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Influence of impurities on the electronic structure in cuprate superconductors
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The impurity is inherently manifest in cuprate superconductors, as cation substitution or intercalation is
necessary for the introduction of charge carriers, and its influence on the electronic state is at the heart of a
great debate in physics. Here based on the microscopic octet scattering model, the influence of the impurity
scattering on the electronic structure of cuprate superconductors is investigated in terms of the self-consistent
T -matrix approach. The impurity scattering self-energy is evaluated firstly in the Fermi-arc-tip approximation
of the quasiparticle excitations and scattering processes, and the obtained results show that the decisive role
played by the impurity scattering self-energy in the particle-hole channel is the further renormalization of the
quasiparticle band structure with a reduced quasiparticle lifetime, while the impurity scattering self-energy in
the particle-particle channel induces a strong deviation from the d-wave behavior of the superconducting gap,
leading to the existence of a finite gap over the entire electron Fermi surface. Moreover, these impurity scattering
self-energies are employed to study the exotic features of the line shape in the quasiparticle excitation spectrum
and the autocorrelation of the quasiparticle excitation spectra, and the obtained results are then compared with
the corresponding experimental data. The theory therefore also indicates that the unconventional features of the
electronic structure in cuprate superconductors is generated by both the strong electron correlation and impurity
scattering.

DOI: 10.1103/PhysRevB.106.054512

I. INTRODUCTION

The single common feature in the crystal structure of
cuprate superconductors is the presence of the square-lattice
CuO2 layer [1,2], which are believed to contain all the essen-
tial physics. The layered crystal structure then is a stacking of
CuO2 layers separated by other oxide layers, which maintain
the charge neutrality and cohesion of the structure mainly
through ionic interactions [1,2]. The parent compound of
cuprate superconductors is a Mott insulator with an antifer-
romagnetic (AF) long-range order [3], and superconductivity
then is realized when this AF long-range order state is sup-
pressed by doped charge carriers into the CuO2 layer [1,2].
In addition to the change of the charge-carrier concentration,
this doping process nearly always introduces some measure
of disorder [4–6], leading to that in principle, all cuprate
superconductors have naturally impurities (or disorder). In
particular, impurities which substitute for Cu in the CuO2

layer turn out to be strong scatters of the electronic state in the
layer [4–6]. The importance of the understanding of the influ-
ence of the impurity scattering on the electronic structure has
been quickly recognized, since many of the unconventional
features, including the relatively high superconducting (SC)
transition temperature Tc, have often been attributed to partic-
ular characteristics of the low-energy quasiparticle excitations
determined by the electronic structure [7–9].

The impurity scattering in cuprate superconductors is
specially unconventional, and manifests a variety of the phe-
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nomena depending on the strength of the electron correlation,
charge-carrier doping, temperature, and magnetic field [4–6].
Experimentally, by virtue of systematic studies using multiple
measurement techniques, a number of consequences from the
impurity scattering together with the associated fluctuation
phenomena have been identified [4–6], where an agreement
has emerged that the various properties of the d-wave SC
state in the pure system are extreme sensitivity to the influ-
ence of the impurity scattering than that in the conventional
superconductors. This follows a basic fact that the influence
of the impurity scattering on the d-wave SC state is to break
the electron pairs and to mix the SC gap with different signs
on different parts of the electron Fermi surface (EFS) [4–6].
In particular, the early experimental measurements [10–16]
showed that the influence of the impurity scattering tends
to suppress the SC coherence, and then Tc is found to be
depressed rapidly with the increase of the impurity concen-
tration. Later, the experimental observations indicated that the
extent of the deviation from the d-wave SC gap form increases
with the increase of the impurity concentration [17–21]. This
impurity concentration dependence of the suppression of Tc

thus has been reflected in the nature of the SC-state quasiparti-
cle excitations resulting of the dressing of the electrons via the
impurity scattering, where a change from linear temperature
dependence to the quadratic behavior in the magnetic-field
penetration depth occurs due to the influence of the impu-
rity scattering [22], while the ratio of the low-temperature
superfluid density and the effective mass of the electrons
ns(T → 0)/m∗ is observed experimentally to decrease with
the increase of the impurity concentration [23–25]. In particu-
lar, the angle-resolved photoemission spectroscopy (ARPES)
experiments [17–21] indicate that the spectral linewidth of
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the quasiparticle excitation spectrum broadens rapidly with
the increase of the impurity concentration, leading to that the
spectral intensity is suppressed almost linearly in energy at
low temperatures. These experimental results therefore of-
fer experimental evidences that the electronic structure and
SC-state properties in the pure cuprate superconductors are
significantly influenced by the impurity scattering.

Although a number of consequences from the impurity
scattering [4–6] together with the associated fluctuation phe-
nomena have been well-identified experimentally [17–25],
the full understanding of the influence of the impurity scat-
tering on the electronic state is still a challenging issue.
Theoretically, the homogenous part of the SC-state electron
propagator in the preceding discussions is based on the mod-
ified Bardeen-Cooper-Schrieffer (BCS) formalism with the
d-wave symmetry [4–6], and then the coupling between the
electrons and impurities as the perturbation is treated in terms
of the self-consistent T -matrix approach for a single impurity
or a finite impurity concentration [4–6,26–28]. In particular,
the characteristic feature of the d-wave SC state is the ex-
istence of four nodes on EFS, where the SC gap vanishes,
and then the SC-state properties are largely governed by the
quasiparticle excitations at around the nodal region [4–6]. In
this case, the impurity scattering self-energy was evaluated
in the nodal approximation of the quasiparticle excitations
and scattering processes [4–6] and was used to discuss the
various properties of the SC state in cuprate superconductors
[4–6,29–36]. However, it has been demonstrated experimen-
tally [37,38] that the Fermi arcs formed by the disconnected
segments on the constant energy contour that emerge due to
the EFS reconstruction at the case of zero energy [39–43]
can persist into the case for a finite binding energy, where
the quasiparticle scattering further reduces almost all spec-
tral weight on Fermi arcs to the tips of the Fermi arcs, and
then the most physical properties are mainly controlled by
the quasiparticle excitations at around the tips of the Fermi
arcs. Moreover, these tips of the Fermi arcs connected by
the scattering wave vectors qi construct a octet scattering
model, and then the quasiparticle scattering processes with
the scattering wave vectors qi contribute effectively to the
quasiparticle scattering processes [37,38]. It should be em-
phasized that this octet scattering model is a basic model in
the explanation of the Fourier transform scanning tunneling
spectroscopy experimental data [44–49] and also can give
a consistent description of the regions of the highest joint
density of states detected from the ARPES autocorrelation ex-
periments [37,38]. However, to the best of our knowledge, the
influence of the impurity scattering on the electronic structure
has not been discussed starting from the microscopic octet
scattering model to treat the impurity scattering in terms of
the self-consistent T -matrix approach, and no explicit calcu-
lation of the impurity scattering self-energy has been made
so far in the Fermi-arc-tip approximation of the quasiparticle
excitations and scattering processes.

In this paper, we start from the homogenous part of
the electron propagator and the related microscopic octet
scattering model obtained within the framework of the
kinetic-energy-driven superconductivity [50–53] to study the
influence of the impurity scattering on the electronic structure
of cuprate superconductors in terms of the self-consistent

T -matrix approach, where we evaluate firstly the impurity
scattering self-energy in the Fermi-arc-tip approximation of
the quasiparticle excitations and scattering processes, and the
obtained results show that (i) the crucial role of the impu-
rity scattering self-energy in the particle-hole channel is the
further renormalization of the quasiparticle band structure
and reduction of the quasiparticle lifetime with the renormal-
ization strength that increase as the impurity concentration
is increased; (ii) the impurity scattering self-energy in the
particle-particle channel induces a strong deviation from the
d-wave behavior of the SC gap, leading to the existence of a
finite gap over the entire EFS. In particular, with the increase
of the impurity concentration, the magnitude of the SC gap is
progressively decreased by the impurity scattering self-energy
along EFS except for at around the nodal region, where the
magnitude of the gap smoothly increases. Moreover, these
impurity scattering self-energies are employed to study the
unconventional features of the line shape in the quasiparticle
excitation spectrum and the ARPES autocorrelation spectrum,
and the obtained results are well consistent with the corre-
sponding experimental data.

The rest of this paper is organized as follows. We derive
explicitly the dressed electron propagator in Sec. II, and then
employ this dressed electron propagator to discuss the impu-
rity dependence of the electronic structure in Sec. III, where
we show that in addition to the suppression of the spectral
weight in the quasiparticle excitation spectrum, the position of
the low-energy coherent peak at around the antinodal region
is shifted towards to EFS when the impurity concentration
is increased, while the position of the low-energy coherent
peak at around the nodal region moves away from EFS. In
particular, the sharp peaks in the ARPES autocorrelation spec-
trum are directly correlated with the scattering wave vectors
qi connecting the tips of the Fermi arcs, and then the key sig-
nature of the Fermi-arc-tip quasiparticle correlation appears
in the ARPES autocorrelation spectrum, which is essentially
quasiparticle scattering interference. Finally, we give a sum-
mary and discussions in Sec. IV. In Appendix, we presents the
details of the derivation of the dressed electron propagator.

