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Probing emergent QED in quantum spin ice via Raman scattering of phonons:
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We present an unconventional mechanism for Raman scattering of phonons, which is based on the linear
magnetoelastic coupling present in non-Kramers magnetic ions. This provides a direct coupling of Raman-active
phonons to the magnet’s quasiparticles. We propose to use this mechanism to probe the emergent magnetic
monopoles, electric charges, and photons of the emergent quantum electrodynamics (eQED) of the U(1) quantum
spin liquid known as quantum spin ice. Detecting this eQED in candidate rare-earth pyrochlore materials, or
indeed signatures of topological magnetic phases more generally, is a challenging task. We show that the Raman
scattering cross section of the phonons directly yields relevant information, with the broadening of the phonon
linewidth, which we compute, exhibiting a characteristic frequency dependence reflecting the two-particle
density of states of the emergent excitations. Remarkably, we find that the Raman linewidth is sensitive to the
details of the symmetry fractionalization and hence can reveal information about the projective implementation
of symmetry in the quantum spin liquid, thereby providing a diagnostic for a π -flux phase. The Raman scattering
of the phonons thus provides a useful experimental tool to probe the fractionalization in quantum spin liquids
that turns out to closely mirror pair production in quantum electrodynamics and the deep inelastic scattering
of quantum chromodynamics. Indeed, the difference to the latter is conceptual more than technical: the partons
(quarks) emerge from the hadrons at high energies due to asymptotic freedom, while those in eQED arise from
fractionalization of the spins at low energies.
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I. INTRODUCTION

The long-range entanglement present in quantum spin liq-
uids (QSLs) leads to novel low-energy quasiparticles with
fractionalized quantum numbers [1–11]. Experimental signa-
tures of these fractionalized quasiparticles can provide direct
evidence of the underlying entanglement pattern that charac-
terizes the quantum order in the QSLs. However, detecting
experimental signatures of such unconventional fractionalized
excitations calls for an array of complementary experimental
probes to collectively provide information about the QSL.

In this context, probing the spins through their coupling to
phonons—via magnetoelastic interactions—provides useful
spectroscopic insights into the physics of QSLs. An example
of this is the ultrasonic attenuation [12–14] and anomalies
[15,16] of the acoustic phonons in QSLs. Magnetoelastic in-
teractions are also believed to play an important role in the
large thermal Hall response observed in several correlated
insulators including the pseudogap phase of lightly doped
cuprates [17] and the magnetic-field induced paramagnetic
phase of the honeycomb magnet α-RuCl3 [18–27].

A related probe for the spin physics are optical phonons,
via infrared and Raman scattering experiments where phonon
energy and linewidth encode such effects [15,28–32]. No-
tably, such phonon spectroscopy can sensitively detect mag-
netic, superconducting, or charge-density wave ordering, as
well as coupling of the phonons to the resultant low-energy

quasiparticles in these conventional phases [33–35]. In the
simplest QSLs, however, symmetries are not spontaneously
[2] broken and the nature of phonon renormalization, at low
temperatures, is governed by the properties of fractionalized
excitations of the QSLs which provide additional scattering
channels for the phonons. This is expected, in particular, to
lead to an anomalous broadening of the phonon linewidth
at low temperatures whose characterization can then reveal
important information regarding the QSL excitations.

Spin-phonon effects are expected to be particularly strong
in spin-orbit coupled magnets where the magnetic moment
is sensitive to the real-space geometry due to an interlock-
ing of spin and real space [36–39]. Indeed such spin-phonon
coupling has recently been explored both experimentally and
theoretically in candidate Kitaev QSLs such as α-RuCl3

[15,19,40], Cu2IrO3 [28], β- and γ -Li2IrO3 [30,41], etc. In
particular, for Cu2IrO3 [28], the anomalous broadening of the
phonon peaks and frequency softening at low temperatures is
accounted for by the low-energy Majorana fermions that the
spin fractionalizes into [5].

Another equally interesting family of spin-orbit coupled
frustrated magnets are obtained in rare-earth pyrochlores with
magnetic moments sitting on a three-dimensional network of
corner-sharing tetrahedra, leading to frustrated spin-spin inter-
actions. These so-called spin ice systems [42–61] are primary
candidates to realize both classical cooperative paramagnets
[62–65] as well as QSLs [44,66–77]. The magnetic moments
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result from a very intricate interplay of interorbital Coulomb
repulsion, atomic spin-orbit coupling, and crystal-field effects.

A rather extreme example of interplay between several
competing interactions is seen in an interesting subset among
the pyrochlores which are the so-called non-Kramers spin
ice materials such as Pr2Zr2O7 [31,57,78], Pr2Hf2O7 [58],
Tb2Ti2O7 [59–61], Ho2Ti2O7 [60], etc. In these pyrochlore
magnets, the low-energy spin-1/2 magnetic moments arise
from even-electron wave functions [59,60,78]. The degener-
acy of such a non-Kramers doublet is protected by lattice
symmetry, the D3d symmetry at the pyrochlore lattice site,
instead of the usual time-reversal symmetry for Kramers
doublets. Therefore, under time-reversal symmetry, T , the
transformation of the low-energy doublets, sα (α = x, y, z),
made out of spin-orbit coupled wave functions is given by

T : {sx, sy, sz} → {sx, sy,−sz}. (1)

This is in stark difference from the usual Kramers case as
realized in, e.g., Dy2Ti2O7 among others, where all the com-
ponents of the resultant spin-1/2 are odd under time reversal.

The nontrivial implementation of time-reversal symmetry
as in Eq. (1) opens up the possibility of using experimental
probes which are complementary to the conventional ones.
For example, the transformation in Eq. (1) immediately sug-
gests that the transverse components {sx, sy} can linearly
couple to the lattice vibrations of the appropriate space-group
symmetry [see Eqs. (6) and (7)] such that this linear coupling
makes the above materials ideal candidates to explore the
spin physics through the spin-phonon coupling in vibrational
IR/Raman spectroscopy of the relevant phonons. The issue
assumes particular importance in the context of QSLs since
the spin-spin interactions in several of these non-Kramers
pyrochlores, such as Pr2Zr2O7 [79], can possibly stabilize a
U(1) QSL with gapless emergent photons and gapped bosonic
electric and magnetic monopoles [44,66–77]—the so-called
quantum spin ice [80].

In this paper, we show that indeed such a linear cou-
pling can lead to characteristic experimental signatures of the
emergent gauge charges and photons in vibrational Raman
spectroscopy of a non-Kramers quantum spin ice, such as
those proposed for Pr2Zr2O7. We show that such linear cou-
plings give rise to prominent interaction channels between the
phonon and all three emergent excitations of the U(1) QSL—
the emergent gapped electric and the magnetic charges as well
as the gapless photons. These interactions provide additional
scattering channels for phonons to decay into and lead to
an anomalous broadening of the Raman peaks in the low-
temperature regime. Remarkably, as we show, such Raman
signatures are sensitive to the nontrivial symmetry implemen-
tation on the emergent degrees of freedom—the details of
the projective representation of the symmetry group [4] under
which the low-energy fractionalized excitations of the QSL
transform. In particular, in the context of the quantum spin
ice, we discuss the two cases of zero and π flux. While in the
former, the magnetic monopoles do not see any electric flux,
in the latter they see an electric π flux through every hexag-
onal plaquette. As a result, the magnetic monopoles in the

π -flux phase transform under the nontrivial magnetic space
group, as opposed to the zero-flux phase, with the magnetic
monopoles transforming projectively under lattice translation.
The resultant effects for both QSLs are very different from
the phonon renormalization due to anharmonic contributions
or magnetic ordering, and hence might present important
signatures of the fractionalization and the emergent gauge
field.

It turns out that probing the low-energy fractionalized ex-
citations of the QSL via the Raman/infrared scattering of the
phonons is quite similar to (a) high-energy pair production
[Fig. 1(a)] and, (b) the deep inelastic scattering [81,82] of
quarks in quantum chromodynamics (QCD) by the leptons
as described by the standard model of high-energy particle
physics [Fig. 1(c)]. The corresponding two relevant vertices
are shown side by side in Figs. 1(b) and 1(d), respectively.
In QCD, the quarks become asymptotically free at high en-
ergies and the high-energy lepton can then probe them on
sub-hadron length-scales [83,84]. In a QSL, however, the
nontrivial entanglement leading to fractionalized novel excita-
tions is a low-energy/long-wavelength emergent phenomenon
which the phonons can probe via shallow inelastic scattering.
In particular, we show below while the first of the two pro-
cesses dominate for the zero-flux QSL, the latter produces
important low signatures of the momentum fractionalization
in the π -flux case. While our work describes such shallow
inelastic scattering of an eQED in the context of the quantum
spin ices, it readily generalizes to other QSLs, and to probe
magnetic excitations in quadrupolar systems more broadly.
Furthermore, we show that the phonon linewidth due to such
scattering channels, arising from the spin fractionalization
in a QSL, is directly related to the density of states of the
emergent quasiparticles, which is schematically shown in
Fig. 1(e). We note that the above vibrational Raman signatures
of the fractionalization on the phonons are different from the
Loudon-Fleury type of Raman scattering where the external
photon scatters directly from the charge fluctuation in the
Mott insulating phase [85–89]. This kind of coupling has been
explored by Cépas et al. in the context of kagome spin liquids
[90] and, more pertinent for us, Fu et al. in the context of
generic U(1) quantum spin ice [87]. These studies already
indicate several anomalous peaks in the Raman intensity pro-
file due to the presence of additional scattering channels in
the QSL phase, invariably indicating magnetic monopoles and
gauge excitations of the quantum spin ice. However, due to the
localized nature of the 4f orbitals of Pr3+, the scattering via
charge fluctuation is significantly suppressed and the Raman
probe mediated by the phonons can then provide dominant
signatures of the novel excitations of the U(1) QSL phase
in non-Kramers quantum spin ice. In fact, as we show here,
even if the phonons are not at resonance with the emergent
excitations, the linear magnetoelastic coupling can mediate
an effective Loudon-Fleury [85,89] type of coupling between
emergent QSL excitations and the external Raman photons
that form the leading contribution in non-Kramers material
realisations of quantum spin ice.

