends more or less to the
crossover scale.

As a caveat, we emphasized that on basis of the data the as-
signment of a discernible frequency dependence of the optical
self-energy (memory function) as is asserted in the general-
ized Drude data fitting is highly ambiguous. The frequency
independent phase angle observed in our low temperature data
(Sec. V) cannot be captured by such a perturbative form [61]
and the dynamical frequency range of the Drude-like peak is
very limited. Stronger, as a result of the (anti) Matthiessen
ambiguity even at low energy it is not possible to discrimi-
nate whether the deviations of a single relaxation time Drude
response should be assigned to a broadened onset of the con-
formal tail or whether it is due to a frequency dependence of
the optical self-energy.

This is heralding the approach to the bad metal regime
where the magnitude of the (quasi) linear resistivity exceeds
the maximum value that is permitted in a quasiparticle system
(the Mott-Ioffe-Regel minimal metallic conductivity). It is
known at least qualitatively what happens when temperature
is further increased. The roughly optical conductivity further
decreases and a mid-infrared peak becomes visible (for a
compilation, see Ref. [62]). It may well be that this can be
associated with the peak terminating the conformal tail: a
further systematic study of the optical conductivities at very
high temperatures would be desirable.

It appears to be unambiguous that the low temperature
narrow Drude response is eventually controlled by long-lived
total momentum, revealing a momentum relaxation time of
order of the Planckian dissipation time τh̄ = h̄/(kBT ). This
just means that when the fluid is set in motion it will move
ballistically, initially with a constant velocity to come to a
standstill after a time ∼τh̄. However, upon raising temperature
one can no longer take this for granted relying on the optical
conductivity information. As emphasized by Hartnoll [18],
such physics becomes untenable dealing with the magnitude
of the resistivity realized at very high temperature in the
bad metal regime. The momentum life time becomes of a
microscopic magnitude and all motions become diffusional.
Energy and charge diffusion may take over the control in this
incoherent regime—Hartnoll’s conjecture is that these may in
turn be controlled by the Planckian time in the densely entan-
gled fluid. Notice that the use of the word “incoherent” in this
context is related but yet different from the zero density type
quantum critical response we discussed in the introduction.

One cannot be sure that the intermediate temperature
regime, where the fingerprints of the Drude response are
hard to trace and the resistivity is still relative small, can
be captured by the single relaxation pole of the Drude re-
sponse. It may well be that different relaxational channels are
here at work. Asserting that we are dealing with the rapidly
thermalizing, strongly coupled fluid this is a new territory
that is presently explored using holographic means. In the
presence of a strong microscopic background potential, a
hydrodynamical-like fluid with viscoelastic tendencies may
show a response that is much richer than the plain-vanilla
hydrodynamics realized in a homogeneous background [63].
A case in point is the hydrodynamics associated with a
fluctuating pinned charge density wave with a response that
reconstructs the evolution from a simple Drude peak at low
temperature to the high temperature response dominated by
the mid-IR resonance [62,64]. Notice the main short coming
of this approach is that it does not shed any light on the issue
that this resonance appears to be associated with the onset of
the conformal tail.

Regardless these ambiguities the division of the spectral
response between the low energy Drude-like regime and the
high energy conformal tail is beyond any doubt. This allows us
to track with confidence the evolution of the spectral weights
as a function of doping shown in Fig. 10—these quantities are
not particularly sensitive to the ambiguities we face dealing
with the cross over since this affects only a small part of
the dynamical range. The outcome is surprisingly simple: the
weight in the Drude part as of relevance to the DC transport
(blue squares) appears to show a simple proportionality to
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doping, all the way to the strongly overdoped regime not
revealing any irregularity at pc � 0.19. As we already em-
phasized, the spectral weight in the conformal tail is rather
doping independent, such that the f-sum rule spectral weight is
uniformly increasing (black circles) like 0.5 + p. Even at the
highest doping levels this does not seem to reach the weight
expected from a large area Fermi surface characterized by the
bandstructure effective mass (the 1 + p line).

