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Enhanced pairing mechanism in cuprate-type crystals
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Using a BCS mean-field approach, we show how the interplay between low-momentum optical phonons and
Jahn-Teller-type lattice distortions can open an attractive channel that allows the formation of pairs with the
corresponding density exhibiting characteristic features of a pair-density wave. We demonstrate this numerically
on a copper-oxide-type lattice.
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While the pairing mechanism in conventional supercon-
ductors has long been well understood, the situation for
cuprate superconductors is still controversial and unexplained
35 years after their discovery. Although the traditional
phonon-mediated BCS pairing mechanism has been largely
ruled out as the main cause of high-temperature superconduc-
tivity, several experimental groups, e.g., Refs. [1,2], reported
observations of sufficiently strong interactions between cer-
tain optical modes and doped charge carriers. A number of
recent experiments [3,4] further suggest a pronounced corre-
lation between the superconducting gap and the strength of
electron-phonon coupling at small momentum transfer [5,6].
Bednorz and Müller [7] were motivated in their search for
superconducting materials by the idea that lattice distortions
in the sense of dynamic Jahn-Teller polarons could be a more
effective glue for electron pairing, much stronger than the
conventional BCS pairing mechanism [8,9]. In light of their
sensational success, it seems perfectly reasonable to assume
that this fundamental discovery of copper oxide superconduc-
tors was no coincidence, but rather confirmation of the fact
that strong dynamic lattice distortions are required to achieve
high values of Tc. Such dynamic distortions undoubtedly seem
to play a role in cuprates [10,11]. The aim of the present paper
is to present a previously unconsidered pairing mechanism
driven by a synergy of Jahn-Teller-type crystal lattice defor-
mations and low-momentum optical phonon vibrations.

In a recent paper, one of the authors, Hainzl, and Loss
[12] pointed out that for interactions more general than de-
pending only on relative distance, arbitrary electron pairs with
momenta (k, k′) and equal energy ε(k) = ε(k′) can lead to
instability of the Fermi sea. With this in mind, one is lead to
consider pairs (k, k′) such that |k−k′|

|kF| � 1 with both momenta
close to the Fermi surface.

We will show that it is further sufficient to consider pairs
with equal momentum and opposite spin, and in this case a
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remarkably simple and explicitly solvable model is obtained.
Therein, the pair-forming effective interactions result from the
above-mentioned combination of optical phonon interactions
and lattice deformations. Interestingly, with this restriction to
pairs of the form (k, k), the corresponding gap equation has
a simple structure. Most notably, the critical temperature de-
pends linearly on the interaction strength. We will describe
numerical results justifying this restriction using an example
potential with nonvanishing momentum transfer.

Let us now become more concrete. We consider a diatomic
copper oxide lattice (see Fig. 1). Using the Wegner flow
method [13,14], we obtain an effective interaction between
charge carriers, similar to the earlier derivations of Fröhlich
[15] and Bardeen-Pines [16]. The exact form of the effective
interaction depends on the details of the associated Bloch
functions and hence on the details of the lattice geometry.

Consequently, we apply the BCS approximation to the
resulting Hamiltonian and investigate the possibility of cor-
related pairs due to the instability of the Fermi sea. In other
words, we consider the noninteracting Fermi gas as the parent
compound for the superconducting behavior, with the chem-
ical potential ε(kF) playing the role of the doping parameter.
Once we obtain an effective interaction, we consider the re-
sulting BCS gap equation for pairs of the form (k, k), which
now takes the following simplified form:⎛

⎝√
(ε(k) − ε(kF))2 + |�(k)|2

tanh
(√

(ε(k)−ε(kF ))2+|�(k)|2 )
2T

) + V (k)

2

⎞
⎠�(k) = 0, (1)

where k is the crystal momentum, kF the Fermi-momentum,
and V is the effective interaction, with attractive component
V � 0. On the one hand, our simplifications lead to the nice
Eq. (1), but on the other hand they have unfortunately re-
moved the phase dependence, since the solutions of Eq. (1)
are uniquely determined only up to an arbitrary phase. For
this reason, our numerical solution of the gap equation is
only concerned with the absolute values of �. Further, it
is important to emphasize the following: If the crystal lat-
tice is perfectly symmetrical, then the effective interaction
V (k) vanishes identically. However, Jahn-Teller-type lattice
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distortions, which form dynamically in the presence of charge
carriers, allow nonvanishing interactions V (k), which in turn
open attractive channels for Cooper pairing. We present an
example of such an interaction in Sec. III. The solution �(k)
in Eq. (1) is automatically concentrated near the Fermi sur-
face, as seen in Fig. 6. The corresponding critical pairing
temperature T ∗ has the simple form

T ∗ = −V (kF)

4
. (2)

Let us emphasize that the magnitude of the interaction V (kF)
depends significantly on the strength of the coupling of charge
carriers to the lattice, which according to Eq. (2) determines
the temperature T ∗, below which the BCS approach predicts
the occurrence of correlated pairs. This is in line with the
original insightful heuristics used by Bednorz and Müller in
their successful searches for superconducting materials. The
linear dependence Eq. (2) arises as a consequence of the sim-
plicity of the effective gap equation governing the formation
of (k, k) pairs and provides a strong contrast to the standard
BCS critical temperature which is exponentially small in the
coupling constant. The distinct behaviors of the two types
of pairings can be understood by noting that the underlying
approximations responsible for the linear behavior Eq. (2)
can be justified only for (k, k), while they certainly fail for
(k,−k) (see Figs. 12 and 14).