We start with a brief overview of our results before delving
into the details.
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FIG. 1. Correspondence of scattering diagrams and schematic for the Raman response: (a) The high energy photon can lead to creation of a
positron and an electron via pair production, (b) in non-Kramers quantum spin ice, the phonon flips a spin and creates two magnetic monopoles
of opposite charges, (c) in deep inelastic scattering, a photon emitted from a lepton scatters off a parton, a quark q, contained in the hadron, a
qq̄-pion as a free particle at high energies, (d) in shallow inelastic scattering, an optical phonon emitted from a photon scatters off a parton, a
magnetic monopole or electric charge, emerging from the spin degrees of freedom from fractionalisation at low energies, (e) schematic of the
energy scales of different density of states (DOS) of the emergent excitations contributing to the phonon linewidth.

A. Overview of the results

The non-Kramers nature of the low-energy doublet in ma-
terials such as Pr2Zr2O7 restricts the form of the low-energy
spin-spin interactions [Eq. (3)] of the non-Kramers doublets
as we briefly summarize in Sec. II. A further fallout of the
unusual implementation of the time-reversal symmetry is that
the time-reversal even transverse spin components [Eq. (1)]
can couple linearly to the Raman active eg and t2g phonons
[Eqs. (6) and (7)] as discussed in Sec. III. These linear cou-
plings form the leading order terms that couple the lattice
modes with the spins with the latter apparently forming a U(1)
QSL state—the quantum spin ice—over a sizable parameter
regime. Section IV gives a brief review of this quantum spin
ice phase and its fractionalized low-energy excitations—the
gapped bosonic electric and magnetic gauge charges and the
gapless emergent photons. These excitations are captured via
a mean-field description of the parton decomposition of spins
leading to a lattice gauge theory. The microscopic couplings
of the rare-earth pyrochlore magnets lead to a natural energy-
scale separation between the higher energy magnetic sector
and lower energy electric sector in quantum spin ice.

The partons naturally allow us to rewrite the linear spin-
phonon coupling in terms of the coupling of the phonons with
the low-energy excitations of the quantum spin ice. The resul-
tant interaction vertices are shown in Fig. 2 while the details
are discussed in Sec. V. In Sec. VI, the Raman vertex for the
phonons is derived. The resulting differential scattering cross

section [Eq. (29)] depends on the phonon Green’s function
[Eq. (31)], which receives a self-energy contribution due to
scattering with the QSL excitations (Fig. 2) via spin-phonon
coupling. The extra scattering channels then lead to an anoma-
lous low-temperature broadening of the phonon peaks. The
frequency dependence of such phonon linewidth contributions
provides information about the QSL excitations, revealing the
topologically nontrivial nature of the low-temperature quan-
tum paramagnet.

In Secs. VII–IX, we calculate the resultant self-energy
corrections (Figs. 6, 10, 12) within the simplest mean-
field approximation for the lattice gauge theory—the gauge
mean-field theory (GMFT)—where the gauge fluctuations are
treated within a weak-coupling perturbation theory with the
leading order contributions for the magnetic and electric sec-
tors obtained by neglecting the gauge fluctuations altogether.
The resultant frequency dependence for the phonon linewidth
is given in Figs. 7 and 8 for the magnetic monopoles, Fig. 11
for emergent photons, and Fig. 13 for the electric charges.
The frequency dependence of the phonon linewidth follows
the two-particle density of states of the emergent excitations
in all three cases [see the schematic of Fig. 1(e)] and hence
provides a direct probe of the different excitations of the QSL.
In particular, the energy separation of the electric and the
magnetic sectors results in their contributions to the phonon
linewidth occurring at separate energies, potentially paving
the way for their separate identifications by careful analysis
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FIG. 2. Feynman diagrams for the interactions between the excitations of the quantum spin ice and the Raman active phonons in a non-
Kramers system due to the linear spin-phonon coupling [Eqs. (6) and (7)]. (a) The vertex corresponds to the phonon-magnetic monopole
interaction described by Eqs. (18) and (19). Dotted, solid, and curly lines denote phonon, monopole and emergent photons, respectively.
Thin and thick solid lines represent two flavors of monopoles, A and B, respectively. (b) Vertex for the phonon-(emergent) photon interaction
described by Eq. (24). The circle represents the dipolar form factors [see Eq. (25)] that make the vertex gauge invariant. (c) Vertex for the
phonon and electric charge interaction. The dashed line denotes the electric charge.

of the frequency and temperature dependence of the spectro-
scopic data.

The two-particle density of states are sensitive to the
symmetry fractionalization patterns and, in particular, the pro-
jective symmetry group (PSG) of the QSL. In the case of
quantum spin ice, a nontrivial example is the so-called π -flux
state, where each hexagonal closed loop of the pyrochlore
threads an electric flux of π as opposed to zero in the regular
(so-called zero-flux) quantum spin ice phase. The two states
can be stabilized for opposite signs of the transverse term
in the Hamiltonian in Eq. (3)—J± > 0 (<0) leads to the
zero- (π -) flux phase. In the π -flux phase, the momentum is
fractionalized due to the larger magnetic unit cell, which is re-
flected in the two-particle density of states for the monopoles
and hence shows up in the Raman linewidth. This can be
easily seen by contrasting Figs. 7 and 8 for zero and π flux,
respectively. Therefore, our calculations show that Raman
scattering experiments are sensitive to particular aspects of
symmetry fractionalization.

The above application of the mean-field approach to cal-
culate the Raman vertex can be invalidated via strong gauge
fluctuations, which couple to the electric charges and the
magnetic monopoles. The relevant fine-structure coupling
constant for the emergent quantum electrodynamics of quan-
tum spin ice has recently been numerically estimated to be
�0.1 [91]. This suggests that the perturbative expansion may
provide a leading estimate of the effect of the gauge fluc-
tuations for the magnetic monopoles with their large gap.
However, for the lower energy electric charges, the effect of
the coupling to the gauge fluctuations is expected to be even
stronger, leading to drastic renormalization of the two-electric
charge density of states. In any case, the perturbative correc-
tions to the phonon self-energy due to the gauge fluctuations
are found to be subleading at low temperatures, as shown in
Sec. VII C.

We also briefly summarize the effect of quadratic spin-
phonon coupling terms on the vibrational Raman spec-
troscopy in Sec. X. This will be present both in Kramers
and non-Kramers systems. While in non-Kramers systems,
they are expected to be subleading to the linear coupling
discussed above, in the case of Kramers systems, they provide

the leading source of magnetoelastic coupling. In Sec. XI,
we calculate the phonon self-energy contribution due to spin-
phonon coupling in the high-temperature thermal paramagnet
for the spins where the gauge charges are ill-defined. In such a
phase, the phonon lifetime is expected to be dominated by an-
harmonic phonon-phonon interactions, which is qualitatively
different from the anomalous low-temperature broadening
discussed above.

Finally, we show in Sec. XII that even in the case of
a mismatch of the phonon energy with those of the QSL
excitations—as is likely in some of the present non-Kramers
quantum spin ice candidates [32,92]—the above linear cou-
pling contributes (obtained via integrating out the phonon)
to the Raman vertex. This leads to a coupling between the
external probe photon with all the excitations of the emergent
electrodynamics and provides additional channels for scatter-
ing of the phonons that contribute to the Raman linewidth,
albeit through the same two-particle density of states.

Finally, the details of various calculations are provided in
the Appendices.

II. MAGNETISM IN NON-KRAMERS RARE-EARTH
PYROCHLORE FAMILY

Several non-Kramers pyrochlore magnets are known in the
context of both classical and quantum spin ice physics with
substantial spin-lattice effects. The most striking one is possi-
bly Tb2Ti2O7 [59,61,93–97], where the first crystal field gap is
of the order of 10 K and recent neutron-scattering experiments
suggest that a vibronic bound state arises due to the coupling
between acoustic phonon modes and crystal-field levels which
is absent in the paramagnetic phase [61,75]. However, the ex-
act role of the excited states and the applicability of quantum
spin ice physics are currently being debated [98]. Ho2Ti2O7,
on the other hand, is a classical spin ice [60], although it is
interesting to note that on integrating out the lattice vibrations,
their linear coupling with the transverse spins can induce
(presumably very weak) quantum tunneling terms within the
classical spin ice.

The praseodymium pyrochlores, unlike the above ex-
tremes, belong to an interesting intermediate regime, where
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FIG. 3. Sublattices of an up tetrahedron. 0,1,2,3 denote the four
sublattices and ẑ0, ẑ1, ẑ2, ẑ3 represent the four respective local quan-
tization axes [see Eqs. (A2) in Appendix A 1].

the crystal-field gap is reasonably large but quantum fluctua-
tions are not insignificant [57]. Inelastic neutron scattering by
Wen et al. reveals that the existence of quenched structural
disorder in Pr2Zr2O7 can act as a transverse field on the
non-Kramers Pr3+ ion and might lift the degeneracy of the
non-Kramers doublet [99], although x-ray diffraction does not
show evidence of any structural distortions. More recently,
magnetoelastic experiments on ultrapure samples of Pr2Zr2O7

have shown possibilities of substantial spin-phonon coupling
and coupled spin-lattice dynamics [79]. Further, high reso-
lution Raman scattering on the same samples at relatively
high temperatures (6 K–100 K) reveals that both the ground
state and excited crystal-field doublets show a temperature-
dependent splitting. The splitting grows more pronounced as
temperature is increased and can be accounted for by the
dynamical coupling of spins to the phonons [31]. Several other
non-Kramers spin ice candidates such as Pr2Sn2O7 [100],
Tb2Sn2O7 [101], etc., are also known.