II. FORMALISM

A. t-J model and homogenous electron propagator

To set the stage for the discussion of the influence of
the impurity scattering on the electronic structure of cuprate
superconductors, we first give an account of the model and
homogenous electron propagator used to describe the intrin-
sic aspects of the pure cuprate superconductors. As we have
mentioned above, all the essential important in cuprate super-
conductors are contained in the doped CuO2 layer. Shortly
after the discovery of superconductivity in cuprate supercon-
ductors [1], it was proposed that the t-J model on a square
lattice is an appropriate model to describe the essential physics
of the doped CuO2 layer [54],

H = −
∑
〈l â〉σ

tlâC
†
lσCl+âσ + μ

∑
lσ

C†
lσClσ + J

∑
〈l η̂〉

Sl · Sl+η̂,

(1)
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where the double electron occupancy is no longer allowed,
i.e.,

∑
σ C†

lσClσ � 1, C†
lσ and Clσ are creation and annihilation

operators for the constrained electrons with spin orientation
σ =↑,↓ on lattice site l , respectively, Sl = (Sx

l , Sy
l , Sz

l ) is
a spin operator, μ is the chemical potential, and J is the
exchange coupling between the nearest-neighbor (NN) sites
η̂. In this paper, the hopping of the constrained electrons tlâ
is restricted to the NN sites η̂ and next NN sites τ̂ with
the amplitudes tl η̂ = t and tl τ̂ = −t ′, respectively, while the
summation 〈l â〉 denotes that l runs over all sites, and for
each l , over its NN sites â = η̂ or next NN sites â = τ̂ . Here-
after, the parameters are chosen as t/J = 2.5 and t ′/t = 0.3
as in the previous discussions [52,53]. The magnitude of J
and the lattice constant of the square lattice are the energy
and length units, respectively. However, when necessary to
compare with the experimental data, we set J = 100 meV.
The strong electron correlation in cuprate superconductors
manifests itself by the on-site local constraint of no double
electron occupancy, and this is why the crucial requirement
is to impose this on-site local constraint properly [55–59]. In
particular, it has been shown that this on-site local constraint
can be fulfilled in the fermion-spin approach [53,60], where
the constrained electron operators Cl↑ and Cl↓ in the t-J model
(1) are replaced by

Cl↑ = h†
l↑S−

l , Cl↓ = h†
l↓S+

l , (2)

with the spinful fermion operator hlσ = e−i�lσ hl that repre-
sents the charge degree of freedom of the constrained electron
together with some effects of spin configuration rearrange-
ments due to the presence of the doped hole itself (charge
carrier), while the spin operator Sl describes the spin degree
of freedom of the constrained electron, and then the local con-
straint of no double occupancy at each site is fulfilled in actual
analyses. In this fermion-spin representation, the original t-J
model (1) can be rewritten explicitly as

H =
∑
〈l â〉

tlâ(h†
l+â↑hl↑S+

l S−
l+â + h†

l+â↓hl↓S−
l S+

l+â)

−μh

∑
lσ

h†
lσ hlσ + Jeff

∑
〈l η̂〉

Sl · Sl+η̂, (3)

where S−
l = Sx

l − iSy
l and S+

l = Sx
l + iSy

l are the spin-
lowering and spin-raising operators for the spin S = 1/2,
respectively, Jeff = (1 − δ)2J , δ = 〈h†

lσ hlσ 〉 = 〈h†
l hl〉 is the

charge-carrier doping concentration, and μh is the charge-
carrier chemical potential. Concomitantly, the kinetic-energy
term in the t-J model (1) has been transferred as the cou-
pling between charge and spin degrees of freedom of the
constrained electron, and therefore dominates the essential
physics in the pure cuprate superconductors.

For a microscopic description of the SC state in the pure
cuprate superconductors, the kinetic-energy-driven SC mech-
anism has been established based on the t-J model (3) in the
fermion-spin representation [50–53], where the coupling be-
tween charge and spin degrees of freedom of the constrained
electron directly from the kinetic energy by the exchange of a
strongly dispersive spin excitation generates a d-wave charge-
carrier pairing in the particle-particle channel, then the d-wave
electron pairs originated from the d-wave charge-carrier pair-

ing state are due to the charge-spin recombination [52], and
their condensation reveals the d-wave SC state. The typical
features of the kinetic-energy-driven SC mechanism can be
summarized as [50–53]: (i) the mechanism is purely electronic
without phonons; (ii) the mechanism indicates that the strong
electron correlation favors superconductivity, since the main
ingredient is identified into an electron pairing mechanism
not involving the phonon, the external degree of freedom,
but the internal spin degree of freedom of the constrained
electron; and (iii) the SC state is controlled by both the SC gap
and quasiparticle coherence, leading to that the maximal Tc

occurs around the optimal doping, and then decreases in both
the underdoped and the overdoped regimes. Following these
previous discussions, the homogenous electron propagator of
the t-J model (3) in the SC state can be expressed explicitly
in the Nambu representation as [52]

G̃(k, ω) =
(

G(k, ω), 	(k, ω)
	†(k, ω), −G(k,−ω)

)

= 1

F (k, ω)
{[ω − �0(k, ω)]τ0 + �1(k, ω)τ1

+�2(k, ω)τ2 + [εk + �3(k, ω)]τ3}, (4)

where τ0 is the unit matrix, τ1, τ2, and τ3 are Pauli matrices,
εk = −4tγk + 4t ′γ ′

k + μ is the energy dispersion in the
tight-binding approximation, with γk = (coskx + cosky)/2,
γ ′

k = coskxcosky, F (k, ω) = [ω − �0(k, ω)]2 − [εk +
�3(k, ω)]2 − �2

1 (k, ω) − �2
2 (k, ω). The homogenous

self-energy �pp(k, ω) in the particle-particle channel is
identified as the energy and momentum dependence of the
d-wave SC gap [61], while the homogenous self-energy
�ph(k, ω) in the particle-hole channel represents the
quasiparticle coherence. In particular, �pp(k, ω) is an
even function of ω, while �ph(k, ω) is not. However, in the
above expression of the homogenous electron propagator
(4), �pp(k, ω) has been separated into its real and imaginary
parts as: �pp(k, ω) = �1(k, ω) − i�2(k, ω), while �ph(k, ω)
has been broken up into its symmetric and antisymmetric
parts as �ph(k, ω) = �3(k, ω) + �0(k, ω), and then both
�0(k, ω)/ω and �3(k, ω) are an even function of ω. In
this case, the components of the homogenous self-energy in
the particle-hole channel �0(k, ω) and �3(k, ω) satisfy the
following identities:

Re�0(k, ω) = −Re�0(k,−ω), (5a)

Im�0(k, ω) = Im�0(k,−ω), (5b)

Re�3(k, ω) = Re�3(k,−ω), (5c)

Im�3(k, ω) = −Im�3(k,−ω). (5d)

In the framework of the kinetic-energy-driven super-
conductivity [50–53], both �ph(k, ω) [then �0(k, ω) and
�3(k, ω)] and �pp(k, ω) [then �1(k, ω) and �2(k, ω)] arise
from the interaction between electrons mediated by a strongly
dispersive spin excitation, and have been derived explicitly
in Ref. [52] in terms of the full charge-spin recombination,
where all order parameters and chemical potential are deter-
mined by the self-consistent calculation without using any
adjustable parameters. In particular, the sharp peak visible for
temperature T → 0 in �ph(k, ω) [�pp(k, ω)] is actually a δ
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functions, broadened by a small damping used in the numeri-
cal calculation for a finite lattice. The calculation in this paper
for �ph(k, ω) and �pp(k, ω) is performed numerically on a
120 × 120 lattice in momentum space, with the infinitesimal
i0+ → i� replaced by a small damping � = 0.05J .

B. Octet scattering model

With the above homogenous electron propagator (4), the
homogenous electron spectral function A(k, ω) now can be
obtained explicitly as

A(k, ω) = −2ImG(k, ω)

= −2Im�tot (k, ω)

[ω − εk − Re�tot (k, ω)]2 + [Im�tot (k, ω)]2
, (6)

where Re�tot (k, ω) and Im�tot (k, ω) are the real and imagi-
nary parts of the total homogenous self-energy,

�tot (k, ω) = �0(k, ω) + �3(k, ω)

+ �2
1 (k, ω) + �2

2 (k, ω)

ω + εk − �0(k, ω) + �3(k, ω)
, (7)

respectively, and then the homogenous quasiparticle excita-
tion spectrum in the SC state can be obtained as

I (k, ω) = |M(k, ω)|2nF(ω)A(k, ω), (8)

with the fermion distribution nF(ω) and the dipole matrix el-
ement M(k, ω). However, the important point is that M(k, ω)
does not have any significant energy or temperature depen-
dence [7–9]. In this case, the magnitude of M(k, ω) can be
rescaled to the unit, and then the evolution of I (k, ω) with
momentum, energy, temperature, and doping concentration
is completely characterized by the electron spectral function
A(k, ω).

In the previous studies [62,63], the topology of EFS in
the pure system has been discussed in terms of the intensity
map of the homogenous quasiparticle excitation spectrum
I (k, ω) at zero energy ω = 0, where we have shown that the
formation of the disconnected Fermi arcs due to the EFS
reconstruction is directly associated with the emergence of
the highly anisotropic momentum-dependence of the homoge-
nous quasiparticle scattering rate. For a convenience in the
following discussions of the impurity scattering influence on
the electronic structure: (a) the EFS map in the pure system
and (b) the surface plot of the homogenous quasiparticle ex-
citation spectrum for zero energy ω = 0 at doping δ = 0.15
with temperature T = 0.002J are replotted in Fig. 1. Obvi-
ously, the typical feature is that EFS contour is broken up into
the disconnected Fermi arcs located around the nodal region
[39–43], where a large number of the low-energy electronic
states is available at around the tips of the Fermi arcs, and then
all the anomalous properties arise from these quasiparticles at
around the tips of the Fermi arcs [64–67]. These tips of the
Fermi arcs connected by the scattering wave vectors qi shown
in Fig. 1 naturally construct an octet scattering model, and
then the quasiparticle scattering processes with the scattering
wave vectors qi therefore contribute effectively to the quasi-
particle scattering processes [44–49]. As we have mentioned
in section I, this octet scattering model shown in Fig. 1 can
persist into the case for a finite binding-energy [37,38], which

FIG. 1. (a) The electron Fermi surface map and (b) the surface
plot of the homogenous quasiparticle excitation spectrum for zero
energy ω = 0 at δ = 0.15 with T = 0.002J , where AN, TFA, and
ND denote the antinode, tip of the Fermi arc, and node, respectively,
while q1, q2, q3, q4, q5, q6, and q7 indicate different scattering wave
vectors.

leads to that the sharp peaks in the ARPES autocorrelation
spectrum with the scattering wave vectors qi are directly cor-
related to the regions of the highest joint density of states. We
will return to this discussion of the ARPES autocorrelation
towards Sec. III C of this paper.