We propose the following interpretation of our work for
copper oxide materials: Since we neglect the strong Coulomb
repulsion among electrons and use the BCS mean-field
approach, our analysis cannot be directly applied to the occur-
rence of superconductivity itself, but it could well describe the
pseudogap (PG), where T ∗ is the corresponding critical tem-
perature. If the chemical potential ε(kF) models the amount of
doping, then the phase diagram of T ∗ can be explained by the
fact that the coupling strength between charge carriers, e.g.,
electrons, and the crystal lattice depends on the velocity of
the charge carriers. The faster the particles are, the smaller the
effect of deformation and the weaker the effective coupling
potential. This is also an apparent explanation for the dis-
appearance of superconductivity above certain doping levels,
namely, we propose that the PG phase is caused by BCS-like
pairing, but with pairs with momenta |k−k′|

|kF| � 1 that are close
to each other. These pairs, however, do not necessarily allow
for macroscopic coherence, i.e., long-range order.

The appearance of pairings with finite center-of-mass mo-
mentum is nowadays referred to as FFLO phase, named after
Fulde, Ferell [17], and Larkin, Ovchinnikov [18]. The pairs
we study here are of a different nature since their total mo-
mentum varies along the Fermi surface. However, the form
of these pairs naturally implies the existence of a pair density
wave (PDW), even though the pairing mechanism we propose
here is clearly different than the one usually discussed in the
literature; see, e.g., Refs. [19,20].

The paper is organized as follows: We begin by discussing
the electron-phonon coupling in CuO2 and the resulting ef-
fective electron-electron interaction in Sec. I. Section II is
dedicated to the BCS gap equation arising from the presence
of equal momenta electron pairs. In Sec. III, we calculate
distortion effects on the effective electron-electron interaction
in a tight-binding model. Next we describe in Sec. IV numer-
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FIG. 1. Two-dimensional CuO2 cubic lattice.

ical results showing that such Jahn-Teller-type distortion can
give rise to nonzero electron-phonon coupling between pairs
of electrons with equal momenta and opposite spin, and we
discuss the resulting gap function and pair wave densities.
In Sec. V, we study general pairings (k, k′) in an extended
model with vanishing momentum transfer using the linearized
gap equation. We show that close to the critical tempera-
ture, exactly two distinguished pairings emerge, namely, the
(k, k) pairing and the conventional (k,−k) pairing, both with
identical critical temperature T ∗ satisfying the linear relation
Eq. (2). However, the approximation of vanishing momentum
transfer can only be justified for the (k, k) case, as seen
numerically in Sec. VI. There, we demonstrate the stability
of (k, k) pairs under certain conditions for nonvanishing mo-
mentum transfers, also using the linearized gap equation. In
particular, this gives an example where (k, k) is indeed the
dominant pairing mechanism. Furthermore, the results for the
pair wave function show explicitly that the approximation
of vanishing momentum transfer can only be justified for
(k, k) but not for (k,−k). The well-known derivations for
the electron-phonon and Wegner effective electron-electron
interactions are briefly outlined in the Appendix.

I. EFFECTIVE ELECTRON-ELECTRON INTERACTION
IN CuO2

As an example of a system which allows for the above-
described pairing mechanism, we consider a planar CuO2

lattice with volume � and square primitive cells composed
of one copper atom and two oxygen atoms per unit cell,
see Fig. 1. We are mainly interested in the interaction be-
tween Bloch electrons and lattice phonons. Starting with
the standard many-body Hamiltonian, the renormalization
flow of Wegner [13,14] yields an effective electron model
where the electron-phonon interaction is replaced by an ef-
fective electron-electron interaction mediated by the phonons.
The leading-order effective Hamiltonian has the general
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form

Hel =
∑
k,n,σ

εn(k)c†
nkσ cnkσ

+
∑

knσ,k′mσ ′
qn′m′GG′

V nn′mm′
σσ ′ (k, k′, G, G′, q)

c†
n′k+q+Gσ

c†
m′k′−q+G′σ ′cmk′σ ′cnkσ , (3)

where ε(k) is the electronic dispersion relation, σ, σ ′ the
electronic spins, and V the effective attractive interaction be-
tween electrons with momenta k, k′ through a phonon with
momentum q and umklapp vectors G, G′. It is worth noting
that the Wegner flow method has been previously used to
study electron-phonon interactions in other models, see, e.g.,
Ref. [21].

We are interested in possible pairing mechanism of elec-
trons with momenta k, k′, with |k−k′|

|kF | � 1 and both momenta
are close to the Fermi surface with an effective interaction me-
diated by phonons with low momenta q. However, to obtain an
explicitly solvable model, we further simplify this model by
concentrating on pairs with equal momenta. Thereby, Eq. (3)
can be restricted to k = k′, and k + q + G = k′ − q + G′.
Solving for the phonon momentum gives q = G′−G

2 . In the
first Brillouin zone (FBZ), this has the trivial solution q = 0
and four further distinct solutions on the boundary, q =
(π, 0), (0, π ), and (π,±π ), where the lattice constant a = 1
in natural units.

Since we are interested in small momentum transfers, we
focus on the case of q = 0. It cannot be overemphasized that
this should be considered as an approximation that captures
the essential physical mechanism, whereas in an actual phys-
ical system any sufficiently small momentum transfer q, and
likewise any Bloch momentum pairs k, k′ that are sufficiently
close to each other on the scale of the Fermi momentum
kF , i.e., |k−k′|

|kF | � 1, can contribute. In Secs. V and VI, we
study more general pairings and potentials by means of the
linearized gap equations. There we provide some arguments
and numerical evidence confirming the validity of the approx-
imations k = k′ and q = 0 in a simplified exemplary model.