Therefore, to be concrete, we build our theory using
Pr2Zr2O7 as an example, although the results are generi-
cally applicable to any non-Kramers quantum spin ice. In
Pr2Zr2O7, the magnetic ion is the rare-earth element Pr3+,
which is in the 4 f 2 electronic configuration. The ground-state
manifold is a doublet and given by [57,78]

|±〉 = a| ± 4〉 ∓ b| ± 1〉 − c| ∓ 2〉, (2)

where the different states belong to the J = 4 multiplet with
Jz|m〉 = m|m〉. Notably, characteristic to spin ice, the natural
axis of quantization for the spins is along the local [111]
axis (see Fig. 3 and Appendix A 1). The ground-state dou-
blet is separated from the next crystal-field state by almost
10 meV [57]. Due to this large gap, the low-temperature
magnetic physics is dominated by the above non-Kramers
doublet. The effective low-energy magnetic degrees of free-
dom are obtained by projecting all the spin operators to the
low-energy doublet manifold and written in terms of the ef-
fective pseudospin- 1

2 operators as sμ(≡ 1
2σμ) [78].

A central feature of the doublets in Eq. (2) is that under
time reversal (T ) they transform as |±〉 → |∓〉 such that the
pseudospins transform as shown in Eq. (1).

A. The spin-exchange physics of non-Kramers quantum spin ice

The pseudospins at different sites interact via regular spin
exchanges and the minimal symmetry allowed spin Hamilto-
nian for non-Kramers spin ice is given by [45,102,103]

H0 =
∑
〈i j〉

[
Jzzs

z
i s

z
j − J±(s+

i s−
j + s−

i s+
j )
] + · · · , (3)

where · · · denote other symmetry-allowed terms (including
further neighbor ones) which do not immediately destabilize
the QSL. In fact, their main effect in the QSL phase is to
renormalize the dispersion of the excitations of the quantum
spin ice [70,104]. We neglect them here and their effects can
be taken into account systematically along the lines discussed
in the rest of this paper.

Experiments reveal the exchange coupling to be strongly
anisotropic (Jzz � J±). Also, Jzz ≈ 1.6 K [57], which is two
orders of magnitude smaller than the single ion crystal field
gap. This justifies the use of single ion crystal field states to
treat the problem perturbatively.

Interestingly, the transformation of the non-Kramers dou-
blet under T in Eq. (1) leads to an unusual Zeeman coupling in
such materials. The external magnetic field, being odd under
time reversal, can couple linearly only with sz but not with sx

and sy. The latter, however, can couple to the magnetic field
quadratically. The complete on-site Zeeman Hamiltonian can
be found in Ref. [105].

III. LINEAR MAGNETOELASTIC COUPLING
IN NON-KRAMERS SYSTEMS

Having discussed the spin physics, we now turn to the
linear magnetoelastic coupling in non-Kramers systems. From
the point of view of symmetry analysis, the structure of such
a linear coupling is quite straightforward. For a single tetra-
hedron, the linear coupling can be obtained starting with the
eight-dimensional vector space spanned by the time-reversal
even transverse components, (sx

i , sy
i ), of the spins on four

corners of a tetrahedron (Fig. 3). This is then decomposed into
the irreducible representations of the tetrahedral group, Td , as
[105]

e ⊕ t1 ⊕ t2, (4)

where e denotes the doublet and t1, t2 represent two triplets
with different symmetry transformations (see Table I in
Appendix A 3). These irreducible operators are often char-
acterized by their classical correlations [105], e.g., the e
sector forms the ferroquadrupolar states, whereas t1 and t2
both forms two different antiferroquadrupolar states in case
of non-Kramers pyrochlore. Similarly, the (optical) normal
vibrational modes of bond distortions of a tetrahedron are
decomposed as [106,107]

a1 ⊕ e ⊕ t2, (5)

where a1 is the singlet. It is evident from the above de-
composition that e and t2 vibrational (optical) modes of a

054507-5



SETH, BHATTACHARJEE, AND MOESSNER PHYSICAL REVIEW B 106, 054507 (2022)

tetrahedron can linearly couple to the transverse components
of the non-Kramers doublet. Since the complete symmetry
of the pyrochlore is Td × I (with I being the inversion), the
complete representation is obtained by taking symmetric and
antisymmetric combinations of the previous representations to
form the g and u modes, which are even and odd under spatial
inversion, respectively.

As Raman scattering is insensitive to inversion-odd modes,
we only consider the eg and t2g modes. Hence, the symmetry-
allowed magnetoelastic coupling for the Raman active modes
is given by

H (e)
sp =

∑
r,p=1,2

J (e)
sp ζ (e)

p,g(r)
(
Q(e)

p (r, A) + Q(e)
p (r, B)

)
(6)

for the eg modes and

H (t2 )
sp =

∑
r,p=1,2,3

J (t2 )
sp ζ (t2 )

p,g (r)
(
Q(t2 )

p (r, A) + Q(t2 )
p (r, B)

)
(7)

for the t2g modes. Here r denotes the center of an up tetrahe-
dron and A/B denotes the two sublattices of the underlying
diamond lattice, dual to the pyrochlore. Q(e)

p (r, A/B) and
Q(t2 )

p (r, A/B), respectively, span the e and t2 irreducible sector
for the spins. For a single up tetrahedron (Fig. 3), they are
given by

Q(e)
1 = sx

0 + sx
1 + sx

2 + sx
3,

Q(e)
2 = sy

0 + sy
1 + sy

2 + sy
3, (8)

and

Q(t2 )
1 = 1

2

(−sx
0 + sx

1 + sx
2 − sx

3

)
,

Q(t2 )
2 = 1

4

(−sx
0 − sx

1 + sx
2 + sx

3

) +
√

3

4

(
sy

0 + sy
1 − sy

2 − sy
3

)
,

Q(t2 )
3 = 1

4

(
sx

0 − sx
1 + sx

2 − sx
3

) +
√

3

4

(
sy

0 − sy
1 + sy

2 − sy
3

)
. (9)

Finally, ζ (e)
p,g(r) and ζ (t2 )

p,g (r) are the eg and t2g normal
modes of pyrochlore lattice. These normal modes are given by
ζ (ρ)

p,g (k) = b(ρ)
p,k + b(ρ)†

p,−k, where b(ρ)†
p,k is the creation operator of

the phonons of the ρ irreducible representation, with the bare
phonon Hamiltonian given by

Hζ =
∑

ρ

∑
k,p

ω
(ρ)
k

(
b(ρ)†

p,k b(ρ)
p,k + 1

2

)
. (10)

An alternate and somewhat more microscopic derivation of
the above physics can be obtained by considering the coupling
of the doublet wave functions of Eq. (2) with the phonons,
which also gives rise to phonon-mediated coupling between
different crystal-field states. The physics of such couplings
will be discussed elsewhere [108].

The above linear coupling makes the non-Kramers spin ice
materials susceptible to spin Jahn-Teller distortions, where
the spin entropy can be quenched by distorting the lattice
and thereby splitting the doublet. Indeed, in some samples
of Pr2Zr2O7, signatures of such splitting have been observed
[99,109], accompanied with random lattice distortions. How-
ever, more recent higher quality samples appear devoid of

such distortions, suggesting controlled suppression of Jahn-
Teller distortions in better quality single crystals [79].

In the absence of static deformation of the crystal field
environment, the above linear spin-phonon coupling helps to
enhance the transverse fluctuations in the spin ice manifold,
which could stabilize a U(1) QSL phase via magnetodistortive
dynamics [79].

To study the effect of linear magnetoelastic coupling
[Eqs. (6) and (7)] via the Raman experiments on quantum
spin ice, we need to rewrite the above spin-phonon coupling
in terms of the coupling of the phonon to the low-energy exci-
tations of the U(1) QSL. To derive this, for completeness we
briefly review the well-known mapping between the spins and
low-energy gauge theory for quantum spin ice [66,69,70,110]
next.

IV. QUANTUM SPIN ICE

The description of the quantum spin ice is obtained start-
ing with a magnetic monopole charge density operators
[69,70,111] Qr, defined at the center of a tetrahedron at r,
as

Qr = ηr

∑
μ

sz
r,r+ηreμ

, (11)

where, ηr = 1 (−1) for r ∈ up (down) tetrahedra of the py-
rochlore lattice and eμ is the vector connecting centers of
the two nearest-neighbor tetrahedra directed from up to down
(see Appendix A 2). We call the positively charged particles
monopoles and negatively charged ones antimonopoles. The
creation (annihilation) operators for the monopoles are de-
fined as φ†

r (φr) such that it satisfies [Qr, φ
†
r′ ] = δr,r′φ†

r .
The relation between the monopole and spin operators is

given by

s+
r,r+eμ

= 1
2φ†

r eiAr,μφr+eμ
, (12)

where r ∈ up tetrahedron and Ar,μ represents the compact
U(1) dual gauge field on the bond joining r and r + eμ (in
other words, they live on the links of the dual diamond lattice).
The spin operators remain invariant under the following U(1)
gauge transformation:

φr → φre−iθr , Ar,μ → Ar,μ + (
θr+eμ

− θr
)

(13)

The compactness of the gauge field allows for dual electric
charge excitations [66], which are gapped in the QSL.