C. Dressed electron propagator

With the help of the above homogenous electron propa-
gator (4), now we can discuss the influence of the impurity
scattering on the electronic structure. In the presence of impu-
rities, the homogenous electron propagator (4) is dressed via
the impurity scattering as [4–6]

G̃I(k, ω)−1 = G̃(k, ω)−1 − �̃I(k, ω), (9)

where as the homogenous self-energy �̃(k, ω) =∑3
α=0 �̃α (k, ω) in Eq. (4), the impurity scattering self-energy

�̃I(k, ω) can be also generally expressed as

�̃I(k, ω)

=
3∑

α=0

�Iα (k, ω)τα

=
(

�I0(k, ω) + �I3(k, ω), �I1(k, ω) − i�I2(k, ω)
�I1(k, ω) + i�I2(k, ω), �I0(k, ω) − �I3(k, ω)

)
.

(10)

Moreover, in corresponding to the homogenous self-energies
�1(k, ω), �2(k, ω), �3(k, ω), and �0(k, ω) in Eq. (4), both
�I1(k, ω) and �I2(k, ω) are real, while both �I3(k, ω), and
�I0(k, ω)/ω are an even function of ω. Substituting this im-
purity scattering self-energy (10) and homogenous electron
propagator (4) into Eq. (9), the dressed electron propagator
can be expressed as

G̃I(k, ω) =
(

GI(k, ω), 	I(k, ω)
	†

I (k, ω), −GI(k,−ω)

)

= 1

FI(k, ω)
{[ω − �0(k, ω) − �I0(k, ω)]τ0

+ [�1(k, ω) + �I1(k, ω)]τ1

+ [�2(k, ω) + �I2(k, ω)]τ2
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+ [εk + �3(k, ω) + �I3(k, ω)]τ3}, (11)

where FI(k, ω) = [ω − �0(k, ω) − �I0(k, ω)]2 − [εk +
�3(k, ω) + �I3(k, ω)]2 − [�1(k, ω) + �I1(k, ω)]2 −
[�2(k, ω) + �I2(k, ω)]2.

D. Self-consistent T -matrix approach

Starting from the homogenous part of the BCS-like elec-
tron propagator with the d-wave symmetry, it has been shown
that the self-consistent T -matrix approach is a powerful tool
to treat the impurity scattering in the SC state for an arbitrary
scattering strength [4–6,26–28]. In the following discussions,
we employ the self-consistent T -matrix approach to analyze
the impurity scattering self-energy �̃I(k, ω) in Eq. (10) in
terms of the dressed electron propagator (11). Following the
self-consistent T -matrix approach [4–6,26–28], the impurity
scattering self-energy (10) can be expressed approximately as

�̃I(k, ω) = niNT̃kk(ω), (12)

where ni is the impurity concentration, N is the number of
sites on a square lattice, and T̃kk(ω) is the diagonal part of the
T matrix, while the T matrix is given by the summation of all
impurity scattering processes as

T̃kk′ = 1

N
τ3Vkk′ + 1

N

∑
k′′

Vkk′′τ3G̃I(k′′, ω)T̃k′′k′ , (13)

with the impurity scattering potential Vkk′ , where we have
followed the common practice [4–6,26–28] and treated the
impurity scattering potential Vkk′ in the static limit for a qual-
itative understanding of the influence of impurities on the
low-energy electronic structure of cuprate superconductors.

In the octet scattering model shown in Fig. 1, a large
number of the low-energy electronic states is located at around
eight tips of the Fermi arcs. In other words, the most quasipar-
ticles are generated only at around these tips of the Fermi arcs.
This characteristic feature is very helpful when one considers
the impurity scattering, since the initial and final momenta of
a scattering event must always be approximately equal to the
k space located at around one of these tips of the Fermi arcs
in the case of low-temperature and low-energy. On the other
hand, the impurity scattering potential Vkk′ varies slowly over
the area around the tip of the Fermi arc, and thus the impu-
rity scattering potential can be approximated to be identical
within one half of each quarter in the Brillouin zone (BZ).
In this case, a general impurity scattering potential Vkk′ in
Eq. (13) need mainly to be considered in three possible cases
as shown in Fig. 2: (i) the impurity scattering potential for the
scattering at the intratip of the Fermi arc Vkk′ = V1 (k and k′
at the same tip of the Fermi arc); (ii) the impurity scattering
potentials for the scattering at the adjacent-tips of the Fermi
arcs Vkk′ = V2, Vkk′ = V3, Vkk′ = V7, and Vkk′ = V8 (k and k′ at
the adjacent-tips of the Fermi arcs); and (iii) and the impurity
scattering potentials for the scattering at the opposite-tips of
the Fermi arcs Vkk′ = V4, Vkk′ = V5, and Vkk′ = V6 (k and k′ at
the opposite-tips of the Fermi arcs). This approximation based
on the octet scattering model is so-called as the Fermi-arc-tip
approximation. It should be emphasized that in this Fermi-
arc-tip approximation, the influence of the impurity scattering
on the electron pair strength can be explored directly, which
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FIG. 2. The impurity scattering in the octet scattering model. V1

is the impurity scattering potential for the intratip scattering, V2, V3,
V7, and V8 are the impurity scattering potentials for the adjacent-tip
scattering, while V4, V5, and V6 are the impurity scattering potentials
for the opposite-tip scattering. The tips of the Fermi arcs (then the
scattering centers) are divided into two groups: (A) the tips of the
Fermi arcs located at the region of |ky| > |kx| and (B) the tips of the
Fermi arcs located at the region of |kx| > |ky|.

is much different from the case in the nodal approximation
[4–6]. In this Fermi-arc-tip approximation, the impurity scat-
tering potential Vkk′ in the self-consistent T -matrix equation
(13) is dependent on the momenta at the tips of the Fermi arcs
only, and can be effectively reduced as a 8 × 8 matrix,

Ṽ =

⎛
⎜⎜⎜⎜⎝

V11 V12 · · · V18

V21 V22 · · · V28

...
...

. . .
...

V81 V82 · · · V88

⎞
⎟⎟⎟⎟⎠, (14)

where the matrix elements are given by: Vj j = V1 for
j = 1, 2, 3, . . . , 8, Vj j′ = Vj′ j = V2 for j = 1, 2, 3, 6 with
the corresponding j′ = 7, 4, 5, 8, respectively, Vj j′ = Vj′ j =
V3 for j = 1, 2, 3, 4 with the corresponding j′ = 8, 7, 6, 5,
respectively, Vj j′ = Vj j′ = V4 for j = 1, 2, 3, 4 with the corre-
sponding j′ = 6, 5, 8, 7, respectively, Vj j′ = Vj′ j = V5 for j =
1, 2, 3, 4 with the corresponding j′ = 5, 6, 7, 8, respectively,
Vj j′ = Vj′ j = V6 for j = 1, 2, 4, 5 with the corresponding
j′ = 3, 8, 6, 7, respectively, Vj j′ = Vj′ j = V7 for j = 1, 2, 5, 6
with the corresponding j′ = 4, 3, 8, 7, respectively, and Vj j′ =
Vj′ j = V8, for j = 1, 3, 5, 7 with the corresponding j′ =
2, 4, 6, 8, respectively.

At the case of zero temperature and zero energy, the Fermi
arc collapses to the point at the tip of the Fermi arc, leading
to form the Fermi-arc-tip liquid [62,63], where all the spectral
weights on the Fermi arc are reduced to the point at the tip
of the Fermi arc, indicating that the quasiparticles are only
generated at the tips of the Fermi arcs and the rest of BZ
makes no contribution. In this case, the scattering processes
in the octet scattering model shown in Fig. 2 represent all the
scattering processes in the system, and then in principle, the
Fermi-arc-tip approximation for the impurity scattering poten-
tials can reproduce properly any impurity scattering potential
with arbitrary strength, especially the adjacent scattering po-
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tential for the scattering at two different tips of the Fermi
arcs. On the other hand, at the case of low-temperature and
low-energy, although the spectral weight on the point at the
tip of the Fermi arc spreads on the extremely small area
around the point at the tip of the Fermi arc, the characteristic
feature of the Fermi arc with the most part of the spectral
weight located around the point at tip of the Fermi arc remains
[37,38,68,69], indicating that the Fermi-arc-tip approximation
is still appropriate to treat the impurity scattering at the case of
low temperature and low energy. In the following discussions,
we therefore employ the reduced impurity scattering potential
(14) to study the influence of the impurity scattering on the
electronic structure. Substituting the impurity scattering po-
tential Ṽ in Eq. (14) into Eq. (13), the T -matrix equation can
be expressed explicitly as a 16 × 16-matrix equation around
eight tips of the Fermi arcs as

T̃j j′ = 1

N
τ3Vj j′ + 1

N

∑
j′′k′′

Vj j′′ [τ3G̃I(k′′, ω)]T̃j′′ j′ , (15)

where j, j′, and j′′ are labels of the tips of the Fermi arcs, the
summation k′′ is over the area around the tip j′′ of the Fermi
arc, and then the impurity scattering self-energy �̃I(k, ω) in
Eq. (12) is reduced as

�̃I(ω) = niNT̃j j (ω), (16)

and therefore is also dependent on the momenta at the tips of
the Fermi arcs only.