Neglecting electron-electron Coulomb interactions, we ob-
tain a reduced effective Hamiltonian of the form

Heff =
∑
kσ

ε(k)c†
kσ ckσ +

∑
k,σ,σ ′

V (k) c†
kσ c†

kσ ′ckσ ′ckσ . (4)

In the following sections, we explore the possible pair
formation within this toy model. In the Appendix, we briefly
outline the standard derivation of the effective electron-
electron interaction Eq. (3) in the rigid-ion approximation.
There one obtains for Eq. (4) that

V (k) = −
∑

λ

1

ωλ(0)
|Dλ(k)|2, (5)

where ωλ(0) is the optical phonon energy at zero momentum,
and the electron-phonon coupling Dλ(k) is given by

Dλ(k) = i

√
h̄N3

cell

2ωλ(0)�4

∑
τ

∑
G̃∈RL

eλ,τ (0) · G̃
v̂τ

ei(G̃)√
Mτ∫

cell
d2r eiG̃·r|uk(r)|2, (6)

Here Ncell is the number of primitive cells in a lattice of
volume �, τ runs over the atomic basis, Mτ the mass of the
τ ion, and v̂τ

ei the Fourier transform of the spin-independent
electron-ion potential, defined as

v̂τ
ei(Q) =

∫
�

d2r vτ
ei(r)e−iQ·r. (7)

Moreover, eλ,τ are the polarization vectors, while uk are the
lattice periodic electronic wave functions and the integral is
over the volume of the unit cell.

It is worth noting that one obtains a similar expression
for the effective electron-electron interaction between pairs
(k,−k) when q = 0. See the Appendix for details.

II. BCS APPROACH TO EQUAL MOMENTUM PAIRING

We would like to emphasize that, as pointed out in
Ref. [12], any pairing, k, k′ with ε(k) = ε(k′), can lead to
the instability of the Fermi sea. Choosing equal momentum
pairing allows us to obtain a gap equation that depends on only
one momentum. Let us now apply the usual BCS mean-field
approach to Eq. (4), with the gap function for equal momen-
tum pairing defined by

�(k) = V (k)〈ck↓ck↑〉. (8)

Following standard arguments, we obtain the gap equation(
E�(k)

tanh
(E�(k)

2T

) + V (k)

2

)
�(k) = 0, (9)

with

E�(k) =
√

(ε(k) − ε(kF))2 + |�(k)|2. (10)

The corresponding equation for the critical temperature T ∗,

E0(kF)

tanh
(E0(kF )

2T ∗
) = −V (kF)

2
, (11)

reduces to the particularly simple relation:

T ∗ = −V (kF)

4
. (12)

The linear dependence on the coupling distinguishes this
type of pairing from conventional superconductors. Here, the
critical pairing temperature T ∗ is directly determined by the
strength of the lattice deformation. A particular weakness
of our approach is the loss of phase dependence, since the
solution of Eq. (9) is determined only up to an arbitrary phase
function eiθ (k).

It should be mentioned that in recent years the math-
ematical properties of conventional BCS theory have been
intensively studied [22–28] with sometimes rather surprising
insights [29,30].
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FIG. 2. An example of a Jahn-Teller-type distortion to CuO2. On
the left, a unit cell with displacements δx/y from the positions of the
oxygen atoms at the symmetry points (a/2, 0) and (0, a/2) along the
respective axes is shown.

III. A TIGHT-BINDING MODEL WITH
JAHN-TELLER-TYPE DISTORTION

As an illustrative example, we now augment the CuO2

model from Sec. I by a Jahn-Teller-type distortion. In partic-
ular, we will show how such distortions give rise to attractive
kk interactions sufficient for the occurrence of BCS states
with such pairings. Our example of a lattice distortion is again
intended to be a simplification of the possible dynamically
induced and thus usually localized distortions. Consequently,
many choices below will also be made with simplicity and
transparency of the resulting model in mind. We begin by stat-
ically distorting the two oxygens of each unit cell away from
their symmetric equilibrium positions to rO(1) = (a/2 + δx, 0)
and rO(2) = (0, a/2 + δy). Here we adopt dimensionless units
with lattice spacing a = 1. The distortion length parameters
δx = δy =: δ are taken to be equal and small compared to the
lattice constant a. This geometry is shown in Figs. 2 and 3.

Next we calculate the electron-phonon coupling Dλ(k) us-
ing a tight-binding wave function

ψn,k(r) = 1√
N

∑
j,τ

cn
τ,keik·R j wτ (r − R jτ ), (13)

where N = 3Ncell denotes the number of lattice ions. The coef-
ficients cn

τ,k are the nth eigenvector of a hopping Hamiltonian
in the atomic basis

H =
⎛
⎝εCu ax ay

a∗
x εOx c

a∗
y c∗ εOy

⎞
⎠, (14)

modeled after the lattice structure from Fig. 1, with ax :=
t1 + t1e−ikx , ay := t1 + t1e−iky and c := t2 + t2eikx + t2e−iky +
t2eikx−iky . The parameter t1 corresponds to horizontal and ver-
tical Cu-O hopping, while t2 is the amplitude for diagonal O-O
hopping.

Typical values in t1 units are εCu − εO ≈ 2.5 to 3.5 t1,
while t2 ≈ 0.5 to 0.6 t1, with t1 ≈ 1.2 to 1.5 eV [31,32]. Here

Cu O

O

O

O

Cu

O

O

Cu CuO

FIG. 3. The deformed lattice and bond structure resulting from
the distortion of Fig. 2

we take t1 = 1.5 eV, t2 = 0.6 t1, εCu = 4.5 eV, while setting
the oxygen ground-state energy εO to zero by a redefinition of
the Fermi energy. The resulting dispersion relation has three
branches and is shown in Fig. 4.