Using the above mapping, the spin Hamiltonian [Eq. (3)]
can be written in terms of the gauge fields, monopoles, and
the charges to obtain the lattice gauge theory description of
quantum spin ice. This is given by Eq. (B1) in Appendix B
along with other relevant details.

A. The gapless emergent photons

In the limit Jzz � J±, the magnetic monopoles have a
gap of O(Jzz ) and can be integrated out. The low-energy
Hamiltonian is obtained in terms of the fluctuations of the
dual U(1) gauge field Ar,μ. This leads to the well-known
ring-exchange Hamiltonian that can be obtained either via
degenerate perturbation theory of Eq. (3) [66] or equivalently
integrating out the magnetic monopoles from Eq. (B1). This is
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given by

Heff = U

2

∑
r,μ

B2
r,μ − K

2

∑
� cos

⎛
⎝ ∑

r,μ∈� Ar,μ

⎞
⎠, (14)

where Br,μ(=sz
r,r+eμ

, r ∈ up tetrahedron) is the emergent
magnetic field that is canonically conjugate to the dual vec-
tor potential, i.e., [Ar,μ, Br′,ν] = iδr,r′δμ,ν , U is a Lagrange
multiplier imposing the half-integer constraint on magnetic

fields, and K ∼ J3
±

J2
zz

. The emergent electric field is given by

E� = ∑
r,μ∈� Ar,μ, where

∑
r,μ∈� denotes the lattice curl

around the hexagonal loops of the pyrochlore.
The QSL corresponds to the deconfined phase (|K| � U )

of the above Hamiltonian. In this limit, the energy for the pure
gauge theory can be minimized by setting up zero (π ) electric
flux through all the elementary hexagonal plaquettes for K >

0 (K < 0) [70]. These we shall term as 0 and π -flux phases,
respectively, since the magnetic monopoles hopping on the
diamond lattice (see below) see this electric flux.

The low-energy excitations of the gauge theory can then
be captured by expanding the cosine term up to quadratic
order about these static electric flux configurations. This
gives rise to a free Maxwell theory with two transverse
polarised gapless photon excitations and their dispersion is
given by [87]

εk = ce|k|, (15)

where ce = √
UK is the speed of emergent light.

B. The gapped magnetic monopole

The dynamics of the bare magnetic monopoles, on the
other hand, can be obtained in a GMFT approximation of
Eq. (B1) by freezing the gauge fluctuation [69] (see Ap-
pendix B for details).

For K > 0, the ground state of the pure gauge theory is
in the zero electric flux sector (see above) where the gauge
mean field ansatz can be chosen as Ar,μ = 0. The bare band
structure for the two flavors (A and B) of magnetic monopoles
is then given by [69]

ε0
k =

√√√√2Jzz

(
λ − J±

2

∑
μ>ν

cos (k · (dμ − dν ))

)
, (16)

where λ is a Lagrange multiplier introduced to take into ac-
count the unitary constraint of the monopole operators (see
Appendix B 1) at the mean-field level.

For K < 0 on the other hand, the monopoles hop in a
π -flux background per hexagonal plaquette. This can be im-
plemented by choosing a suitable gauge [70] (also see Fig. 18
in Appendix B) which doubles the size of magnetic unit cell,
leading to four flavors of monopoles. The details of their band
structure are summarized in Appendix B 2. In contrast to the
zero flux phase, two nondegenerate bands [denoted as επ

+(k)
and επ

−(k)] appear due to the presence of nontrivial back-
ground flux. It will be shown in Sec. VII B that this leads to a
very different Raman response of these two QSL phases.

The bare band structure of monopoles gets further renor-
malized due to the gauge fluctuations [91]. However, in the

following discussion, we will assume the monopole-gauge
coupling constant to be small, so that it only leads to a sub-
leading corrections of the GMFT results (see Sec. VII C). We
shall comment on the merits/shortcomings of this approxima-
tion in the summary.

C. The gapped electric charge

The electric charges or point defects of the gauge field
appear due to the 2π ambiguity of defining the compact vector
potential [66,110]. The fluctuations of the electric field are not
small near these excitations and the expansion of the cosine
term (see Sec. IV A) is not possible. Unlike the magnetic
monopoles and the photons, these excitations are nonlocal in
terms of the underlying spins and their properties are better
captured in the dual description [66,110,112,113] of the emer-
gent gauge theory describing the bosonic electric charges, �r,
hopping on the dual diamond lattice, r, via [110,113]

Hcharge = −
∑
〈r,r′〉

t e−i2πar,r′ �†
r �r′ + m

∑
r

�†
r �r, (17)

where ar,r′ is the vector potential dual to Ar,μ; t is the effective
hopping strength and m is the chemical potential for the elec-
tric charges. The vector potential admits only integer values
and is defined by

(∇ × ar,r′ )�∗ =
∑

rr′∈�∗
ar,r′ = Br,μ − B0

r,μ.

�∗ denotes the dual elementary hexagonal plaquettes and B0
r,μ

is a static divergenceless background field. Since there is a
single spin-1/2 on every pyrochlore site, the gauge field has
a background π -flux in every dual hexagonal plaquette [113]
such that in the gauge mean-field limit (where we ignore the
fluctuations of ar,r′ around the background), the dynamics of
electric charges reduces to the problem of bosons hopping on
the diamond lattice subject to the background π -flux in every
hexagonal plaquette. This can be solved using a proper gauge
choice and gives rise to 12 soft modes [110,113]. We denote
the soft modes as ψi(i = 1, ..., 12). As mentioned earlier (see
Sec. I), the energy gap of the electric charges, �c, in the QSL
phase is ∼|J±|3/J2

zz. Within the hopping model, Eq. (17), the
minimum gap of the electric charges is �c = m − 2

√
2t .

The band structure of the electric charges gets further
renormalized due to the gauge fluctuations. Compared to mag-
netic monopoles, they have a much smaller energy gap and
hence, on general grounds, their coupling with the emergent
photon is expected to be relatively much stronger. However,
to keep our analysis tractable, we neglect such effects within
our GMFT approach and only take them into account pertur-
batively.

V. MAGNETOELASTIC COUPLING IN NON-KRAMERS
QUANTUM SPIN ICE

The effect of the magnetoelastic coupling in the QSL phase
can be analyzed by studying the coupling of the phonon to the
emergent excitations using the mapping from spins to gauge
charges discussed above. For the linear coupling in Eqs. (6)
and (7), the resultant interactions are given below.
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FIG. 4. GMFT Feynman diagram for phonon and magnetic
monopole interaction [described by Eqs. (20) and (21)] in the zero
flux phase [see Fig. 2(a) for further details].

A. The magnetic monopole-phonon coupling

Here we obtain the direct coupling between the phonon
and the magnetic monopole. From Eq. (6), we get, for the eg
phonons:

H (e)
sp = J (e)

sp

2

∑
r

3∑
μ=0

ζ
(e)
−,g(r)

[
φ

†
r,AeiAr,μφr+dμ,B

+φ
†
r−dμ,AeiAr−dμ ,μφr,B

] + H.c., (18)

where

ζ
(e)
±,g(r) = ζ

(e)
1,g (r) ± iζ (e)

2,g (r)

are the displacement fields and from Eq. (7) for the t2g
phonons:

H (t2 )
sp = J (t2 )

sp

2

∑
r

3∑
μ=0

3∑
p=1

(
ζ (t2 )

p,g (r)L(t2 )
p,x,μ − iζ (t2 )

p,g (r)L(t2 )
p,y,μ

)

× [
φ

†
r,AeiAr,μφr+dμ,B + φ

†
r−dμ,AeiAr−dμ ,μφr,B

] + H.c.

(19)

The form factors L(t2 )
p,α,μ are obtained via the relation Q(t2 )

p =∑
α=x,y

∑3
μ=0 L(t2 )

p,α,μsα
μ, their explicit forms can then follow

from Eqs. (9).
Both these interactions give rise to a Yukawa-type coupling

between the phonons and the monopole bilinear of the form
ζφ†eiAφ, albeit with different form factors. The corresponding
bare vertex is shown in Fig. 2(a). It is clear from the inter-
action that the above coupling allows for a phonon to decay
into a monopole-antimonopole pair: additional low-energy
scattering channels for the phonons inside the QSL phase
open up. Note that while the bare monopole hopping preserves
the sublattice flavor of the monopole, the above vertex mixes
them, keeping only the total monopole number preserved.

Within GMFT, we assume that the gauge fluctuations are
weak and can be taken into account perturbatively. Thus,
within GMFT, the bare vertex for the magnetic monopole-
phonon interaction is given by Fig. 4, where the gauge
fluctuations have been neglected. Indeed, we shall show that
within a perturbative treatment of the gauge field, the temper-
ature dependence of the corrections due to gauge fluctuations

are subleading compared to the mean-field results at low
temperatures (see Sec. VII C). In momentum space, GMFT
vertices are given by

H (e)
sp = J (e)

sp

2
√

N

∑
k,k′

[(
α

(e)
k + α

(e)
k′

)
ζ

(e)
−,g(k − k′)

× φ
†
k,Aφk′,B + H.c.

]
, (20)

H (t2 )
sp = J (t2 )

sp

2
√

N

∑
k,k′

3∑
p=1

[(
α

(t2 )
p,k + α

(t2 )
p,k′

)

× ζ (t2 )
p,g (k − k′)φ†

k,Aφk′,B + H.c.
]
, (21)

where N is the total number of unit cells, while α
(e)
k and α

(t2 )
p,ks

are vertex functions of the eg and t2g coupling, respectively,
whose forms are given in Appendix B 3.