It should be noted that the typical feature of the octet scat-
tering model shown in Fig. 1 is that two tips of the Fermi arc in
each quarter of BZ is symmetrical about the nodal (diagonal)
direction, reflecting a basic fact that the diagonal propagator
in Eq. (4) is symmetrical about the nodal direction. How-
ever, the off-diagonal propagator in Eq. (4) is asymmetrical
about the nodal direction, since the homogenous self-energies
�1(k, ω) and �2(k, ω) in the particle-particle channel (then
the momentum and energy dependence of the homogenous
SC gap) have a d-wave symmetry in the framework of the
kinetic-energy-driven superconductivity. In this case, we can
divide the region of the location of the tips of the Fermi arcs
(then the scattering centers) into two groups: (A) the tips of
the Fermi arcs located at the region of |ky| > |kx| and (B)
the tips of the Fermi arcs located at the region of |kx| > |ky|.
Since the symmetry of the impurity scattering self-energy
�̃I(ω) is the same as the homogenous self-energy �̃(k, ω),
the dressed electron propagator G̃I (k, ω) in Eq. (9) can be
expressed explicitly in the regions A and B as

G̃(A)
I (k, ω) =

(
G(A)

I (k, ω), 	(A)
I (k, ω)

	(A)†
I (k, ω), −G(A)

I (k,−ω)

)

= 1

F (A)
I (k, ω)

{[ω − �0(k, ω) − �I0(ω)
]
τ0

+ [
�1(k, ω) + �

(A)
I1 (ω)

]
τ1

+ [
�2(k, ω) + �

(A)
I2 (ω)

]
τ2

+ [εk + �3(k, ω) + �I3(ω)]τ3}, (17a)

G̃(B)
I (k, ω) =

(
G(B)

I (k, ω), 	(B)
I (k, ω)

	(B)†
I (k, ω), −G(B)

I (k,−ω)

)

= 1

F (B)
I (k, ω)

{[ω − �0(k, ω) − �I0(ω)]τ0

+ [
�1(k, ω) + �

(B)
I1 (ω)

]
τ1

+ [
�2(k, ω) + �

(B)
I2 (ω)

]
τ2

+ [εk + �3(k, ω) + �I3(ω)]τ3}, (17b)

respectively, where F (A)
I (k, ω) = [ω − �0(k, ω) −

�I0(ω)]2 − [εk + �3(k, ω) + �I3(ω)]2 − [�1(k, ω) +
�

(A)
I1 (ω)]2 − [�2(k, ω) + �

(A)
I2 (ω)]2 and F (B)

I (k, ω) =
[ω − �0(k, ω) − �I0(ω)]2 − [εk + �3(k, ω) + �I3(ω)]2 −
[�1(k, ω) + �

(B)
I1 (ω)]2 − [�2(k, ω) + �

(B)
I2 (ω)]2. With the

help of the above dressed electron propagators G̃(A)
I (k, ω) and

G̃(B)
I (k, ω), the self-consistent T -matrix equation (15) can be

further reduced as

T̃j j′ = 1

N
Vj j′τ3 + 1

N

∑
j′′∈A

Vj j′′
[
τ3 Ĩ (A)

G̃
(ω)

]
T̃j′′ j′

+ 1

N

∑
j′′∈B

Vj j′′
[
τ3 Ĩ (B)

G̃
(ω)

]
T̃j′′ j′ , (18)

where Ĩ (A)
G̃

(ω) and Ĩ (B)
G̃

(ω) are the integral propagators, and
can be expressed explicitly as,

Ĩ (A)
G̃

(ω) =
∑
k∈A

G̃(A)
I (k, ω) =

3∑
α=0

ταI (A)
G̃α

(ω), (19)

Ĩ (B)
G̃

(ω) =
∑
k∈B

G̃(B)
I (k, ω) =

3∑
α=0

ταI (B)
G̃α

(ω), (20)

respectively. To coincide with the separation of the region of
the location of the Fermi-arc tips, the matrix of the impurity
scattering potential Ṽ in Eq. (14) now can be rearranged in the
following way,

1

N
Ṽ =

(
V̄AA V̄AB

V̄BA V̄BB

)
, (21)

with the 4 × 4-matrices of the impurity scattering potentials
V̄AA, V̄AB, V̄BA, and V̄BB that are given by

V̄AA = 1

N

⎛
⎜⎜⎜⎝

V11 V13 V15 V17

V31 V33 V35 V37

V51 V53 V55 V57

V71 V73 V75 V77

⎞
⎟⎟⎟⎠, (22a)

V̄AB = 1

N

⎛
⎜⎜⎜⎝

V12 V14 V16 V18

V32 V34 V36 V38

V52 V54 V56 V58

V72 V74 V76 V78

⎞
⎟⎟⎟⎠, (22b)
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V̄BA = 1

N

⎛
⎜⎜⎜⎝

V21 V23 V25 V27

V41 V43 V45 V47

V61 V63 V65 V67

V81 V83 V85 V87

⎞
⎟⎟⎟⎠, (22c)

V̄BB = 1

N

⎛
⎜⎜⎜⎝

V22 V24 V26 V28

V42 V44 V46 V48

V62 V64 V66 V68

V82 V84 V86 V88

⎞
⎟⎟⎟⎠, (22d)

respectively. According to the above impurity scattering
potential Ṽ in Eq. (21), the self-consistent T -matrix equa-
tion (18) then can be rewritten as

T̃μν = V̄μν ⊗ τ3 + V̄μA ⊗ [
τ3 Ĩ (A)

G̃
(ω)

]
T̃Aν

+ V̄μB ⊗ [
τ3 Ĩ (A)

G̃
(ω)

]
T̃Bν, (23)

where μ (ν) denotes region A or B. After a quite complicated
calculation, the above T -matrix equation now can be evalu-
ated as (see Appendix),

3∑
α=0

T (α)
μν ⊗ τατ3 =

3∑
α=0

( ∑
μ′=A,B

V̄μμ′�̄
(α)
μ′ν

)
⊗ τα, (24)

with the matrix �̄(α),

�̄(α) ⊗ τα = M̄ = 1

1 − M̃
, (25)

where the matrix M̃ is obtained as

M̃ =
(

V̄AA ⊗ τ3 Ĩ (A)
G̃

(ω), V̄AB ⊗ τ3 Ĩ (A)
G̃

(ω)

V̄BA ⊗ τ3 Ĩ (B)
G̃

(ω), V̄BB ⊗ τ3 Ĩ (B)
G̃

(ω)

)
, (26)

and then the elements in the matrix �̄(α) are given by

�
(0)
i+1

2
i′+1

2

= 1

2
(M̄ii′ + M̄i+1i′+1), (27a)

�
(3)
i+1

2
i′+1

2

= 1

2
(M̄ii′ − M̄i+1i′+1), (27b)

�
(1)
i+1

2
i′+1

2

= 1

2
(M̄ii′+1 + M̄i+1i′ ), (27c)

�
(2)
i+1

2
i′+1

2

= i

2
(M̄ii′+1 − M̄i+1i′ ), (27d)

with i(i′) = 1, 3, 5, . . . , 15. The solution of this T -matrix
equation (24) now is given straightforwardly as,

T (0)
μν (ω) =

∑
μ′=A,B

V̄μμ′�̄
(3)
μ′ν, (28a)

T (1)
μν (ω) = i

∑
μ′=A,B

V̄μμ′�̄
(2)
μ′ν, (28b)

T (2)
μν (ω) = −i

∑
μ′=A,B

V̄μμ′�̄
(1)
μ′ν, (28c)

T (3)
μν (ω) =

∑
μ′=A,B

V̄μμ′�̄
(0)
μ′ν . (28d)

Following this solution of the T -matrix equation, the impurity
scattering self-energy �̃I(ω) = ∑3

α=0 �Iα (ω)τα = niNT̃j j (ω)
in the region A can be obtained as

�
(A)
I0 (ω) = niN

(
T (0)

AA

)
11 = Nni

( ∑
μ′=A,B

V̄Aμ′�̄
(3)
μ′A

)
11

, (29a)

�
(A)
I1 (ω) = niNRe

(
T (1)

AA

)
11

= −NniIm

( ∑
μ′=A,B

V̄Aμ′�̄
(2)
μ′A

)
11

, (29b)

�
(A)
I2 (ω) = niNRe

(
T (2)

AA

)
11

= NniIm

( ∑
μ′=A,B

V̄Aμ′�̄
(1)
μ′A

)
11

, (29c)

�
(A)
I3 (ω) = niN

(
T (3)

AA

)
11 = Nni

( ∑
μ′=A,B

V̄Aμ′�̄
(0)
μ′A

)
11

, (29d)

and in the region B is given by

�
(B)
I0 (ω) = niN

(
T (0)

BB

)
11 = Nni

( ∑
μ′=A,B

V̄Bμ′�̄
(3)
μ′B

)
11

, (30a)

�
(B)
I1 (ω) = niNRe

(
T (1)

BB

)
11

= −NniIm

( ∑
μ′=A,B

V̄Bμ′�̄
(2)
μ′B

)
11

, (30b)

�
(B)
I2 (ω) = niNRe

(
T (2)

BB

)
11

= NniIm

( ∑
μ′=A,B

V̄Bμ′�̄
(1)
mu′B

)
11

, (30c)

�
(B)
I3 (ω) = niN

(
T (3)

BB

)
11 = Nni

( ∑
μ′=A,B

V̄Bμ′�̄
(0)
μ′B

)
11

. (30d)

The above impurity scattering self-energies in Eqs. (29) and
(30) are obtained firstly in the Fermi-arc-tip approximation of
the quasiparticle excitations and scattering processes based on
a microscopic octet scattering model.