For the atomic wave functions, we take Gaussians
wτ (r) := Nρe−r2/(4ρ2 ), with width ρ independent of the
atomic species τ and normalization N−1

ρ =
√

2πρ2. With this
setup, the resulting lattice-periodic wave functions are

un,k(r) = (2π )2
∑

τ

cn
τ,k

∑
G∈RL

e−ir·Gŵ(k − G)e−iRτ ·(k−G),

(15)

FIG. 4. Dispersion relation in the tight-binding model with t1 =
1.5 eV, t2 = 0.825 eV. For the BCS model, we consider only the
lowest branch (bottom).
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where the integral from the Fourier representation w(r) :=∫
d2q eir·qŵ(q) of the atomic wave functions has already been

carried out in combination with the lattice summation over j.
The reciprocal lattice (RL) sum can be performed numerically
with an appropriate truncation or analytically using special
functions.

Proceeding to the electron-phonon and induced electron-
electron interactions Eq. (6), we consider here only the leading
contributions from the smallest nonzero RL components G̃ =
(±2π, 0), (0,±2π ). For simplicity, we will assume that
electron-ion potential to be equal at these momenta and inde-
pendent of τ . Thus abbreviating v := v̂τ

ei(±2π, 0), we obtain

Dλ(k) ≈ 2iv

√
h̄N3

cell

2ωλ(0)�4

(∑
τ

eλ,τ (0)√
Mτ

)
·
(

2π Ia
k (2π, 0)

2π Ia
k (0, 2π )

)

= iv

√
8π2h̄

ωλ(0) �
Pλ ·

(
Ia
k (2π, 0)

Ia
k (0, 2π )

)
, (16)

cancelling � = a2Ncell and recalling that we use natural units
with a = 1. In the second equality, we prepare for carrying
out the mode sum over λ in the effective electron-electron
interaction Eq. (5) by introducing the polarization sum Pλ :=∑

τ M−1/2
τ eλ,τ (0). Further note that the first equality we al-

ready replaced the RL sum over the electronic integral from
Eq. (6) restricted to G̃ = (±2π, 0), (0,±2π ) by twice the
antisymmetric part

Ia
k (G̃) = i

∫
cell

d2r sin(G̃ · r)|un,k(r)|2, (17)

with G̃ = (2π, 0), (0, 2π ), as explained in more detail at the
end of the Appendix.

Guided by Eq. (5), we consider the two optical phonon
modes with lowest energy. We denote their degenerate zero-
momentum energy by ω0 := ωλ(0). The above mode and
atomic sum turns out to be independent of the choice of basis
of the doubly degenerate polarization space. Further, using
standard methods [33] to analyze the phononic structure of
the present model, a basis of polarizations can be chosen with
nonzero components purely in the x- or y-coordinate direction,
respectively, yielding polarization sums Pλ = (p, 0) or (0, p)
for the respective phonon modes λ for some constant p �= 0.

Note that an additional factor proportional to the volume
� arises from our interpretation of kk as an effective pairing.
In particular, we consider V (k) as an approximation of the
interaction between electrons with small relative momenta.
Hence, the sums in Eq. (3) run over momenta in a small
neighborhood of k. Overall, this yields a factor proportional
to the number of states in this neighborhood, which in turn is
proportional to the volume �.

Any overall scale factors arising here are understood to be
absorbed into the effective interaction constant v.

Altogether, this yields a contribution to the effective
electron-electron potential of

V (k) ≈ −8π2h̄|pv|2
ω2

0

(|Ia
k (2π, 0)|2 + |Ia

k (0, 2π )|2). (18)

FIG. 5. The effective electron-electron potential V for the low-
est electron branch in the first Brillouin zone, shown in units of
h̄|pv|2/ω2

0 for distortion parameter δ = ρ = 0.05a.

IV. RESULTS FOR THE GAP � AND PAIR-WAVE
DENSITIES

We can now numerically demonstrate that the simplified
distortion scheme from Fig. 2 leads to a nonvanishing equal-
momentum potential V (k). In Fig. 5, the result for distortion
parameter δ = 0.05a is shown, with the remaining model
parameters as in Sec. III. The atomic wave function width
ρ = 0.05a is chosen rather small for simplicity, as for larger
widths overlaps of neighboring atomic wave functions are no
longer negligible if we require that Eq. (15) is well normalized
for all momenta (k). The numerics also confirm that V (k) van-
ishes in the symmetric case with displacement δ = 0, whereas
V < 0 inside the FBZ if distortions are present.

Applying the results described in Sec. II, we obtain BCS
states formed by kk pairs for temperatures T below the crit-
ical temperature T ∗. For this purpose, we use the dispersion
relation obtained as the lowest eigenvalue of the hopping
Hamiltonian Eq. (14). The gap function �(k) can then be
obtained directly from Eq. (9). For T < T ∗, a nonvanishing
gap starts to develop in the vicinity of the maxima of V on the
Fermi surface and extends to a neighborhood of the full Fermi
surface when lowering the temperature further, as shown in
Fig. 6.

It should be recalled here that Eq. (9) yields only the
absolute value |�(k)| of the gap function. On the other hand,
the phase of the order parameter is not fixed by the present
method, even to the extent that any choice of phase is consis-
tent with this gap equation. The pair density in position space
evaluated in the BCS state � from Sec. II is given by

〈ψ↑(r)ψ↓(r)〉� =
∫

FBZ
d2k α(k) cos(2k · r)(uk(r))2, (19)

where by definition the Bloch field in the tight-binding model
is ψσ (r) = ∫

d2k eik·ruk(r)ckσ , we used the even parity sym-
metry of α and u under k ↔ −k and we note that uk is
real-valued. In Figs. 7 and 8, we show some results for two
natural choices of the phase of the pairing order α(k) =
〈ck↓ck↑〉. In both cases, clear spatial modulations of the pair
density provide evidence for the emergence of PDWs in the
present model.
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FIG. 6. Absolute value of the gap function � in a tight-binding
model with parameters ρ = 0.05a, δ = 0.05a, t1 = 1.5 eV, t2 =
0.8 eV. The Fermi surface with μ = 0.8 eV is indicated in red on
the first gap plot.