B. The (emergent) photon-phonon coupling

To obtain the coupling between phonon and emergent
photon, once again we integrate out the gapped magnetic
monopoles (as in Sec. IV A) in the presence of the magnetoe-
lastic coupling described by Eqs. (18) and (19). The leading
coupling between phonon and gauge field is obtained in fourth
order of the perturbation theory [114]. For the eg phonons, this
gives rise to

Hphonon−photon

= −J (e)2
sp J2

±
2J3

zz

∑
�

(∑
r∈� ζ(e)

g (r) · ζ(e)
g (r)

)
cos [E�]. (22)

A similar treatment for the t2g phonons is possible start-
ing from Eq. (7), leading to similar results as for the eg
phonons, and hence not presented explicitly. In the deconfined
QSL phase, the cosine term in the Hamiltonian above can
be expanded up to quadratic order as cos E ≈ 1 − E2/2. At
low energies, the constant term in the expansion leads to
a quadratic term in the phonon. This renormalizes the fre-
quency of the phonon by a constant shift without affecting
its linewidth.

The leading order coupling between the phonon and the
emergent photon, in the continuum limit is given by

Hphonon−photon = Jph−ph

∫
d3r ζ(e)

g (r) · ζ(e)
g (r) E2(r), (23)

where Jph−ph ∼ J (e)2
sp J2

±
4J2

zz l3 with l being the lattice length scale. As
expected, the phonons cannot simply couple to the dual gauge
field since they do not carry the emergent gauge charge. In-
stead, they couple to the gauge invariant electric field. Further,
since the Raman active phonons are even under inversion,
they can only couple to the electric field at quadratic order.
We note, in passing, that the antisymmetric phonon modes (u
modes) on the other hand are allowed to couple linearly to the
emergent electric field. Such interaction effects can be probed
using infrared spectroscopy [114,115].
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FIG. 5. GMFT Feynman diagram for phonon and electric charge
interaction [described by Eq. (26)]; (see Fig. 2(c) for further details.

In momentum space, Eq. (23) takes the form

Hphonon−photon =
∫ 4∏

i=1

d3ki Gαβ (k1, k2, k3, k4)

× (
ζ(e)

g (k1) · ζ(e)
g (k2)

)
Aα

k3
Aβ

k4
, (24)

where the interaction vertex is given by

Gαβ (k1, k2, k3, k4) = Jph−ph

N

[−k3 · k4δαβ + kβ

3 kα
4

]
× δ(k1 + k2 + k3 + k4). (25)

The above interaction is shown in Fig. 2(b), where the circle
represents the gauge-invariant dipolar vertex function, Gαβ .
Such decay processes for phonons in a QSL phase give rise
to an additional contribution to the phonon linewidth similar
to that due to the monopoles, albeit at a different energy scale.

C. The electric charge-phonon coupling

Similar to the phonon-magnetic monopole coupling, the
phonons also interact with the electric charges via a Yukawa
coupling as shown in Fig. 2(c) (again, the electric charge
creation/annihilation operators are not gauge invariant and
hence cannot couple to the phonons linearly).

To derive the coupling between the phonons and the elec-
tric charges, we construct the bilinears of the soft electric
charge modes with appropriate symmetry that can couple to
a particular polarization of the phonon. Here we analyze only
the eg couplings and the interaction is given by

Hphonon−charge = J (e)
ph−ch

∑
r

(
ζ

(e)
1,g (r)�1(r) + ζ

(e)
2,g (r)�2(r)

)
,

(26)

where (�1,�2) forms an eg doublet and is given by

�1 = ψ∗
1 ψ1 + ψ∗

11ψ11 − ψ∗
3 ψ3 − ψ∗

9 ψ9,

�2 = − ψ∗
1 ψ1 − ψ∗

11ψ11 − ψ∗
3 ψ3 − ψ∗

9 ψ9

+ 2(ψ∗
5 ψ5 + ψ∗

7 ψ7), (27)

where ψi (i = 1, 2, · · · 12) are the soft modes of the electric
charges as obtained in Ref. [113] and discussed in the previous
section. The above interaction is shown in Fig. 5. A similar
kind of coupling between t2g phonons and electric charges can

be obtained via symmetry analysis. However, such coupling
produces a similar kind of Raman response as eg phonons,
and is not considered here separately.

Due to the above magnetoelastic coupling, phonons ac-
quire a finite lifetime by scattering with the excitations of the
QSL. In the next three sections (Sec. VII–IX), we compute
the lifetime of the phonons and their typical low-temperature
behavior in order to probe the non-Kramers U(1) QSLs.

VI. RAMAN SCATTERING OF THE PHONONS IN
QUANTUM SPIN ICE PHASE

The Raman vertex for the phonon is given by [116]

HRaman =
∫

P(r) · Eext(r) d3r, (28)

where P(r) is the electric dipole moment and Eext(r) is the
external electric field (to be distinguished from the emergent
electromagnetism). Relegating details to Appendix C, we find
the Raman scattering cross-section [117],

d2σ (q, ω)

d�dωs
∝ R(q, ω), (29)

where for a thermal system, by Fermi’s golden rule,

R(q, ω) =
∑
i, f

e−βEi

Z
|〈 f |HRaman|i〉|2δ(E f − Ei − ω). (30)

Here q = qin − qout is the net momentum transferred to the
system by the Raman process and ω is the difference between
the frequency of incident and scattered photons. As the speed
of light is very large compared to that of the phonons, only
the q → 0 regime of the Brillouin zone can be probed by
Raman scattering. Further, |i〉, | f 〉 denote the initial and final
state of the phonons, respectively, with energies Ei and E f .
Finally, Z is the partition function for a Gibbs distribution at
temperature, T = 1/β.

At low temperatures, the initial state can be approximated
by the ground state. Also, we can see from the Raman vertex
[Eqs. (28) and (C2)] that the scattering matrix element is
nonzero only when |i〉 and | f 〉 differ by a single phonon, as
higher phonon processes are suppressed at low temperatures.
So, at low temperatures, | f 〉 should be chosen from the single
phonon sector, leading to

R(q, ω) ∝ −πn(ω)eβω

Z
e−βE0 lim

δ→0+
Im[Gζ (q, ω + iδ)], (31)

where, n(ω) = 1
eβω−1 is the Bose-factor and Gζ (q, ω + iδ) is

the retarded Green’s function of the phonon. This can be
calculated from the analytic continuation of the Matsubara
Green’s function, Gζ (q, iω), given by

Gζ (q, iω) = −
∫ β

0
dτ 〈T̂ (ζ (q, τ )ζ (−q, 0))〉eiωτ

= − 2ωq

ω2 + ω2
q + 2ωq�ζ (q, iω)

, (32)

where ωq is the bare dispersion of the phonon [obtained from
Eq. (10)] and �ζ (q, iω) is its self-energy arising from the
interaction with the QSL excitations. Here, for simplicity of
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the expression, we have suppressed the superscript denoting
the irrep of the phonon. Equation (31) results in a Lorentzian
line shape. The position of the peak of this curve is shifted
from the noninteracting one by

|�Raman| = Re[�ζ (q, ω + iδ)] (33)

and the full-width at half maximum of the Lorentzian is given
by

� = 2|Im[�ζ (q, ω + iδ)]|, (34)

which can then be directly compared with experiments.
We now focus on understanding the frequency and tem-

perature dependence of the linewidth, �, in detail, to extract
the information it contains about the QSL excitations via the
linear magnetoelastic coupling. The real part can be computed
from the imaginary part using the standard Kramers-Kronig
theorem [118]. Since the three QSL excitations are separated
in energy scales, we expect that they dominate the linewidth in
different frequency windows. Therefore, we particularly focus
on the frequency dependence of the linewidth.

VII. SELF-ENERGY OF THE PHONON DUE TO
PHONON-MAGNETIC MONOPOLE COUPLING

We now calculate the self-energy of the phonons and hence
the broadening of the phonon peaks due to the phonon-
monopole interaction. We calculate the effect of the coupling
in a perturbative approach both in the zero and π -flux phases.

FIG. 6. Self-energy of the phonon due to the phonon-magnetic
monopole interaction (see Fig. 4).

A. Zero-flux phase

The first nonzero contribution to the self-energy comes at
second order, O(J (ρ)2

sp ), by computing the bubble diagram of
Fig. 6. Within GMFT, for the zero-flux phase, the self-energy
is given by

�0
ζ (ρ) (q, i�) = − J (ρ)2

sp

4Nβ

∑
k,ω

∣∣α(ρ)
k + α

(ρ)
k+q

∣∣2G0
φ (k, A, iω)

× G0
φ (k + q, B, i(ω + �)), (35)

where the time-ordered Green’s function (G0
φ) for monopoles

in the zero-flux phase is defined as [see Eq. (B7) in Ap-
pendix B 1]:

G0
φ (k, A/B, iω) =

∫ β

0
dτ 〈T̂ (φk,A/B(τ )φ†

k,A/B(0))〉eiωτ

= 2Jzz

ω2 + (
ε0

k

)2 . (36)

To obtain the broadening of the Raman peaks, we calculate
the imaginary part of �0

ζ (ρ) (q, i� → � + iδ). Performing the
frequency summation using standard Matsubara summation
techniques [118], we get

lim
δ→0

Im
[
�0

ζ (ρ) (q,� + iδ)
] = πJ (ρ)2

sp J2
zz

4N

∑
k

∣∣α(ρ)
k + α

(ρ)
k+q

∣∣2[n
(
ε0

k

) − n
(
ε0

k+q

)
ε0

kε
0
k+q

(
δ
(
� + ε0

k+q − ε0
k

) − δ
(
� + ε0

k − ε0
k+q

))

+n
(
ε0

k

) + n
(
ε0

k+q

) + 1

ε0
kε

0
k+q

(
δ
(
� + ε0

k + ε0
k+q

) − δ
(
� − ε0

k − ε0
k+q

))]
, (37)

where n(ε0
k ) = 1

eβε0
k −1

is the Bose occupation for the magnetic

monopole with ε0
k being the single-particle dispersion within

GMFT as given by Eq. (16).
The first two delta functions of Eq. (37) imply processes

where a monopole scatters by absorption of a phonon (ab-
sorption process). The prefactor [n(ε0

k ) − n(ε0
k+q)] represents

the net probability of such processes. On the other hand, the
last two delta functions in Eq. (37) arise due to the con-
version of a phonon into a monopole-antimonopole pair or
vice versa [pair production process, Fig. 1(b)]. The prefactor
[1 + n(ε0

k ) + n(ε0
k+q)] represents the net probability of two

competing processes–the first(second) is the annihilation (cre-
ation) of a phonon followed by creation (annihilation) of the
monopole-antimonopole pair.