Since the self-energy in the particle-hole channel is sym-
metrical about the nodal direction and the self-energy in
the particle-particle channel is asymmetrical about the nodal
direction, the above impurity scattering self-energies in the
regions A and B can be rewritten uniformly as

�
(A)
I0 (ω) = �

(B)
I0 (ω) = �I0(ω), (31a)

�
(A)
I1 (ω) = −�

(B)
I1 (ω) = �I1(ω), (31b)

�
(A)
I2 (ω) = −�

(B)
I2 (ω) = �I2(ω), (31c)

�
(A)
I3 (ω) = �

(B)
I3 (ω) = �I3(ω), (31d)

and then the dressed quasiparticle excitation spectrum now
can be obtained as

II(k, ω) = |M(k, ω)|2nF(ω)AI(k, ω), (32)
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where the dressed electron spectral function AI(k, ω) is ob-
tained directly from the dressed electron propagator (11) as

AI(k, ω) = −2ImGI(k, ω)

= −2Im�
(IM)
tot (k, ω)

[ω − εk − Re�(IM)
tot (k, ω)]2 + [Im�

(IM)
tot (k, ω)]2

,

(33)

with Re�(IM)
tot (k, ω) and Im�

(IM)
tot (k, ω) that are the real and

imaginary parts of the total dressed self-energy,

�
(IM)
tot (k, ω) = �ph(k, ω) + �

(I)
ph (ω)

+ |�pp(k, ω) + (−1)μ+1�(I)
pp (ω)|2

ω + εk + �ph(k,−ω) + �
(I)
ph (−ω)

, (34)

respectively, where μ = 1 and 2 for the regions A and
B, respectively, �

(I)
ph (ω) = �I0(ω) + �I3(ω) and �(I)

pp (ω) =
�I1(ω) − i�I2(ω) are the impurity scattering self-energies in
the particle-hole and particle-particle channels, respectively.
In the previous studies based on the nodal approximation of
the quasiparticle excitations and scattering processes [4–6],
the reasonable strengths of the intranode impurity scattering,
the adjacent-node impurity scattering, and the opposite-node
impurity scattering have been used to discuss the influence
of the impurity scattering on various properties of the SC
state in cuprate superconductors [29–36]. Unless otherwise
indicated, the strengths of the intratip impurity scattering V1,
the adjacent-tip impurity scattering V2, V3, V7, and V8, and the
opposite-tip impurity scattering V4, V5, and V6 in the following
discussions are chosen as V1 = 58J , V2 = 0.85V1, V3 = 0.8V1,
V7 = 0.85V1, V8 = 0.9V1, V4 = 0.7V1, V5 = 0.65V1, and V6 =
0.75V1, respectively, to compare with the previous discussions
in the nodal approximation of the quasiparticle excitations and
scattering processes [29,33].

III. QUANTITATIVE CHARACTERISTICS

The studies of the influence of the impurity scattering on
the electronic structure can offer insight into the fundamental
aspects of the quasiparticle excitation in cuprate superconduc-
tors [4–6] and therefore also can offer points of the reference
against which theories may be compared. In this section, we
analyze the quantitative characteristics of the influence of
the impurity scattering on the electronic structure of cuprate
superconductors in the SC state to shed light on the nature of
the SC-state quasiparticle excitation.

A. Impurity concentration dependence of impurity scattering
self-energy

In the framework of the kinetic-energy-driven supercon-
ductivity [50–53], the electrons interact strongly with spin
excitations resulting in the formation of the quasiparticles,
and then all the unconventional features in the pure cuprate
superconductors are mainly dominated by these quasiparticle
behaviors [64–67]. The quasiparticle energy and lifetime in
the pure system are mainly determined by the real and imagi-
nary parts of the homogenous self-energy in the particle-hole
channel, respectively, while the homogenous self-energy in
the particle-particle channel is identified as the energy and

FIG. 3. (a) Real and (b) imaginary parts of the impurity scat-
tering self-energy in the particle-hole channel and (c) the real and
(d) imaginary parts of the impurity scattering self-energy in the
particle-particle channel at the antinode as a function of the impurity
concentration at δ = 0.15 with T = 0.002J in zero energy ω = 0
for the strengths of the adjacent-tip impurity scattering V2 = 0.85V1,
V3 = 0.8V1, V7 = 0.85V1, and V8 = 0.9V1, and the opposite-tip im-
purity scattering V4 = 0.7V1, V5 = 0.65V1, and V6 = 0.75V1, and the
intratip impurity scattering V1 = 58J (blue line) and V1 = 30J (red
line). Re�ph(k, ω) and Im�ph(k, ω) are the corresponding real and
imaginary parts of the homogenous self-energy in the particle-hole
channel, while Re�pp(k, ω) is the corresponding real part of the
homogenous self-energy in the particle-particle channel.

momentum dependence of the homogenous SC gap in the
quasiparticle excitation spectrum, and therefore is correspond-
ing to the energy for breaking an electron pair. However,
the coupling between these quasiparticles in the pure sys-
tem and impurities leads to a further renormalization of both
the energy and lifetime of the quasiparticles. To see this
further renormalization more clearly, we firstly analyze the
characteristic features of the impurity concentration depen-
dence of the impurity scattering self-energy. In Fig. 3, we
plot (a) the real part Re�(I)

ph (ω) and (b) the imaginary part

Im�
(I)
ph (ω) of the impurity scattering self-energy �

(I)
ph (ω) in the

particle-hole channel and (c) the real part Re�(I)
pp (ω) and (d)

the imaginary part Im�(I)
pp (ω) of the impurity scattering self-

energy �(I)
pp (ω) in the particle-particle channel at the antinode

as a function of the impurity concentration at δ = 0.15
with T = 0.002J in zero energy ω = 0 for the strengths of
the adjacent-tip impurity scattering V2 = 0.85V1, V3 = 0.8V1,
V7 = 0.85V1, and V8 = 0.9V1, and the opposite-tip impurity
scattering V4 = 0.7V1, V5 = 0.65V1, and V6 = 0.75V1, and the
intratip impurity scattering V1 = 58J (blue line) and V1 =
30J (red line). The main features of the impurity scattering
self-energy in Fig. 3 can be summarized as: (i) the values
of both Re�(I)

ph (ω)/Re�ph(k, ω) and Im�
(I)
ph (ω)/Im�ph(k, ω)

are positive, indicating that the binding-energy in the pure
system is shifted by Re�(I)

ph (ω) and the dispersion is

further broadened by Im�
(I)
ph (ω), where Re�ph(k, ω) and

054512-8



INFLUENCE OF IMPURITIES ON THE ELECTRONIC … PHYSICAL REVIEW B 106, 054512 (2022)

Im�ph(k, ω) are the corresponding real and imaginary parts
of the homogenous self-energy in the particle-hole channel.
In particular, with the increase of the impurity concentra-
tion, the magnitudes of both Re�(I)

ph (ω)/Re�ph(k, ω) and

Im�
(I)
ph (ω)/Im�ph(k, ω) are linearly raised [18], which leads

to a linear suppression of the spectral weight of the quasipar-
ticle excitation spectrum and a linear reduction of the lifetime
of the quasiparticle [17–21]. (ii) for an any given impurity
concentration, although the magnitude of Im�(I)

pp (ω) is equal
to zero, Re�(I)

pp (ω)/Re�pp(k, ω) has a negative value, where
Re�pp(k, ω) is the corresponding real part of the homoge-
nous self-energy in the particle-particle channel. However, the
absolute value of Re�(I)

pp (ω)/Re�pp(k, ω) is found to mono-
tonically increase as the impurity concentration is increased.
The kinetic-energy-driven SC state in the pure system [52] is
characterized by the d-wave SC gap �̄d(k, ω) = �pp(k, ω) =
�̄d(ω)[coskx − cosky]/2, which crosses through zero at each
of four nodes on EFS (kx = ±ky). However, the present result
of Re�(I)

pp (ω)/Re�pp(k, ω) in Fig. 3(c) therefore also indi-
cates that in addition to the d-wave component of the SC
gap �̄d(k, ω), the isotropic s-wave component of the gap
[70,71] �̄(I)

s (ω) = �(I)
pp (ω) is generated by the impurity scat-

tering potential (14), in which the impurities modulate the pair
interaction locally. This mixed gap �̄mix(k, ω) = �̄d(k, ω) +
(−1)μ+1�̄(I)

s (ω) therefore leads to a coexistence of the d-wave
component of the gap �̄d(k, ω) and the isotropic s-wave com-
ponent of the gap �̄(I)

s (ω) in the SC state, where μ = 1, 2 for
the regions A and B of BZ shown in Fig. 2, respectively. In
particular, the behavior of this mixed gap naturally deviates
from the d-wave behavior of the SC gap [17–21]. In this case,
the increase of the absolute value of Re�(I)

pp (ω)/Re�pp(k, ω)
at around the antinodal region upon more impurities is noth-
ing, but the smoothly decrease of the mixed gap �̄mix(k, ω) in
the magnitude at around the antinodal region, in agreement
with the experimental observations [21]. More importantly,
we have also found that the isotropic s-wave component of
the gap at around the nodal region presents a similar impurity
concentration dependent behavior at around the antinodal re-
gion shown in Fig. 3(c), which leads to the opening of the gap
at around the nodal region, with the magnitude that gradually
increases with the increase of the impurity concentration, in-
dicating the existence of a finite gap over the entire EFS, and
also in agreement with the experimental observations [19].
(iii) apart from the results shown in Fig. 3, we have also made
a series of calculations for the impurity scattering self-energy
with other different sets of the strength of the impurity scatter-
ing, and these results together with the results shown in Fig. 3
therefore indicate that at an any given impurity concentration,
the magnitudes of Re�(I)

ph (ω) and Im�
(I)
ph (ω) and the absolute

value of Re�(I)
pp (ω) increase with the increase of the strength

of the impurity scattering, which leads to that except for the
increase in the strength of the impurity-induced renormaliza-
tion of both the energy and lifetime of the quasiparticles, the
extent of the admixing of the d-wave and the isotropic s-wave
components of the gap is also strongly extended. These strong
impurity concentration dependence of the impurity scattering
self-energy in the particle-hole channel and the coexistence of
the d-wave and the isotropic s-wave components of the gap
in the particle-particle channel therefore significantly affect

the nature of the quasiparticle excitation in the pure cuprate
superconductors [4–6].