FIG. 7. Pair-wave density Eq. (19) in configuration space for
order parameter α(k) = |α(k)| from Fig. 6 at T ≈ 0.9T ∗, calculated
via Riemann sums with N = 101 support points in both coordinate
directions.

FIG. 8. Pair-wave density Eq. (19) with additional d-wave-like
phase α(k) = σ (k)|α(k)| at T ≈ 0.9T ∗, σ (k) := sgn(k2

x − k2
y ).
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Finally let us note that our model can easily be refined
concerning various aspects. For example, one could take into
account the influence of the distortion on the hopping pa-
rameters t1(2) or include contributions of higher-order RL
components G̃ in Eq. (16). Pursuing here would take us well
beyond our present focus on the salient features of the pro-
posed pairing mechanism. We hope that such questions will
be explored in subsequent works.

V. DISTINGUISHED ROLES OF k, k AND k,−k AMONG
FULLY GENERAL PAIRINGS IN THE LINEARIZED GAP

EQUATION

The linearized problem allows a direct comparison of the
standard Cooper pairing (k,−k) with the fully generalized
pairing (k, k′). We begin by following the same steps and
approximations as in Sec. III to obtain the electron-phonon
potential for general pairs (k, k′) with momentum transfer
q = 0 as

V (k, k′) ≈ −8π2 h̄|pv|2
ω2

0

(
Ia
k (2π, 0)

Ia
k (0, 2π )

)
·
(

Ia
k′ (2π, 0)

Ia
k′ (0, 2π )

)
, (20)

with reduced effective Hamiltonian

Heff =
∑
kσ

ε(k)c†
kσ ckσ +

∑
kσk′σ ′

V (k, k′) c†
kσ c†

k′σ ′ck′σ ′ckσ .

(21)

We note that this is consistent with Eq. (4), where the latter is
obtained by further reduction to quasifree states supported on
(k, k) pairs only. The potential has the general form

−V (k, k′) = D1(k)D1(k′) + D2(k)D2(k′), (22)

where D2(ky, kx ) = D1(kx, ky) =: D(k) for the presently stud-
ied model.

The linearized gap equation reads

� = −1

2
LβV �, (23)

with two-body operator

Lβ (k, k′) = tanh
(

β

2 εμ(k)
) + tanh

(
β

2 εμ(k′)
)

εμ(k) + εμ(k′)
, (24)

and we abbreviate εμ(k) := ε(k) − μ. Here we use the nota-
tion of Ref. [[12], Appendix A], where the reader can also find
a succinct derivation and further explanations.

For the toy model at hand, the product operator in Eq. (23)
is a multiplication operator and hence the eigenvalue problem
becomes trivially solvable. The critical β∗ = 1/T ∗ is defined
by the emergence of a nontrivial solution (k, k′) of

−1

2
Lβ∗ (k, k′)V (k, k′) = 1 (25)

and − 1
2 LβV < 1 for all β < β∗.

For simplicity, let us now adopt the perspective of fixing a
temperature T ∗ and then slowly turning on the potential (e.g.,
by a coupling constant). From this perspective, the global
maxima of the operator kernel from Eq. (25) give the emerg-
ing dominant pairings. For the parameters from Sec. IV, the
numerics yield exactly the conventional BCS pairings (k,−k)

FIG. 9. The kernel maximum function M(k) :=
maxk′∈FBZ(−Lβ∗ (k, k′)V (k, k′)) from the linear gap equation at
μ = 0.85 eV, where β∗ = 100 eV−1.

and the alternative pairings (k, k) studied in the present paper,
as seen in Figs. 9 and 10.

One arrives at a similar conclusion by qualitative consid-
erations: When the kinetic kernel Lβ provides the dominant
scale, as for the present model parameters, the first pairs to
emerge are approximately located at the maximum of the
potential V , when both momenta are on the Fermi surface
εμ(k) = 0 = εμ(k′) (see Ref. [12]). In our model, the maxima
of the potential V (k, k′) on the Fermi surface are located at
points exactly of the form k′ = ±k. Thereby, close to T ∗,
other types of pairing are excluded in our model. This further
motivates the study of the (k, k) pairing on the level of the
fully nonlinear gap equation in Sec. IV and confirms the
necessity of considering alternative pairings.

Finally, these two distinguished types of pairing can be
compared analytically in the present model: It is easily seen
that V (k, k) = V (k,−k) for all k ∈ FBZ. Similarly, εμ(k) =
εμ(−k) implies Lβ (k,−k) = Lβ (k, k). Hence, these two

FIG. 10. The plot of the linear gap kernel −(LV )(kmax, k′) as a
function of k′ at one of the global maxima kmax of M shows that
exactly the two pairings (kmax, kmax) and (kmax, −kmax) emerge at
the critical temperature. All other parameters are as in Fig. 9.