Equation (37) is one of the central results of this paper.
It shows that the self-energy correction of the phonons arises
from its coupling to the magnetic monopoles. We now analyze

the self-energy, in particular, its frequency dependence, which
can be detected in Raman-scattering experiments. For Raman
scattering, only the q ≈ 0 regime of the Brillouin zone is ac-
cessible. In this limit, clearly the probability of the absorption
process of the phonons vanishes since the difference of the
two Bose factors go to zero as q → 0, leading to

�(�, T ) = 2
∣∣Im[

�0
ζ (ρ) (q = 0,�)

]∣∣
= 2πJ (ρ)2

sp J2
zz

N

∑
k

∣∣α(ρ)
k

∣∣2

×
[

2n
(
ε0

k

) + 1(
ε0

k

)2

∣∣(δ(� + 2ε0
k

) − δ
(
� − 2ε0

k

))∣∣].

(38)

From Eq. (16), we see that the bare monopole band struc-
ture is gapped with its minima at k = 0 and the energy
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(a) (b)

FIG. 7. Frequency dependence of linewidth of (a) eg and (b) t2g phonons in the zero-flux phase due to the phonon-magnetic monopole
coupling. For both plots, we have chosen λ

2Jzz
= 0.7 and J±

2Jzz
= 0.1 for illustrative purpose. The inset of (b) shows the two-particle density of

states (DOS) of magnetic monopoles for the same values of λ/2Jzz and J±/2Jzz.

gap, �0 = √
2Jzz(λ − 3J±). It is evident from Eq. (38) that

the splitting of phonons into a monopole-antimonopole pair
occurs only if the phonon frequency is larger than the pair
creation energy (2�0) such that � ∼ �(|�| − 2�0). This is
visible in Fig. 7, where we plot the linewidth, �(�, T ) versus
the frequency, �, for various temperatures, T , for both the eg
and the t2g modes, for �0 = 1.26Jzz as an illustrative example
for plotting. The profile of the curve remains qualitatively
same as long as the constraint λ > 3J± is satisfied, which
defines the extent of the QSL. Apart from the dependence
on the form factors, α

(ρ)
k , and the Bose factor, both curves

reflect the two-particle density of states profile of monopoles,
shown in the inset of Fig. 7(b). The effect of the form factors
can be noted from the qualitative difference of the two plots.
Since α

(t2 )
k → 0 as k → 0 [from Eq. (B14)], the linewidth for

t2g smoothly vanishes for � → 2�0. By contrast, for eg, the
vertex function (α(e)

k ) tends to a nonzero constant as k → 0
[from Eq. (B14)] and the linewidth shows a sharp behavior
even at zero momentum.

B. π-flux phase

The phonon-magnetic monopole coupling in the π -flux
phase is obtained from the linear spin-phonon coupling of
Eqs. (6) and (7) via parton decomposition of the spins and
freezing the gauge fluctuations to a suitable GMFT ansatz as

described in Sec. IV B. Focusing only on the eg phonons, the
phonon-monopole coupling is given by

H (e)
sp = J (e)

sp

2
√

N

∑
k

∑
μ,ν=1,2

(
Mμν

k ζ
(e)
−,g(q = 0)φ†

k,Aμφk,Bν + H.c.
)
.

(39)

The details of the vertex functions Mμν

k are given in Ap-
pendix D 1. The Feynman diagram of the above interaction is
again represented by the Yukawa vertex, which is very similar
to Fig. 4 except for the fact that four distinct diagrams are
possible due to the extended sublattice structure. The phonon
self-energy in this phase is given by

�π
ζ (e) (q = 0, i�) = − J (e)2

sp

4Nβ

∑
k,ω

∑
μ,ν,α,β

Mμα

k Mνβ

−k

[
Gπ

φ

]
μν

× (k, A, i� + iω)
[
Gπ

φ

]
αβ

(k, B, iω),

(40)

where [Gπ
φ ]μν (k, A/B, iω) is the Green’s function for the A/B

monopoles in the π -flux phase [see Eq. (B13) in Appendix B 2
for the detailed expressions]. Computing the imaginary part of
the above expression, we obtain the linewidth of the phonons
in the π -flux phase. The contribution, where the phonon splits
into two monopoles, is given by

�(�, T ) = πJ (e)2
sp

2N

∑
k

[
1 + 2n(επ

+(k))

επ+(k)2
P1(k)δ(� − 2επ

+(k)) + 1 + 2n(επ
−(k))

επ−(k)2
P2(k)δ(� − 2επ

−(k)) + (P3(k) + P4(k))

×
(

1 + n(επ
+(k)) + n(επ

−(k))

επ+(k)επ−(k)
δ(� − επ

+(k) − επ
−(k)) + n(επ

+(k)) − n(επ
−(k))

επ+(k)επ−(k)
δ(� + επ

+(k) − επ
−(k))

)]
, (41)

where P1(k), P2(k), P3(k), P4(k) are real functions of mo-
mentum whose detailed forms are given by Eq. (D2) in
Appendix D 2 and επ

±(k) are the bare monopole dispersions
in the π -flux phase as discussed above. The detailed forms
are given by Eqs. (B10) and (B11) in Appendix B 2.

The above expression should be contrasted with that for
zero flux [Eq. (38)]. There are four distinct delta func-
tions appearing in the expressions. The first two terms are
closely related to the two-particle density of states for the
επ
+(k) and επ

−(k) bands, implying the decay of a phonon into
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FIG. 8. Density of states of different bands contributing to the
phonon linewidth in the π -flux phase. We have chosen λ/2Jzz =
0.7, J±/2Jzz = 0.3 for illustrative purpose. Red and blue curves
denote the two-particle density of states for upper (επ

+) and lower
(επ

−) bands, respectively. Black and magenta curves denote density
of states of επ

+ + επ
− and επ

+ − επ
−, respectively.

monopole-antimonopole pair with respective energy in the
two bands, ±. On the other hand, the last two entries represent
the processes where a phonon scatters into monopole-
antimonopole pair of different energy bands. Consequently,
unlike the zero flux case, both the pair production and absorp-
tion processes show nonzero amplitude even at q = 0.

As an aside, we briefly comment on the connection of this
shallow inelastic scattering referred to in Fig. 1(d) to the deep
inelastic scattering familiar from QCD. In the latter, a photon
scatters off a quark which, when it is highly relativistic,
is possible with only a minor momentum contribution
from other quarks. By contrast, with fractionalization being a
low-energy phenomenon, the kinematics works out differently
despite the topological correspondence between the two
diagrams. It is the capacity of the scattering between the two
bands for the π -flux phase to absorb energy and momentum
which provides the nonvanishing cross section even at low q
for the shallow scattering.

In Fig. 8, we plot various contributions to the two-particle
density of states of magnetic monopoles in the π -flux phase,
which represent the four distinct delta functions of Eq. (41).
The phonon linewidth is obtained from the sum of these delta
functions weighted by appropriate momentum dependent
form factors [P1(k),P2(k),P3(k),P4(k)] and the Bosonic
distribution functions at finite temperature. It is evident from
the figure that, unlike the zero flux case, the Raman linewidth
shows a nonzero signal even at very low energy compared
to the monopole gap. Availability of the two nondegenerate
bands allows a nonzero probability of the process where a
monopole [say, with energy επ

−(k)] absorbs the phonon and
converts into another monopole of different band structure
[επ

+(k)] even at q = 0. Also, the enlargement of the magnetic
unit cell compared to that of the zero flux case—leading to
the momentum fractionalization—is very well captured in
such a Raman response profile, which is a signature of the
non-trivial projective implementation of symmetry. Hence,
the phonon linewidth measurements via Raman experiments

FIG. 9. Self-energy of the magnetic monopoles due to the gauge
fluctuation.

can be an extremely useful tool to identify the nontrivial PSG
of a QSL phase.

C. Beyond GMFT: Gauge fluctuations

The above Raman cross section was obtained within
GMFT neglecting the gauge fluctuations. We now consider
the effect of long-wavelength gauge fluctuations within a
weak-coupling approach for the emergent electrodynamics.
At present, it is not clear that such a weak-coupling ap-
proach is valid for treating the gauge fluctuations. In fact,
the coupling parameter—the fine structure constant—for the
emergent electrodynamics is generically expected to be size-
able. However, recent numerical calculations [91] on quantum
spin ice [via Eq. (14)] suggest that the emergent fine-structure
constant is �0.1, which may suggest that the perturbative
expansion could still provide an estimate of the effect of gauge
fluctuations.