B. Impurity concentration dependence of line shape

To reveal how the impurity scattering affects the ARPES
spectrum is important to understand how the quasiparticle
excitation behavior is significantly affected by the impurity
scattering [4–6]. One of the most characteristic features in the
ARPES spectrum of cuprate superconductors is the so-called
peak-dip-hump (PDH) structure [72–79], which consists of
a coherent peak at the low binding-energy, a broad hump at
the higher binding-energy, and a spectral dip between them.
This striking PDH structure has been identified along the
entire EFS [72–79], and now is a hallmark of the spectral line
shape of the ARPES spectrum [7–9]. In particular, the recent
ARPES experimental observations also demonstrate that the
same interaction of the electrons with a bosonic excitation
that induces the SC state in the particle-particle channel also
generate a notable peak structure in the imaginary part of
the self-energy in the particle-hole channel [79], and then
this peak structure induces the remarkable PDH structure in
the ARPES spectrum. Moreover, we [68] have shown within
the framework of the kinetic-energy-driven superconductivity
that this strong coupling of the electrons with the bosonic
excitation can be identified as the strong electron’s coupling
to a strongly dispersive spin excitation. However, the impurity
scattering has an important influence on the homogenous self-
energies in the particle-hole and particle-particle channels as
we have mentioned in the above Sec. III A, which therefore
naturally induces the significant influence on the intrinsic
features of the ARPES spectrum in the pure cuprate super-
conductors. To see this significant influence more clearly, we
plot the dressed quasiparticle excitation spectrum II(k, ω) as
a function of energy at (a) the antinode and (b) the node in
δ = 0.15 with T = 0.002J for the impurity concentrations
ni = 0 (black line), 0.0025 (red line), 0.005 (orange line),
0.0075 (blue line), and 0.01 (magenta line) in Fig. 4, where the
spectral signature of the dressed quasiparticle excitation spec-
trum is a coherent peak at the low binding-energy, followed
by a dip and a broad hump at the higher binding-energies,
in agreement with the ARPES experimental results [17,18].
In the ARPES experiments [7–9], a quasiparticle with a long
lifetime is observed as a sharp peak in intensity, and a quasi-
particle with a short lifetime is observed as a broad hump.
The results in Fig. 4 therefore show clearly that the impurity
scattering induces a broadening of the spectral line together
with a shift of the position of the peak [17–21], i.e., (i)
both the coherent peak at the low binding-energy and the
broad hump at the higher binding-energy are progressively
broadened as the impurity concentration increases [17,18],
leading to the dramatic loss of the intensity of the low binding-
energy coherent peak [17–21]. In particular, the progressively
loss of the intensity of the low binding-energy coherent peak
with the increase of the impurity concentration may induce
a reduction of Tc as that observed in the experiments [17];
(ii) as a natural result of the evolution of the impurity-induced
isotropic s-wave gap �̄(I)

s (ω) with the impurity concentra-
tion obtained in the above Sec. III A, although the position
of the dip at different impurity concentrations is almost
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FIG. 4. The dressed quasiparticle excitation spectrum as a func-
tion of energy at (a) the antinode and (b) the node in δ = 0.15
with T = 0.002J for the impurity concentrations ni = 0 (black line),
0.0025 (red line), 0.005 (orange line), 0.0075 (blue line), and 0.01
(magenta line), where the arrows indicate the positions of the dip.
The insets in (a) and (b) display the corresponding evolution of the
low binding-energy coherent peaks with the impurity concentration
in more detail.

invariable, the position of the low binding-energy coherent
peak at around the antinodal region is shifted smoothly to-
wards to EFS when the impurity concentration is increased
[18], while the position of the low binding-energy coherent
peak at around the nodal region progressively moves away
from EFS [19], also in agreement with the corresponding
experimental results [18,19].

The emergence of the PDH structure in the quasiparticle
excitation spectrum can be attributed to the notable peak
structure in the quasiparticle scattering rate originated from
the interaction between electrons by the exchange of spin
excitations except for the impurity-induced a broadening of
the spectral line together with a shift of the position of the
coherent peak at the low binding-energy. As the case in the
pure system [68], the position of the quasiparticle peak in the
dressed quasiparticle excitation spectrum II(k, ω) in Eq. (32)
is mainly dominated by the real part of the total dressed self-
energy Re�(IM)

tot (k, ω) in terms of the following equation,

ω − εk − Re�(IM)
tot (k, ω) = 0,

and then the lifetime of the quasiparticle at the energy ω is
completely determined by the inverse of the dressed quasi-
particle scattering rate �I(k, ω), which is defined as the
imaginary part of the total dressed self-energy as �I(k, ω) =
|Im�

(IM)
tot (k, ω)|. To see this picture more clearly, we plot

�I(k, ω) as a function of energy at (a) the antinode and (b) the
node in δ = 0.15 with T = 0.002J for the impurity concen-
trations ni = 0 (black line), 0.0025 (red line), 0.005 (orange
line), 0.0075 (blue line), and 0.01 (magenta line) in Fig. 5. It
thus shows clearly that as the case in the pure system [68],
the peak structure also appears at around the antinodal and
nodal regions in the presence of the impurity scattering, where
�I(k, ω) achieves a sharp peak at the peak energy, and then
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FIG. 5. The dressed quasiparticle scattering rate at (a) the antin-
ode and (b) the node as a function of energy in δ = 0.15 with T =
0.002J for the impurity concentrations ni = 0 (black line), 0.0025
(red line), 0.005 (orange line), 0.0075 (blue line), and 0.01 (magenta
line), where the red arrows indicate the positions of the peaks.

it decreases rapidly away from this peak energy [79]. More
importantly, the position of this sharp peak is just correspond-
ing to the position of the dip in the PDH structure in the
dressed quasiparticle excitation spectrum shown in Fig. 4. In
this case, the spectral weight at around the dip energy is sup-
pressed heavily by the strong quasiparticle scattering, and then
the PDH structure is developed at around the antinodal and
nodal regions [79]. On the other hand, the impurity scattering
self-energy in the particle-hole channel further enhances the
quasiparticle scattering as shown in Fig. 5, which therefore
leads to a further depression of the spectral weights of the
coherent peak at the low binding-energy and the hump at
the higher binding energy [17–21]. However, the impurity
scattering self-energy in the particle-particle channel induces
a strong deviation from the d-wave behavior of the SC gap
(then an existence of a finite gap over the entire EFS) [19–21]
with the exotic impurity concentration dependence of the gap
behaviours at around the nodal and antinodal regions [17,18]
as we have mentioned in Sec. III A, which thus leads to that
with the increase of the impurity concentration, the position of
the low binding-energy coherent peak at around the antinodal
region is shifted smoothly towards to EFS, while the position
of the low binding-energy coherent peak at around the nodal
region progressively moves away from EFS.

C. ARPES autocorrelation

We now turn to discuss the ARPES autocorrelation of
cuprate superconductors for a further understanding of the
nature of the quasiparticle excitation. Experimentally, ARPES
probes directly the momentum-space electronic structure of
the system [7–9], while the ARPES autocorrelation detects
directly the effectively momentum-resolved joint density of
states in the electronic state [37,38], yielding the important
insights into the nature of the quasiparticle excitation. On the
other hand, scanning tunneling spectroscopy (STS) observes
directly the real-space inhomogeneous electronic structure of
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the system [44]. In particular, this STS technique has been also
used to infer the momentum-space behavior of the quasipar-
ticle excitations of cuprate superconductors from the Fourier
transform (FT) of the position- and energy-dependent local
density of states (LDOS) ρ(r, ω), and then both the real-
and momentum-spaces modulations for LDOS are explored
simultaneously [44–49]. The characteristic feature observed
by the FT-STS LDOS ρ(q, ω) is some sharp peaks at the
well-defined wave vectors qi obeying the octet model as
shown in Fig. 1, the quasiparticle scattering interference
(QSI) [44–49] then manifests itself as a spatial modulation
of ρ(r, ω) with these well-defined wave vector qi, appearing
in the FT-STS LDOS ρ(q, ω). More importantly, it has been
demonstrated experimentally [37,38] that the sharp peaks in
the ARPES autocorrelation spectrum are directly correlated
with the quasiparticle scattering wave vectors qi connecting
the tips of the Fermi arcs in the octet scattering model as
shown in Fig. 1, and are also well consistent with the QSI
peaks observed from the FT-STS experiments [44–49]. This
is also why the main features of QSI observed in the FT-STS
experiments [44–49] can be also detected from the ARPES au-
tocorrelation experiments [37,38]. In this section, we further
discuss the influence of the impurity scattering on the elec-
tronic state in terms of the autocorrelation of the quasiparticle
excitation spectra.