054509-7



DUELL, HAINZL, AND HAMZA PHYSICAL REVIEW B 106, 054509 (2022)

pairings correspond to exactly the same eigenvalue at the level
of the linearized gap Eq. (23). Thus they appear also at exactly
the same critical temperature. Numerically, this can be visual-
ized by plotting M(k) := maxk′∈FBZ(−Lβ∗ (k, k′)V (k, k′)), as
shown in Fig. 9, and subsequently plotting −(Lβ∗V )(kmax, k′)
at one of the global maxima kmax of M, as shown in Fig. 10.
In the subsequent Sec. VI, we will argue that this parity
between (k, k) and (k,−k) is not a true symmetry of nature,
namely, we will demonstrate that the assumption q = 0 can
be justified for (k, k) but fails for the conventional pairing,
when also interactions with nonvanishing momentum transfer
are included.

VI. EMERGENCE OF EQUAL MOMENTUM PAIRINGS
FOR INTERACTIONS WITH SMALL MOMENTUM

TRANSFER

Let us now consider the question of the stability of the
observed (k, k) pairings when interactions with nonvanishing
momentum transfers are included in the model. For this, we
return to the full Wegner interaction,

Hint =
∑

kσk′σ ′q

Vσσ ′ (k, k′, q) c†
n′k+qσ

c†
m′k′−qσ ′cmk′σ ′cnkσ ,

where umklapp momenta are suppressed for notational sim-
plicity. As we are only interested in small q and to remain
comparable to our main results, we will not amend our
model to include a full phononic sector and instead assume
that the electron-phonon interaction is well approximated by
Dλ(k, q) ≈ Dλ(k) for small q and taken to vanish otherwise.
To obtain a self-adjoint interaction, we use an appropriate ex-
tension of the electron-phonon part from Eq. (A13) to nonzero
q given by

W (k, k′, q) := 1

2

∑
λ

(Dλ(k′)Dλ(k)

+ Dλ(k′ − q)Dλ(k + q)). (26)

Here we already used the approximation that ωλ(q) ≈ ω0 �=
0, constant and independent of the optical phonon mode λ.
Hence the kinetic part from the Wegner interaction Eq. (A13)
becomes independent of the phonon mode and the mode sum
can be performed as above. On the other hand, the matrix
element of Hint providing the kernel for the numerical study
described below now has to be symmetrized under simultane-
ously exchanging k ↔ k′ and q ↔ −q to conform to Fermi
statistics, which yields

V (k, k′, q) = − 4ω0(dd ′ + ω2
0 )

(d2 − d ′2)2 + 4
(
dd ′ + ω2

0

)2 W (k, k′, q),

(27)

where d = ε(k + q) − ε(k) and d ′ = ε(k′ − q) − ε(k′).
We now study the spectrum of the operator − 1

2V Lβ from
the linearized gap Eq. (23) using a suitable discretization. As
the linearized approximation of the gap equation is usually
expected to be valid close to T ∗, the results from the main
part of our paper suggest that the kk-pairing instability in
the present model should appear close to the boundary of the
FBZ. For this reason, we use a discretization with periodic
boundary conditions. To not accidentally suppress either the

FIG. 11. Largest eigenvalue of −V Lβ for ω0 = 0.5 eV as func-
tion of K (other parameters as described in the text). Here and in
the following figures, we will indicate the Fermi surface for μ =
0.85 eV in red. The boundary points of the discretization will always
only be included on the positive sides of the corresponding axes. The
plot meshes are from now on matched to the discretization.

(k,−k) or the expected (k, k) pairings, we further carefully
choose the discretization lattice to include both the origin and
the boundary points of the form (kx, π ) and (π, ky). For the
numerical implementation, we observe that at the level of
the linearized gap Eq. (23), the various PDW-type pairing
orbits (k, k′) = (K + p, K − p) decouple. As in Sec. V, we
identify the dominant pairing mechanism from the largest
eigenvalue of − 1

2V Lβ , which we calculate here as a function
of K together with the corresponding eigenfunctions. For suit-
able parameters, the numerical results shown in Figs. 11–15
provide further supporting evidence for our model.

Due to the discretization approach, the accessible lattice
spacings are unfortunately limited by available computational

FIG. 12. Absolute square of the wave function for K = 0 in
Fig. 11 as function of p.
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FIG. 13. Largest eigenvalue for ω0 = 0.33 eV as function of K
(other parameters as described in the text). The eigenvalues at A, B,
and at other similar peaks are dominating over the eigenvalue at the
origin K = 0.

resources. For the present calculation, we choose practical
lattice discretizations of the FBZ with Npt = 20 points per
coordinate axis. We extend the potential via Eq. (26) to a
q radius of two lattice spacings. The lattice spacing limits
the ranges of numerically accessible temperatures T = β−1

and ω0 from below, as the essential features of both the
two-body operator Lβ and the Wegner potential have to be
resolved with sufficient accuracy. Both become less smooth
as the corresponding parameter values are lowered. Due to
these numerical limitations, we choose here β = 50 eV−1 and

FIG. 14. Absolute square of the wave function for K = ( 3
10 π, π )

(point A in Fig. 13) as function of p. Solid and dashed red lines
show the Fermi surface for the two electron momenta K + p and
K − p, respectively. The energy difference between the two peaks is
proportional to ω0.

FIG. 15. Absolute square of the wave function for K =
(− 7

10 π, π ) (point B in Fig 13) as function of p, showing that the
wave function is concentrated near (±π, 0).

we lowered ω0 very carefully starting from a physically very
large value ω0 = 1 eV. Other model parameters are chosen as
in Sec. III. Slowly lowering the phonon dispersion constant,
we see that at larger ω0 that the largest eigenvalues are at
K = 0, corresponding to conventional (k,−k)-pairing, see
Fig. 11. The corresponding wave function as function of p
has the usual structure and is spread out over a close vicinity
of the Fermi surface as seen in Fig. 12. When ω0 is further
decreased, additional peaks start to form, in particular, at the
boundary of the FBZ, as seen in Fig. 13 for ω0 = 0.33 eV.
Already at this value of ω0 they dominate over the eigenvalue
at K = 0. An inspection of the corresponding eigenfunctions
reveals for the eigenvalue peak labeled A in Fig. 13 a strongly
concentrated wave function near p = 0. Hence, this yields kk
pairings as studied in this paper and thereby provides evidence
supporting the approximation of vanishing momentum trans-
fer.