For the zero-flux case, this is captured by the expansion,
e±iAr,μ ≈ (1 ± iAr,μ). Hence [from Eq. (B1)], the interaction
between monopole and gauge field is given by

HGF = iJ±
4
√

N

∑
k,k′,μ �=ν

[
γ

μν
B (k, k′)Ak−k′,μφ

†
k,Bφk′,B

+ γ
μν
A (k, k′)Ak−k′,μφ

†
k,Aφk′,A

]
, (42)

where Ak,μ = 1√
N

∑
r∈I Ar,μeik·r. The details of the vertex

functions, γ
μν
A/B(k, k′), are given in Appendix E for the zero

flux phase. The π -flux phase can be treated in a similar way.
There are two (related by Ward identities) effects of the gauge
fluctuations– renormalization of the vertex [Fig. 2(a)] and
renormalization of the monopole propagator (Fig. 9), which
we discuss in turn.

In the presence of such gauge fluctuations, the vertex func-
tions for the bare phonon-monopole interactions get dressed
via the virtual photon exchange processes as described by
Fig. 2(a). This effect can be taken into account by calcu-
lating the modified vertices, α

(ρ)
k + δα

(ρ)
k . We compute the

leading order corrections by expanding the bare monopole
energy about the band minima at k = 0 [Eq. (E3)]. Similarly,
all the bare vertex functions [α(e)

k , α
(t2 )
k , γ

μν

A/B(k, k′)] are also
Taylor expanded in polynomials of momentum and only the
leading terms are considered. We note that the terms with
higher powers of momentum contribute to more subleading
(in temperature) corrections to the mean-field vertices at low
temperatures. With the above approximations, the leading
frequency-independent corrections to the eg and t2g vertices
are obtained as (see Appendix E for further details)

δα
(e)
k ≈ a0 + a1

β4
+ a2e−β�0

β
3
2

+ k2

(
a3

β2
+ a4e−β�0

β
1
2

)
,

δα
(t2 )
k ≈ ã0 + ã1

β5
+ ã2e−β�0

β2
+ k2

(
ã3

β3
+ ã4e−β�0

β

)
, (43)
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FIG. 10. Self-energy of the phonon due to the phonon-
(emergent) photon interaction [see Fig. 2(b)].

where ai and ãi are temperature-independent constants. The
correction to the linewidth can now be obtained by incorpo-
rating these vertex corrections to Eq. (38). We note that such
contributions do not change the dependence of the Raman re-
sponse on the two-particle density of states of the monopoles.
Instead, they modify the temperature dependence and overall
profile of the linewidth versus frequency plots (see Fig. 7)
obtained from the GMFT ansatz by renormalization of the
form factors. However, since the QSL phase is stabilized only
at low temperatures, the temperature-dependent vertex correc-
tions merely give rise to a subleading correction to Eq. (38) as
T → 0.

Apart from the vertex corrections, the virtual photon ex-
change due to the gauge fluctuations also renormalizes the
monopole self-energy, via processes shown in Fig. 9. Such
contributions renormalize the bare monopole linewidth as
well as its band structure. The broadening of the linewidth
is subleading in the low-temperature regime. On the other
hand, the renormalization of the band structure modifies the
two-particle density of states of monopoles by an amount pro-
portional to the speed of emergent light (ce). As a result, the
Raman linewidth gets renormalized compared to the GMFT
results described in Fig. 7 via the dressed two-monopole
density of states. However, since the large anisotropy of the
exchange coupling (Jzz � J±) ensures �0 � ce [72,87,91],
such effects are small. The large gap of the magnetic
monopoles in QSL phase preserves the essential features of
the Raman response obtained in the GMFT ansatz.

VIII. SELF-ENERGY OF THE PHONON DUE
TO PHONON-PHOTON COUPLING

Similar to the Raman response due to the phonon-
monopole coupling, the leading contribution to the phonon
linewidth due to phonon-photon interaction [see Eq. (24)] can
be computed from the Feynman diagram shown in Fig. 10
appearing in the second-order perturbation theory. However,
we note that the presence of the background electric flux
does not change the low-energy photon dispersion, hence the
phonon linewidth due to the photons remains similar in both
the zero- and π -flux QSLs discussed above. The self-energy
of the phonon is given by

�ζ (e) (q, i�) = 1

β2

∑
k2,k3,k4

∑
�2�3�4

Gβγ (q, k2, k3, k4)Gμν

× (q, k2, k3, k4)δ(� + �2 + �3 + �4)

× Gζ (k2,�2)Dβμ(k3,�3)Dγ ν

× (k4,�4)δ(q + k2 + k3 + k4). (44)

FIG. 11. Energy dependence of the linewidth of the eg phonons
due to phonon-(emergent) photon coupling. The energy dependence
is shown at different temperatures. ce = √

UK is the velocity of the
emergent photons and its density of states is plotted in the inset.

Here Dμν (q, iω) denotes the photon propagator which can
be calculated from the effective low-energy Hamiltonian of
the pure gauge theory given in Eq. (14), i.e.,

Dμν (q, iω) = −
∫ β

0
dτ 〈T̂ (Aq,μ(τ )A−q,ν (0))〉eiωτ

= − Uδμν

ω2 + ε2
q
. (45)

Equation [44] can be further simplified by performing the
frequency summation [118]. For the Raman scattering exper-
iments discussed earlier, we consider only the q → 0 limit
and focus on the imaginary part. Typically, the dispersion
for the optical phonon can be approximated as, ωq → ω0.
Also, the energy scale of the emergent photon is much
smaller than the optical phonon excitations of the pyrochlores
[32,87,119]. Hence, at the low temperatures of the QSL phase,
it is fair to consider n(ω0) � n(εk ). Setting n(ω0) = 0 in
the leading approximation, the contribution to the phonon
linewidth is obtained as

�(0, E ) = π (Jph−phU )2

2N

∑
k

[k · kδβγ − kβkγ ]2

× 1

4ε2
k

[δ(E + εk ) [n(−E )]2

+ δ(E − εk )[1 + n(E )]2

+ δ(E ) 2n(εk )[n(εk ) + 1]], (46)

where E = (� − ω0)/2. It is clear from the above expression
that the Raman response occurs around � = ω0 due to the
gaplessness of the photons, which is different from the fre-
quency window at which the magnetic monopole signatures
occur [see the schematic of Fig. 1(e)]. For small positive
energies E , the above expression is further simplified to

�(0, E ) ∝ E4(1 + n(E ))2. (47)

For the higher energy regime, the photon band structure
starts deviating from the linear behavior and the above form
is no longer valid. The complete energy dependence of the
above contribution to the linewidth is shown in Fig. 11 for
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FIG. 12. Self-energy of the phonon due to the phonon-electric
charge interaction (see Fig. 5).

different temperatures, where we have used the lattice regular-
ized dispersion for the emergent photons [72,87]. Apart from
the usual dipolar form factor, the linewidth profile is mostly
sensitive to the photon density of states, which is shown in the
inset of Fig. 11.

IX. SELF-ENERGY OF THE PHONON DUE TO
PHONON-ELECTRIC CHARGE COUPLING

The final contribution to the phonon self-energy in the QSL
phase arises from scattering of the phonons off the electric
charges. Again, assuming weak coupling between the charges
and the gauge field, we compute the phonon linewidth due to
Eq. (26) using GMFT. As we have already seen, this interac-
tion is very similar to that between phonons and monopoles.
Hence, the contribution to the phonon self-energy also comes
from similar Feynman diagrams as shown in Fig. 12. There are
two possible scattering channels for electric charge-phonon
interactions—absorption of a phonon by a charge or annihi-
lation of a phonon followed by pair production of charges
(with charge ±1). Similar to monopoles, only the second
process is relevant here. Therefore, � ∼ �(|�| − 2�c), and
the linewidth versus frequency profile closely follows the two-
particle density of states of the electric charges. This is shown
in Fig. 13 for t/m = 0.2 as an illustrative example (However,
it can be chosen from any value that satisfies, m > 2

√
2t ,

defining the validity of the QSL description, and the profile re-
mains qualitatively unchanged). Clearly, the Raman response
due to the phonon-charge coupling has a threshold energy
scale of ∼2�c which is a different energy scale compared to
the response due to magnetic monopoles and photons [see the
schematic of Fig. 1(e)].

FIG. 13. Two-particle density of states of the charges. For illus-
trative purposes, we have chosen t/m = 0.2 where �c/m = 0.43.

X. BILINEAR COUPLING

Having discussed the effects of the linear magnetoelastic
coupling in the QSL phase, we now briefly discuss the more
familiar contribution to the Raman response of the phonons
arising due to magnetoelastic interaction. This is present both
in Kramers and non-Kramers systems, as it arises due to
modulation of the spin-exchange interactions via the phonons
and can be obtained from the bare spin Hamiltonian of Eq. (3)
by Taylor expanding the exchange coupling constants in pow-
ers of lattice displacements (δμν) from the ionic equilibrium
position (R̄μν) [120] as

Jμν
α (r) = Jα + ∂Jμν

α (r)

∂Ra
μν

δa
μν (r)

+ 1

2

∂2Jμν
α (r)

∂Ra
μν∂Rb

μν

δa
μν (r)δb

μν (r). (48)

Here, Jμν
α (r) denotes the generic bond dependent exchange

coupling constant on the bond of the pyrochlore connecting
sites (r,μ) and (r, ν). Here, (r,μ) denotes the position vector
of the four spins sitting on the corners of the tetrahedron with
its center at r for μ = 0, 1, 2, 3, with α representing zz or ±
interactions, and

Ra
μν = (r,μ)a − (r, ν)a, (a = x, y, z),

δa
μν = Ra

μν − R̄a
μν.