The ARPES autocorrelation of cuprate superconductors is
described in terms of the quasiparticle excitation spectrum in
Eq. (32) as [37]

C̄I(q, ω) = 1

N

∑
k

II(k + q, ω)II(k, ω), (35)

which measures the autocorrelation of the quasiparticle ex-
citation spectra in Eq. (32) at two different momenta k and
k + q, where the summation of momentum k is restricted
within the first BZ just as it has been done in the experiments
[37]. In Sec. II B, the topology of EFS (then the zero energy
contour) in the pure system has been discussed, where the tips
of the Fermi arcs connected by the scattering wave vectors
qi construct an octet scattering model shown in Fig. 1. More
specifically, this octet scattering model shown in Fig. 1 can
persist into the system in the presence of impurities at the
case for a finite binding-energy [37]. To see this important
feature more clearly, we plot an intensity map of the dressed
quasiparticle excitation spectrum II(k, ω) in the case of the
binding-energy ω = 12 meV at δ = 0.15 with T = 0.002J
for the impurity concentration ni = 0.0005 in Fig. 6(a). For a
clear comparison, the corresponding ARPES experimental re-
sult [37] observed on the optimally doped Bi2Sr2CaCu2O8+δ

for the case of the binding-energy ω = 12 meV is also shown
in Fig. 6(b). It thus shows that the octet scattering model with
the scattering wave vectors qi connecting the tips of the Fermi
arcs emerges in the system in the presence of impurities at the
case for a finite binding-energy, which is well consistent with
the corresponding ARPES experimental result [37].

We are now ready to discuss the ARPES autocorrelation
in cuprate superconductors. In Fig. 7(a), we plot the intensity
map of the autocorrelation of the quasiparticle excitation spec-
tra C̄I(q, ω) in the binding-energy ω = 12 meV at δ = 0.15
with T = 0.002J for the impurity concentration ni = 0.0005.

FIG. 6. (a) The intensity map of the quasiparticle excita-
tion spectrum in the binding-energy ω = 12 meV at δ = 0.15
with T = 0.002J for the impurity concentration ni = 0.0005.
(b) The corresponding experimental result of the optimally doped
Bi2Sr2CaCu2O8+δ for ω = 12 meV taken from Ref. [37]. q1, q2, q3,
q4, q5, q6, and q7 indicate different scattering wave vectors.

For a better comparison, the corresponding experimental re-
sult [37] detected from the optimally doped Bi2Sr2CaCu2O8+δ

for the bind-energy ω = 12 meV is also shown in Fig. 7(b).
Obviously, the corresponding ARPES experimental result
[37] is qualitatively reproduced, where the main features can
be summarized as (i) there are some discrete spots appear in
C̄I(q, ω), where the joint density of states is highest; (ii) these
discrete spots in C̄I(q, ω) are directly correlated with the cor-
responding wave vectors qi connecting the tips of the Fermi
arcs in the octet scattering model shown in Fig. 6; and (iii)
the momentum-space structure of the ARPES autocorrelation
pattern of C̄I(q, ω) is quite similar to the momentum-space
structure of the QSI pattern observed from FT-STS experi-
ments [44–49]. To see the autocorrelation pattern of C̄I(q, ω)
more clearly, the surface plot of C̄I(q, ω) in the binding-
energy ω = 18 meV at δ = 0.15 with T = 0.002J for the
impurity concentration ni = 0.0005 is shown in Fig. 8(a) in
comparison with the corresponding experimental result [37]
observed on the optimally doped Bi2Sr2CaCu2O8+δ for the
binding-energy ω = 18 meV in Fig. 8(b), where as was ex-
pected, the sharp autocorrelation peaks are located exactly at
the discrete spots of C̄I(q, ω).

FIG. 7. (a) The intensity map of the autocorrelation spectrum
in the binding-energy ω = 12 meV at δ = 0.15 with T = 0.002J
for the impurity concentration ni = 0.0005. (b) The corresponding
experimental result of the ARPES autocorrelation spectrum observed
from the optimally doped Bi2Sr2CaCu2O8+δ for the binding-energy
ω = 12 meV taken from Ref. [37].
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FIG. 8. (a) The surface plot of the autocorrelation spectrum
in the binding-energy ω = 18 meV at δ = 0.15 with T = 0.002J
for the impurity concentration ni = 0.0005. (b) The corresponding
experimental result of the ARPES autocorrelation observed from
the optimally doped Bi2Sr2CaCu2O8+δ for the binding-energy ω =
18 meV taken from Ref. [37].

In addition to the results plotted in the above Figs. 7 and 8,
we have also performed a series of calculations for C̄I(q, ω)
with other different sets of the strength of the impurity scat-
tering at different impurity concentrations as in the case of
the discussions in Sec. III A. Comparing these results together
with the results shown in Figs. 7 and 8 with the corresponding
results in the pure system [69], we thus find that except for the
sharp peaks in the autocorrelation pattern in the pure system
that are broadened by the impurity scattering, (i) at a given
set of the impurity scattering strength, the weight of the extra
peaks in the autocorrelation pattern of the pure system is
smoothly depressed when the impurity concentration level is
raised, and (ii) on the other hand, at a given impurity concen-
tration, the weight of the extra peaks in the autocorrelation
pattern of the pure system is gradually suppressed with the
increase of the impurity scattering strength. In other words,
the impurity concentration presents a similar behavior of the
impurity scattering strength. More importantly, in the reason-
able parameter range of the impurity scattering strength and
impurity concentration, 45J < V1 < 95J , Vj < V1 with j =
2, 3, 4, . . . , 8, and 0.0004 < ni < 0.00055, the weight of the
extra peaks in the autocorrelation pattern of the pure system is
eliminated completely by the impurity scattering as the results
shown in Figs. 7 and 8, leading to that the obtained results of
the autocorrelation pattern as the results shown in Figs. 7 and
8 are consistent with the corresponding ARPES experimental
observations [37] on the optimally doped Bi2Sr2CaCu2O8+δ .
The qualitative agreement between the theoretical results and
experimental observations therefore indicate that the uncon-
ventional features of the ARPES autocorrelation pattern (then
the QSI pattern) are dominated by both the strong electron
correlation and impurity scattering. The present study also
shows that the microscopic octet scattering model obtained
based on the kinetic-energy-driven superconductivity can give
a consistent description of the influence of impurities on the
electronic structure in cuprate superconductors.

IV. SUMMARY AND DISCUSSIONS

Starting from the t-J model in the fermion-spin represen-
tation, we have rederived the homogenous part of the electron
propagator with the d-wave symmetry based on the kinetic-

energy-driven SC mechanism, and shown that the formation
of the Fermi arcs is due to the EFS reconstruction, where a
large number of the low-energy electronic states is available at
around the tips of the Fermi arcs, and then the most physical
properties of cuprate superconductors are controlled by the
quasiparticle excitations at around the tips of the Fermi arcs.
These tips of the Fermi arcs connected by the scattering wave
vectors qi naturally construct an octet scattering model. With
the help of this homogenous electron propagator and the as-
sociated octet scattering model, we then have investigated the
influence of the impurity scattering on the electronic structure
of cuprate superconductors within the standard perturbation
theory, where although the impurity scattering is treated in
terms of the self-consistent T -matrix approach, the impurity
scattering self-energy is evaluated firstly in the Fermi-arc-tip
approximation of the quasiparticle excitations and scattering
processes. The obtained results show that (i) the quasiparticle
band structure is further renormalized by the real part of the
impurity scattering self-energy in the particle-hole channel,
while the quasiparticle lifetime is further reduced by the
corresponding imaginary part of the impurity scattering self-
energy, with the renormalization strength and reduction extent
that increase as the impurity concentration is increased; and
(ii) the impurity scattering self-energy in the particle-particle
channel generates a strong deviation from the d-wave behav-
ior of the SC gap, where with the increase of the impurity
concentration, the magnitude of the SC gap along EFS is
progressively reduced except for at around the nodal region,
where the gap that vanishes in the pure system opens with the
magnitude of the gap that smoothly increases, which therefore
leads to the existence of a finite gap over the entire EFS.
Furthermore, we have employed these impurity scattering
self-energies in the particle-hole and particle-particle channels
to study the influence of the impurity scattering on the com-
plicated line shape in the quasiparticle excitation spectrum
and the ARPES autocorrelation spectrum, and the obtained
results are well consistent with the corresponding experi-
mental observations. Our theory therefore indicates that the
unconventional features of the electronic structure in cuprate
superconductors are generated by both the strong electron
correlation and impurity scattering.

The theoretical framework, especially the Fermi-arc-tip
approximation, developed in this paper for the understanding
of the influence of the impurity scattering on the electronic
structure of cuprate superconductors can be also employed to
study the influence of the impurity scattering on other various
properties of cuprate superconductors both in the SC- and
normal-states. In particular, based on this theoretical frame-
work, we have also discussed the energy dependence of the
SC-state quasiparticle transport in cuprate superconductors by
the consideration of the contributions of the vertex correction
[80]. These and the related works will be presented elsewhere.
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APPENDIX: T -MATRIX EQUATION

In this Appendix, we derive explicitly the result of the T -matrix equation (24) of the main text. The self-consistent T -matrix
equation (23) can be expanded in the following way:

T̃μν = V̄μν ⊗ τ3

+ V̄μA ⊗ [
τ3 Ĩ (A)

G̃
(ω)

]{V̄Aν ⊗ τ3 + V̄AA ⊗ [
τ3 Ĩ (A)

G̃
(ω)

]
(V̄Aν ⊗ τ3 + V̄AA ⊗ [

τ3 Ĩ (A)
G̃

(ω)
]
T̃Aν + V̄AB ⊗ [

τ3 Ĩ (B)
G̃

(ω)
]
T̃Bν )

+ V̄ AB ⊗ [
τ3 Ĩ (B)

G̃
(ω)

]
(V̄Bν ⊗ τ3 + V̄BA ⊗ [

τ3 Ĩ (A)
G̃

(ω)
] ∗ T̃Aν + V̄BB ⊗ [

τ3 Ĩ (B)
G̃

(ω)
] ∗ T̃Bν )}

+ V̄μB ⊗ [
τ3 Ĩ (B)