This is in grave contrast with various estimates for the
doping dependent carrier density based on Hall effect mea-
surements. One claim is that according to the Hall number
the carrier density would either jump rather suddenly from p
to 1 + p at the critical doping pc (indicated in Fig. 10 with
a green area) interpreted as a sudden change of the NDr ∼ p
in a doped Mott insulator to the expected carrier density of
a conventional large Fermi surface Fermi liquid [24,40]. This
was challenged by later work, claiming instead a change of
slope of the carrier density as a function of doping at pc

(orange area in Fig. 10) [25,26].
A recent optical study, Ref. [9], also found a smooth doping

dependence of the full and Drude spectral weight in LSCO.
These authors also find that the spectral weight does not
change across p∗, but the authors argue that when changes
in the mass enhancement are taken into account the optical
results are in agreement with Hall experiments. The mystery
is then that the mass enhancement factor should “coinciden-
tally” and exactly cancel the change in the carrier density.
We consider this unlikely, as the reported doping dependent
mass enhancement factors reported in Refs. [9,65] are in-
consistent with this interpretation. At low doping, the mass
enhancement factor is of order m ∗ /m ≈ 2.5. In LSCO, the
mass enhancement peaks around p∗ = 0.2m ∗ /m ≈ 12.5 and
beyond that doping decreases again to m ∗ /m ≈ 5 for the
range of doping levels studied here. In addition, it should
be emphasized that these estimates are all obtained from
specific heat measurements at large magnetic fields and very
low temperatures [66,67]. Invariably at the fields that can be
reached in the laboratory one is still deep inside the flux liquid
regime and given the gross changes that occur entering the
superconductor from the strange metal as a function of tem-
perature (e.g., the increased coherence of the quasiparticles
in the superconducting state) it is not at all clear whether
these band mass estimates have anything to do with the high
temperature metal [68].

Regardless, the changes in the reported mass are large
enough that we should resolve a nonmonotonic doping depen-
dence in the doping range studied here. The opposite is also
true: if we combine the mass enhancement factor with the Hall
density reported in Ref. [40], the corresponding n/m is much
smaller than what is observed in the optical spectral weight
and in addition still has a significant doping dependence.
Therefore, by measuring the carrier density directly using
optical means, claims of a strong change in carrier density at
a critical doping are hereby proven to be flawed.

It is actually not at all a surprise that the Hall coefficient
does not directly reveal the carrier density. That one has to be
careful using DC properties to infer Drude parameters, e.g.,
the resistivity ∼1/(ω2

pτ ) is even more true for magnetotrans-
port quantities. It is a matter of principle that in order for
the Hall coefficient to reveal the carrier density it should be

strictly temperature independent, and this is never the case in
the cuprate metals.

This principle is rooted in symmetry: the electrical field
sources linear momentum and the relaxation time associated
with the resistivity is therefore associated with the inhomo-
geneity of space—the breaking of translational invariance. On
the other hand, the Lorentz force sources angular momen-
tum and the associated relaxation time is associated with the
anisotropy of the spatial manifold. The consequence is that
a priori the Hall relaxation time (τH ) is different from the
one associated with the zero magnetic field resistivity (τJ ).
Assuming a simple Drude transport, it follows immediately
that RH = (1/n)τH/τJ where n is the actual carrier density
that in turn should be consistent with the optically determined
Drude weight.

The present generations appear to have forgotten that in
the 1990’s there was much attention to the fact that τH shows
a quite different temperature dependence than τJ . It was found
that the Hall angle θH = (ωcτH ) ∼ 1/T 2 in the YBCO strange
metal [69], implying RH ∼ 1/T . It appears that the temper-
ature exponent of τH is varying depending on the various
families [70], but the Hall coefficient is never temperature
dependent.

Our optical data show that at least in the good metal regime
the response is captured by a Drude transport validating the
use of these simple magnetotransport wisdoms. Given the
irregularities of the Hall data associated with pc which cannot
be due to variations in the carrier density, these should in turn
shed light on the doping dependence of the τH/τJ ratio. It
would be quite worthwhile to study systematically the tem-
perature dependences of both the Hall angle and the resistivity
itself, using our optically determined Drude weight to find out
what is happening with this ratio over the large doping range.