The additional peaks from Fig. 13 can be explained by pe-
riodic boundary conditions. As an example, the wave function
for the eigenvalue peak B is shown in Fig. 15. Here we can see
a strong concentration close to vectors of the halved RL on the
boundary of the FBZ. This eigenvector is, however, physically
equivalent to the eigenvector from point A, as can be seen
by translating both K and p by (π, 0) and using periodicity.
All remaining peaks can be similarly explained in terms of
ordinary A-type kk peaks by invoking the periodic boundary
conditions.

Let us note that the electron energy difference between
K + p1/2 at the two peaks p1/2 in Fig. 14 is comparable to
ω0. Hence, one can expect for physically small choices of ω0

that the wave function is very well approximated by replacing
it with just a single delta peak, which then yields exactly the
model studied in the main part of this paper. On the other
hand, the results from Figs. 11 and 12 show that the same
approximation is not justified for the ordinary (k,−k) pairing.

We conclude this section by giving an explanation to the
distinct behaviors of the (k, k) and (k,−k) wave functions.
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Let us consider the kinetic term in the symmetrized form of
the Wegner potential from Eq. (27). Now we note that there
are configurations of k, k′, and q such that the absolute value
of the parameter ε := dd ′ + ω2

0 becomes small. In the regime
ε → 0, we find the emergence of a Dirac delta potential,

V (k, k′, q)
ε→0−→ ∓2πω0δ(d2 − d ′2)W, (28)

and this interaction is an attractive or repulsive if the sign of
ε is positive or negative, respectively. As the scattering pro-
cesses most frequently take place close to the Fermi surface,
the energy differences d = ε(k + q) − ε(k) and d ′ = ε(k′ −
q) − ε(k′) tend to be close to zero. Hence the case ε � 0 is
favored, yielding a preference of nature for the attractive delta.

However, the mechanism Eq. (28) can only contribute to
the attractive interaction for (k, k) pairs and not for the con-
ventional (k,−k) pairs, since in the latter case we have d = d ′
and then ε � ω2

0 > 0 prevents the realization of the limit in
Eq. (28).

VII. CONCLUSION

We investigate a BCS-type pairing mechanism in which
electron-electron attraction is mediated by the interaction of
low-momentum optical phonons and Jahn-Teller-type lattice
distortions. To keep the model as simple as possible and allow
for explicit calculations, we focus on the pairing of electrons
with equal momenta and give numerical evidence to validate
this approximation. To demonstrate how this proposed pairing
mechanism can lead to instability of the Fermi sea, we con-
sider a particular distortion of a planar CuO2 lattice and, using
a tight binding approximation, we numerically calculate the
BCS gap function in this case. In the resulting toy model, the
Fermi sea is unstable toward equal momentum pairing below
a certain critical temperature T ∗. Due to the simplicity of the
approach, which also omits Coulomb interactions of electrons
as well as density-density interactions and exchange energies,
we expect T ∗ to represent not the actual critical temperature
describing macroscopic coherence but the existence of local-
ized pairings such as the pseudogap. It is interesting to note
that this appears to be the first microscopic model in which
the pair density displays the characteristic features of a PDW.
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APPENDIX: ELECTRON-PHONON COUPLING IN CuO2

To get an expression for the electron-phonon potential, we
follow the standard method outlined in many textbooks, e.g.,
Refs. [33,34]. However, we take into account the effect of RL
vectors and umklapp processes since they play an important
part in our discussion of electron pairs with equal momenta.

Let � be the volume of a lattice with Ncell primitive cell,
Ne electrons, and let r denote the position of an electron.
Using this notation, the electron-ion potential in the rigid ion

approximation can be written as

Vel-ion =
Ne∑

l=1

Ncell∑
j=1

∑
τ

vτ
ei(rl − Rτ j ), (A1)

where Rτ j is the position of the τ atom in the jth primitive cell
and τ runs over the atomic basis. Note that Vel-ion is periodic in
the lattice parameter. Our main assumption is that vτ

ei is spin
independent and has a Fourier representation such that

vτ
ei(r) = 1

�

∑
Q

v̂τ
ei(Q)eiQ·r. (A2)

Note, that this assumption is fulfilled for example if vτ
ei is

periodic in the size of the lattice and bounded.
In second quantization notation, this potential can be writ-

ten in terms of the creation (annihilation) operator c†
nkσ (cnkσ )

of the one-particle electronic states characterized by the Bloch
eigenstate ψnkσ , with band index n, wave number k, and spin
σ , as follows:

Vel-ion =
∑

j,τ

∑
n,m
σ

k′,k∈FBZ

{∫
�

d2r ψ∗
nk′σ (r)vτ

ei(r − Rτ j )ψmkσ (r)

}

c†
nk′σ cmkσ . (A3)

Taking into account the displacement of the ions from their
equilibrium position, the ionic position can be written as

Rτ j = R0
τ j + u

(
R0

τ j

)
, (A4)

where R0
τ j is the equilibrium position of the τ j ion, while uτ j

its displacement.
Now for small displacements, the potential can be ex-

panded to first order as

vτ
ei(r − Rτ j ) = vτ

ei

(
r − R0

τ j

) − ∇rv
τ
ei

(
r − R0

τ j

)
· u

(
R0

τ j

) + O(u2). (A5)