G̃
(ω)

]{V̄Bν ⊗ τ3 + V̄BA ⊗ [
τ3 Ĩ (A)

G̃
(ω)

]
(V̄Aν ⊗ τ3 + V̄AA ⊗ [

τ3 Ĩ (A)
G̃

(ω)
]
T̃Aν + V̄AB ⊗ [

τ3 Ĩ (B)
G̃

(ω)
]
T̃Bν )

+ V̄BB ⊗ [
τ3 Ĩ (B)

G̃
(ω)

]
(V̄Bν ⊗ τ3 + V̄BA ⊗ [

τ3 Ĩ (A)
G̃

(ω)
]
T̃Aν + V̄BB ⊗ [

τ3 Ĩ (B)
G̃

(ω)
]
T̃Bν )}

= V̄μν ⊗ τ3 + V̄μAV̄Aν ⊗ [
τ3 Ĩ (A)

G̃
(ω)

]
τ3 + V̄μBV̄Bν ⊗ [

τ3 Ĩ (B)
G̃

(ω)
]
τ3

+ V̄μAV̄AAV̄Aν ⊗ [
τ3 Ĩ (A)

G̃
(ω)

]2
τ3 + V̄μAV̄ABV̄Bν ⊗ [

τ3 Ĩ (A)
G̃

(ω)
][

τ3 Ĩ (B)
G̃

(ω)
]
τ3

+ V̄μBV̄BAV̄Aν ⊗ [
τ3 Ĩ (B)

G̃
(ω)

][
τ3 Ĩ (A)

G̃
(ω)

]
τ3 + V̄μBV̄BBV̄Bν ⊗ [

τ3 Ĩ (B)
G̃

(ω)
]2

τ3

+ V̄μAV̄AAV̄AA ⊗ [
τ3 Ĩ (A)

G̃
(ω)

]3
T̃Aν + V̄μAV̄AAV̄AB ⊗ [

τ3 Ĩ (A)
G̃

(ω)
]2[

τ3 Ĩ (B)
G̃

(ω)
]
T̃Bν

+ V̄μAV̄ABV̄BA ⊗ [
τ3 Ĩ (A)

G̃
(ω)

][
τ3 Ĩ (B)

G̃
(ω)

][
τ3 Ĩ (A)

G̃
(ω)

]
T̃Aν + V̄μAV̄ABV̄BB ⊗ [

τ3 Ĩ (A)
G̃

(ω)
][

τ3 Ĩ (B)
G̃

(ω)
]2

T̃Bν

+ V̄μBV̄BAV̄AA ⊗ [
τ3 Ĩ (B)

G̃
(ω)

][
τ3 Ĩ (A)

G̃
(ω)

]2 ∗ T̃Aν + V̄μBV̄BAV̄AB ⊗ [
τ3 Ĩ (B)

G̃
(ω)

][
τ3 Ĩ (A)

G̃
(ω)

][
τ3 Ĩ (B)

G̃
(ω)

]
T̃Bν

+ V̄μBV̄BBV̄BA ⊗ [
τ3 Ĩ (B)

G̃
(ω)

]2[
τ3 Ĩ (A)

G̃
(ω)

]
T̃Aν + V̄μBV̄BBV̄BB ⊗ [

τ3 Ĩ (B)
G̃

(ω)
]3

T̃Bν . (A1)

To solve this self-consistent T -matrix equation, we define a 4 × 4 unit matrix Îυ in the V̄ space, and then right multiply the
matrix Îυ ⊗ τ3 in the above T -matrix equation (A1), which leads to an iterative T -matrix equation as

T̃μν ∗ Îυ ⊗ τ3 =
∑

α

T (α)
μν ⊗ τατ3

= V̄μν ⊗ τ0 + V̄μAV̄Aν ⊗ [
τ3 Ĩ (A)

G̃
(ω)

] + V̄μBV̄Bν ⊗ [
τ3 Ĩ (B)

G̃
(ω)

] + V̄μAV̄AAV̄Aν ⊗ [
τ3 Ĩ (A)

G̃
(ω)

]2

+ V̄μAV̄ABV̄Bν ⊗ [
τ3 Ĩ (A)

G̃
(ω)

][
τ3 Ĩ (B)

G̃
(ω)

] + V̄μBV̄BAV̄Aν ⊗ [
τ3 Ĩ (B)

G̃
(ω)

][
τ3 Ĩ (A)

G̃
(ω)

] + V̄μBV̄BBV̄Bν ⊗ [
τ3 Ĩ (B)

G̃
(ω)

]2

+ V̄μAV̄AAV̄AA ⊗ [
τ3 Ĩ (A)

G̃
(ω)

]3 ∑
α

T (α)
Aν ⊗ τατ3 + V̄μAV̄AAV̄AB ⊗ [

τ3 Ĩ (A)
G̃

(ω)
]2[

τ3 Ĩ (B)
G̃

(ω)
]∑

α

T (α)
Bν ⊗ τατ3

+ V̄μAV̄ABV̄BA ⊗ [
τ3 Ĩ (A)

G̃
(ω)

][
τ3 Ĩ (B)

G̃
(ω)

][
τ3 Ĩ (A)

G̃
(ω)

] ∑
α

T (α)
Aν ⊗ τατ3

+ V̄μAV̄ABV̄BB ⊗ [
τ3 Ĩ (A)

G̃
(ω)

][
τ3 Ĩ (B)

G̃
(ω)

]2 ∑
α

T (α)
Bν ⊗ τατ3

+ V̄μBV̄BAV̄ AA ⊗ [
τ3 Ĩ (B)

G̃
(ω)

][
τ3 Ĩ (A)

G̃
(ω)

]2 ∑
α

T (α)
Aν ⊗ τατ3

+ V̄μBV̄BAV̄AB ⊗ [
τ3 Ĩ (B)

G̃
(ω)

][
τ3 Ĩ (A)

G̃
(ω)

][
τ3 Ĩ (B)

G̃
(ω)

] ∑
α

T (α)
Bν ⊗ τατ3

+ V̄μBV̄BBV̄BA ⊗ [
τ3 Ĩ (B)

G̃
(ω)

]2[
τ3 Ĩ (A)

G̃
(ω)

]∑
α

T (α)
Aν ⊗ τατ3

+ V̄μBV̄BBV̄BB ⊗ [
τ3 Ĩ (B)

G̃
(ω)

]3 ∑
α

T (α)
Bν ⊗ τατ3. (A2)

Now it is quite easy to verify that the above T -matrix satisfies the following equation:

∑
α

T (α)
μν ⊗ τατ3 = [V̄ ⊗ τ0(1 + M̃ + M̃2 + M̃3 + · · · )]μν =

(
V̄ ⊗ τ0

1

1 − M̃

)
μν

=
[(

V̄AA ⊗ τ0, V̄AB ⊗ τ0

V̄BA ⊗ τ0, V̄BB ⊗ τ0

)
1

1 − M̃

]
μν

, (A3)
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where the matrix M̃ has been given in Eq. (26) of the main text. Following the Einstein summation rule, the inverse matrix
M̄ = (1 − M̃ )−1 can be expressed as

M̄ = �(α) ⊗ τα =
(

�
(α)
AA ⊗ τα �

(α)
AB ⊗ τα

�
(α)
BA ⊗ τα �

(α)
BB ⊗ τα

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
(α)
11 τα �

(α)
12 τα · · · �

(α)
14 τα �

(α)
15 τα �

(α)
16 τα · · · �

(α)
18 τα

�
(α)
21 τα �

(α)
22 τα · · · �

(α)
24 τα �

(α)
25 τα �

(α)
26 τα · · · �

(α)
28 τα

...
...

...
...

...
...

...
...

�
(α)
41 τα �

(α)
42 τα · · · �

(α)
44 τα �

(α)
45 τα �

(α)
46 τα · · · �

(α)
48 τα

�
(α)
51 τα �

(α)
52 τα · · · �

(α)
54 τα �

(α)
55 τλ �

(α)
56 τα · · · �

(α)
58 τα

�
(α)
61 τα �

(α)
62 τα · · · �

(α)
64 τα �

(α)
65 τα �

(α)
66 τλ · · · �

(α)
68 τλ

...
...

...
...

...
...

...
...

�
(α)
81 τλ �

(α)
82 τα · · · �

(α)
84 τα �

(α)
85 τα �

(α)
86 τα · · · �

(α)
88 τα

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A4)

However, according to the Pauli matrices τ0, τ1, τ2, and τ3, the block [ j j′] of the matrix M̄ can be decomposed as

M̄ j j′ =
3∑

α=0

�
(α)
j j′ τα = 1

2
(M̄ j j′ + M̄ j+1 j′+1)τ0 + 1

2
(M̄ j j′ − M̄ j+1 j′+1)τ3

+ 1

2
(M̄ j j′+1 + M̄ j+1 j′ )τ1 + i

2
(M̄ j j′+1 − M̄ j+1 j′ )τ2, (A5)

and then the final form of the T -matrix in Eq. (A3) can be obtained as∑
α

T (α)
μν ⊗ τατ3 =

[(
V̄AA ⊗ τ0 V̄AB ⊗ τ0

V̄BA ⊗ τ0 V̄BB ⊗ τ0

)(
�

(α)
AA ⊗ τα �

(α)
AB ⊗ τα

�
(α)
BA ⊗ τα �

(α)
BB ⊗ τα

)]
μν

=
B∑

μ′=A

3∑
α=0

V̄μμ′�
(α)
μ′ν ⊗ τα =

3∑
α=0

(
B∑

μ′=A

V̄μμ′�
(α)
μ′ν

)
⊗ τα, (A6)

which is the same as quoted in Eq. (24) of the main text.
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