Finally, there is more revealed by magnetotransport exper-
iments. It was recently discovered that the magnetoresistance
is highly unusual in the overdoped regime, exhibiting the
“Planckian quadrature” ρ ∼

√
(kBT )2 + (μ0B)2 scaling be-

havior [26]. This is conclusive evidence for the overdoped
metal to be non Fermi liquid as well, albeit of a different kind
than the underdoped strange metals. On basis of a compilation
of magnetotransport data it was argued that this may reveal
the existence of two parallel fluids: a more normal Fermi-
liquid affair and the strange metal where the latter gradually
diminishes upon overdoping [41]. This was actually part of
out initial motivation to have a closer look with optics. This
case rests mostly on data at low temperature in the good
metal regime. When the DC transport would originate in two
such parallel fluids this should then be clearly visible in the
optical response in the form of two different contributions
in the low energy regime—again, the Anti-Matthiessen affair
where one adds up the conductivities. However, we do observe
only a single Drude peak over the whole optimally doped—
overdoped regime that is responsible for �90% of the spectral
weight. Departing from the assertions in Ref. [41] one would
expect the sum of two very different responses that gradually
exchange weight as a function of doping. This can clearly be
excluded on basis of our data that show a single fluid response
characterized by a relaxation rate 1/τJ ∼ T β , where β appears
to gradually increase from �1 at optimal doping towards close
to 2 in the strongly overdoped regime.
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In conclusion, the theme of the strange metal as realized in
the cuprates has been around since the early days of high-Tc

superconductivity. Nevertheless, it continues to deliver sur-
prises. In the recent era, the overdoped regime has come into
focus as being strange in its own way and not at all like
the return to Fermi-liquid “normalcy” as was long believed.
Our systematic, high precision study of the optical conduc-
tivity reveals in first instance that the optical response of the
overdoped metal appears to be a smooth continuation of the
strange metal around optimal doping. It is in essence the same
affair, except for the increase of the Drude spectral weight
while in other regards the scaling exponents associated with
the temperature dependence of the Drude relaxation rate and
the conformal tail are varying in a smooth manner. Together
with the highly anomalous magneto transport properties [26]
that were very recently discovered this further strengthens the
perception that we are dealing with a novel ground state of
matter that likely needs physical principle of an entirely new
kind for its explanation.

ACKNOWLEDGMENT

This publication is part of the project Strange Metals (with
Project No. FOM-167) which is (partly) financed by the Dutch
Research Council (NWO).

APPENDIX A: EXPERIMENTAL DETAILS

In this work, we focus on single layer Bi2−xPbx

Sr2−yLayCuO6+δ (BSCO) with varying amounts of substi-
tution x and y, featuring a single layer in the Cu-O plane.
Although the complex chemistry involved in this six element
composition unavoidably leads to additional disorder, the key
strange metal properties appear to be unaffected [26]. Key
advantages of BSCO over other single layer cuprates are that
annealing gives access to almost the entire phase diagram and
that weak van der Waals bonding in between layers allows
for easy cleaving. The latter point makes it ideally suited
for various spectroscopy experiments as cleaving produces
surfaces that are perfectly aligned along the in-plane crys-
tallographic directions with a mirror smooth finish. What
sets our experiments apart is the focus on high resolution,
temperature dependent experiments aiming to achieve a high
signal-to-noise ratio and densely spaced spectra with temper-
ature. Single crystals are grown using a traveling floating zone
growth method. Subsequent annealing of as-grown crystals
in vacuum or under partial oxygen atmosphere was used to
change the carrier concentration. The critical temperature of
the samples was subsequently determined through resistiv-
ity measurements. For all samples the same experimental
sequence and parameters were used. Samples are mounted
on copper cones using a silver epoxy for thermal contact.
An ultrahigh vacuum cryostat with temperature stabilized
sample position was used in all experiments. Experimental
sequences start with one to three temperature cycles between
10 and 300 K followed by in-situ evaporation of a refer-
ence material (gold, silver or aluminum). Since the sample
is not moved during the evaporation and the resulting mir-
ror has the exact same shape as the original sample, this is
one of the most accurate methods to determine the absolute