Inserting this expansion in Eq. (A3), the first term gives
the static electron-ion interaction while the second is the
electron-phonon interaction. Expressing the displacement of
ions in terms of the phonon creation and annihilation operators
a†

λ(q), aλ(q), where λ is the branch index and q is the phonon
momentum taking values in the FBZ, the electron-phonon
interaction takes the form

Vel-ph = −
∑

q∈FBZ

∑
n,m
λ,σ

∑
k′,k

Dnm
λ,σ (k′, k, q)

c†
nk′σ cmkσ (aλ(q) + a†

λ(−q)), (A6)

where the electron-phonon coupling is given by

Dnm
λ,σ (k′, k, q) =

∑
j,τ

√
h̄

2Mτ Ncellωλ(q)
eλ,τ (q)eiq·R0

τ j

·
{∫

�

d2r ψ∗
nk′σ (r)∇rv

τ
ei

(
r − R0

τ j

)
ψmkσ (r)

}
.

(A7)

where eλ,τ (q) are the polarization vectors extracted from
the eigenvector of the dynamical matrix corresponding to
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eigenvalue ωλ(q). Using that ψmkσ are Bloch functions and
summing over j, a simple calculation shows that the electron-
phonon potential can be expressed in the terms of vectors in
the RL as

Vel-ph = −
∑
n,m,λ

σ

∑
q,k∈FBZ

∑
G∈RL

k+q+G∈FBZ

Dnm
λ,σ (k, G, q)

c†
nk+q+Gσ cmkσ (aλ(q) + a†

λ(−q)), (A8)

where the coupling is now given by

Dnm
λ,σ (k, G, q) =

∑
τ

√
h̄Ncell

2Mτωλ(q)
e−iG·R0

τ eλ,τ (q)

·
{ ∫

�

d2r ψ∗
nk+q+Gσ (r)∇rv

τ
ei(r)ψmkσ (r)

}
.

(A9)

Using the Fourier representation of the electron-ion poten-
tial Eq. (A2) and introducing the lattice periodic functions

umkσ defined through ψmkσ (r) = 1√
�

eik·rumkσ , the coupling

now takes the form

Dnm
λ,σ (k, G, q) = i

∑
τ,Q

1

�2

√
h̄Ncell

2Mτωλ(q)
e−iG·R0

τ

(eλ,τ (q) · Q)v̂τ
ei(Q){∫

�

d2r eiQ·re−i(q+G)·ru∗
nk+q+Gσ (r)umkσ (r)

}
.

(A10)

Finally, since the functions umkσ are lattice periodic (with
trivial spin dependence), the integral over the volume can be
reduced to integrals over the primitive cells. Therefore,

Dnm
λ,σ (k, G, q) = i

Ncell

�2

∑
τ

G̃∈RL

√
h̄Ncell

2Mτωλ(q)
e−iG·R0

τ

(eλ,τ (q) · (q + G + G̃))v̂τ
ei(q + G + G̃){∫

cell
d2r eiG̃·ru∗

nk+q+Gσ (r)umkσ (r)

}
,

(A11)

where the integral is now over the volume of the primitive cell.
Using the lowest order approximation of the Wegner flow

[13,14], one obtains the following effective electronic Hamil-
tonian:

Hel =
∑
k,n,σ

εn(k)c†
nkσ cnkσ +

∑
knσ,k′mσ ′
qn′m′GG′

V nn′mm′
σσ ′ (k, k′, G, G′, q)

c†
n′k+q+Gσ

c†
m′k′−q+G′σ ′cmk′σ ′cnkσ , (A12)

where

V nn′mm′
σσ ′ (k, k′, G, G′, q)

=
∑

λ

Dmm′
λσ ′ (k′, G′,−q)Dnn′

λσ (k, G, q)

βλnn′ (k, G, q) − αλmm′ (k′, G′,−q)

(αλmm′ (k′, G′,−q))2 + (βλnn′ (k, G, q))2
, (A13)

αλmm′ (k, G, q) = εm′ (k + q + G) − εm(k) + ωλ(q), (A14)

βλmm′ (k, G, q) = εm′ (k + q + G) − εm(k) − ωλ(q). (A15)

Eliminating the trivial spin dependence and restricting to a
single band and optical phonon modes, for which ωλ(0) �= 0,
and defining Dn

λ(k) := Dnn
λ,σ (k, 0, 0) the electron-phonon cou-

pling Eq. (A11) yields the simple form Eq. (6), where we also
dropped the band index for convenience.

Furthermore, using Eq. (6) along with Eqs. (A13)–(A15)
and setting V (k) = V n

σσ ′ (k, k, 0, 0, 0), one obtains the effec-
tive electron-electron interaction Eq. (5).

Now let’s take a closer look at the electron-phonon cou-
pling Eq. (6). Considering only the summation over G̃ ∈ RL
and assuming that the electron-ion potential vτ

ei is real and
reflection symmetric implies that its Fourier coefficients also
satisfy v̂τ

ei(G̃) = v̂τ
ei(−G̃). Together with the scalar product

eλ,τ (0) · G̃, we see that the prefactor of the electronic integral
in Eq. (6) is antisymmetric in G̃. But this means that only the
antisymmetric parts of the electronic integrals

Ia
k (G̃) = i

∫
cell

d2r sin(G̃ · r)|uk(r)|2 (A16)

can yield nonvanishing contributions to Dλ(k). It is easy to
see that in the case of a perfect CuO2 crystal, this inte-
gral vanishes. However, a Jahn-Teller-type distortion, where
the symmetry of the crystal is broken, can cause the in-
tegral Eq. (A16) to be nonzero, resulting in a nonzero
electron-phonon coupling and the possible formation of equal
momenta electron pairs.
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