reflectivity. A sample spectrum is measured at room tem-
perature immediately before evaporation, while a reference
spectrum is measured immediately after the evaporation. We
verified that the room temperature spectra measured in the
temperature cycle were in agreement with those measured
during the evaporation of the reference. The same sequence
of measurements used for the sample is repeated on the
reference. This procedure guarantees reproducibility of the
measured temperature dependence and eliminates small sys-
tematic movements of the sample with temperature. More
details are provided in Ref. [71]. Some of the data used in
this study has been published previously in Ref. [39] (UD0K,
UD10K, OpD35 K, and OD0K). Figure 12 summarizes the far
infrared reflectivity data, spanning the superconducting dome
of the phase diagram from underdoped nonsuperconducting
crystals to overdoped nonsuperconducting crystals. Starting
from the overdoped side, the reflectivity is close to unity
and consistent with metallic behaviour at all temperatures.
With decreasing doping the reflectivity decreases and phonon
modes become more prominently visible. We observe that at
all doping the room temperature reflectivity appears to follow
a square root law behaviour consistent with the Hagen-Rubens
relation. To verify this, Fig. 12(k) displays the reflectivity
at 290 K as a function of

√
ω. Also shown are fits (dashed

lines) with two free parameters: R(ω) = A − B
√

ω. We find
that the reflectivity extrapolates to unity as expected and that
the slope, B, increases with decreasing doping. From the fits
it then follows that the slope B is set by the DC resistivity
according to

B = 2
√

2ε0ρDC. (A1)

We can thus obtain an estimate of the DC resistivity val-
ues for our crystals as a function of doping. The result is
shown in Fig. 2 and demonstrates that the values obtained
from the Hagen-Rubens relation are in excellent agreement
with the values obtained from transport studies [26,46]. Taken
together, the square root behaviour of the reflectivity and good
agreement of the estimated DC resistivity, are a first indication
that the low energy optical conductivity is described by a
simple Drude response (see also Fig. 2).

APPENDIX B: THE DRUDE RESPONSE

In this Appendix, we provide additional details of the
measured spectra. Figures 13(a)–13(h) show the real and
imaginary components for all samples used in this study.
Starting from the UD6K sample, we see a small and broad
Drude like response in σ1(ω), which sharpens as tempera-
ture decreases. At all temperatures σ1(ω) has a plateau at
low energy followed by a fall-off above 20 meV. The mid-
infrared σ1(ω) has a clearly different second component with
a hump-like feature around 0.5 eV. σ2(ω) consists of a max-
imum around 0.06–0.1 eV, which is strongly temperature
dependent.

As doping increases, the Drude response gains spectral
weight. At the same time, the Drude width narrows, as
can be seen by looking at the 40 K spectra. This is also
borne out by our analysis in the main paper, as presented
in Fig. 9. The plateau that is visible for the UD6K and
UD10K samples disappears and a narrow Drude response
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FIG. 12. Overview of the reflectivity data used in this study. The data for the UD10K, OpD35K, and OD0K crystals have been published
before in Ref. [39]. Note the changes in vertical scale with increasing doping.

FIG. 13. [(a)–(h)] Real [σ1(ω), solid lines] and imaginary [σ2(ω), dashed] components of the optical conductivity for a selection of
temperatures and doping levels. σ1(ω) for all doping levels and temperatures is characterized by a peak centered at zero frequency below
1 eV and interband transitions above 1 eV.
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FIG. 14. [(a)–(g)] Real part of the optical conductivity for all measured samples, plotted on a log-log scale. Dashed lines are fits with a
single Drude response of the low energy conductivity.

can be seen for higher doping levels. This narrowing of the
Drude response is also visible in σ2(ω), where we see a sharp
maximum emerging at low temperature. Tracking the position
of this maximum with doping and temperature provides a
first estimate of the changes taking place in the Drude width,
demonstrating that indeed �Dr is the main driver for the dop-
ing dependence. Figure 14 presents the data underlying the
analysis presented in Sec. IV. We show the fits to the low

frequency optical response for all doping levels used in the
analysis.

Finally, we present the doping dependence of the scaling
function, Eq. (7). For each doping we optimize the collapse
by changing the temperature coefficient α. The resulting expo-
nents are indicated on the vertical axis and collected in Fig. 15.
Note that the scaling collapse improves with increasing
doping.

FIG. 15. [(a)–(g)] Temperature scaling of the real part of the optical conductivity. Dashed lines indicate the scaling relation Eq. (7).
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