Substituting Eq. (48) in the spin Hamiltonian of Eq. (3), we
get the coupling between the phonons and spin bilinears,

Hquad
sp = H1 + H2, (49)

where H1 and H2 represent the interaction vertices linear and
quadratic in phonons, respectively. Their detailed forms are
given by Eqs. (F1) and (F2) in Appendix F. A unitary trans-
formation can be performed on the displacement operators,
δμν (r), to rewrite it in the normal mode coordinates, ζ(ρ)(r),
described in Sec. III. The above interaction is rewritten in
terms of the fractionalized degrees of freedom in a QSL
phase using the parton decomposition of spins as described in
Sec. IV. Within GMFT, the quadratic magnetoelastic coupling
between the phonons and emergent excitations of the QSL is
described by Figs. 14 and 15 [also see Eqs. (F3) and (F4) in
Appendix F].

The phonon-magnetic monopole vertex arising from the
quadratic coupling is shown in Fig. 14 where (a) and (b)
panels show the contribution from H1 and (c) and (d) panels
show the contribution from H2. It is clear from these diagrams
that such magnetoelastic coupling gives rise to the hopping
of the monopoles which preserves the monopole flavor, i.e.,
monopoles on A and B sublattices do not mix under this
dynamics. This feature can be contrasted with the monopole
dynamics due to the linear magnetoelastic coupling described
earlier in Eqs. (20) and (21).

The quadratic coupling also generates a coupling between
phonons and emergent photons, which is shown in Fig. 15
with (a) and (b) panels depicting contributions from H1 and
H2, respectively. In contrast to the linear coupling case, the
phonons now couple to the gauge-invariant magnetic field.
As expected from time-reversal invariance of the phonons,
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FIG. 14. Feynman diagram for phonon and magnetic monopole
interaction due to the spin-phonon coupling quadratic in spin opera-
tors. (a) and (b) are the contributions from H1 and (c) and (d) are the
contributions from H2 [see Eqs. (F3) and (F4)].

the magnetic field appears only at quadratic order in such
couplings. We also note that the process shown in Fig. 15(a) is
in the single phonon scattering channel, which was not present
in the previous case.

Similar to the linear magnetoelastic interaction, the
quadratic coupling also renormalizes the phonon frequency
and linewidth by opening the decay channels for phonons
depicted in Figs. 14 and 15. However, these additional scat-
tering channels do not change the essential features of the
Raman linewidth, and its frequency dependence on the den-
sity of states of emergent excitations remains unchanged. In
non-Kramers materials, this contribution is expected to be
subdominant compared to the phonon renormalization due to
the linear spin-phonon coupling. However, we note that the
quadratic coupling is the only component of the magnetoelas-
tic coupling present in Kramers materials.

FIG. 15. Feynman diagram for phonon and photon interaction
due to the spin-phonon coupling quadratic in spin operators. The
circles represent the form factor that makes the vertex gauge invari-
ant. (a) and (b) are contributions due to H1 and H2, respectively [see
Eqs. (F3) and (F4)].

XI. SELF-ENERGY CALCULATION IN (THERMAL)
PARAMAGNETIC REGIME

Finally, to contrast the case of the QSL to an ordinary
paramagnet, we compute the self-energy of phonon in the
high-temperature paramagnetic regime, where T � Jzz such
that the thermal fluctuations predominate. In this thermal
paramagnet, due to the presence of abundant thermally excited
both electric charges and magnetic monopoles, they cease
to be well-defined (sparse) quasiparticles, instead presenting
randomly fluctuating background fields. In such a case, in-
dividual monopoles or charges cannot propagate coherently,
and, the deconfined U(1) gauge theory no longer is a valid
description of the system. Instead of using the emergent
excitations, the dressed self-energy due to the spin-phonon
interaction [as described in Eq. (6) and (7)] is now computed
in terms of the original short-range correlated spin degrees
of freedom. The phonon self-energy due to the linear spin-
phonon coupling is given, e.g., for eg modes, by

�ζ (e) (q, i�) = −J (e)2
sp

∑
α=x,y

3∑
μ,ν=0

[
η(e)

μν (q)καα
μν (q, i�)

+ η(e)
μν (−q)καα

μν (−q,−i�)
]
, (50)

where

καβ
μν (q, iω) =

∫ β

0
dτ

〈
T̂
(
sα
μ(q, τ )sβ

ν (−q, 0)
)〉

0eiωτ (51)

is the time-ordered spin correlation function and η(e)
μν (q) is the

form factor for the eg mode. Similar expressions hold for t2g
modes as discussed in Appendix G.

From the bare spin Hamiltonian, we expect the spin-
correlations to be diagonal in the spin indices [defined using
the local quantisation axes given by Eqs. (A1) and (A2)], i.e.,
καβ

μν (q, iω) = δαβκαβ
μν (q, iω). Further, in this thermal param-

agnetic phase, the spins are incoherent and, therefore, the spin
correlations are dominated by the short time values which we
replace by the equal time correlators, which in turn can be
computed from the high-temperature expansion using the bare
spin-exchange Hamiltonian. The leading contribution is given
by 〈

sx
rsx

r′
〉
0 = 〈

sy
rsy

r′
〉
0 ≈ e− |r−r′ |

ξ , (52)

where ξ ∼ l/ ln ( T
J±

) is the finite correlation length in the para-
magnetic phase. Taking the Fourier transform and substituting
it in Eq. (50), we obtain

�ζ (ρ) (q, i�) ∝ − J (ρ)2
sp ξ 3β

(1 + q2ξ 2)2
. (53)

The above expression is purely real and hence contributes
only to a Raman frequency shift that decays inversely with
temperature.

Therefore, the leading effect of the spin-phonon coupling
is to renormalize the phonon energy while its lifetime receives
subleading contributions. Therefore, the Raman linewidth for
the phonons acquires an anomalous broadening while going
from the high-temperature paramagnetic phase to the low-
temperature QSL. This leads to the question: What happens to
the linewidth at the thermal confinement-deconfinement phase
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FIG. 16. Feynman diagram for the phonon mediated Loudon-
Fleury vertex for magnetic monopoles. The curly lines denote the
external Raman photons. The first and second diagrams show the
coupling of phonon to external photon [see Eq. (C1)] and magnetic
monopole, respectively. Integrating out the phonons, the external
photon-monopole [see Eq. (H3)] vertex is obtained which is shown
in the rightmost panel.

transition between the low-temperature quantum and high-
temperature thermal paramagnets? This is an interesting and
experimentally relevant question which will be very useful to
understand in the future.

XII. PHONON-MEDIATED LOUDON-FLEURY VERTEX

In addition to the renormalization of optical phonons, the
magnetoelastic coupling can further mediate interaction be-
tween the external Raman photons and the magnetic degrees
of freedom. Such interactions are of particular interest in those
materials where the phonon has a very different energy scale
compared to the QSL excitations [32,92]. In such a scenario,
the renormalized Raman vertex is obtained by integrating out
the phonons leading to a phonon mediated Loudon-Fleury
vertex.

As explained in the earlier sections, the external photons
of the Raman experiment probe the phonons of the system
[via Eq. (28)], which further couple to the fractionalized ex-
citations via the magnetoelastic coupling [see Eqs. (20), (21),
(24), and (26)]. Therefore, integrating out the phonons leads to
an interaction between the external photons and the emergent
electrodynamics [see Eqs. (H3) and (H4) in Appendix H for
further details] as shown schematically in Fig. 16 for the
leading interaction between external photons and magnetic
monopoles. The vertices for the other emergent excitations are
detailed in Appendix H.

Typically, all the phonon-mediated vertices are suppressed
by the energy scale of an optical phonon and would lead
to corrections to the usual Loudon-Fleury vertices described
in Ref. [87]. Raman intensity due to such processes is ob-
tained by calculating the imaginary part of the bubble diagram

FIG. 17. Feynman diagram contributing to the Raman intensity
due to the phonon mediated Loudon-Fleury vertex for magnetic
monopoles.

shown in Fig. 17. It is clear from the diagram that the re-
sulting monopole bubble is exactly same as the one obtained
(see Fig. 6) earlier. Therefore, the Raman intensity due to
the phonon-mediated Loudon-Fleury processes are sensitive
to the two-monopole density of states in the QSL phase
and it can in principle also characterize the physics of spin
fractionalization even if the phonon is off-resonant to the
quasiparticles of the QSL phase.

XIII. SUMMARY AND OUTLOOK

To summarize, our results emphasize that magnetoelastic
coupling can provide a very useful tool to probe the novel low-
energy excitations of a QSL via spectroscopic methods such
as Raman spectroscopy. We provide an explicit example of
such a case in the context of non-Kramers candidate quantum
spin ices, such as the recently studied material Pr2Zr2O7. In
such systems, the spin-phonon interaction is enhanced due
to the presence of linear spin-phonon coupling, which is
an essential consequence of the non-Kramers nature of the
low-energy magnetic degrees of freedom. We show that in
the U(1) QSL phase of the quantum spin ice, all the emer-
gent excitations—the emergent gapped magnetic and electric
charges as well as gapless emergent photons—interact with
the phonons, leading to additional scattering channels for the
latter and resulting in an anomalous renormalization of its fre-
quency and lifetime. Such renormalizations are very different
from those arising due to the anharmonic effects or spin-wave
excitations of a magnetically ordered state. We note that the
effect of the linear coupling discussed here can open up a
complementary probe for the QSL excitations in non-Kramers
spin ice through acoustic phonons via ultrasound velocity
measurement.

We characterize all three types of excitations by studying
the frequency dependence of the Raman linewidth of the rele-
vant phonon modes, which in turn depend on the two-particle
density of states of the respective excitations. Therefore, they
carry characteristic signatures of the fractionalization. Since
in the quantum spin ice phase, the magnetic sectors and the
electric sectors are naturally separated in energy, the Raman
response also appears in different energy windows for these
degrees of freedom alongside the gapless emergent photon to
which both the charges couple.

Moreover, it is further shown that such probes can also
distinguish between zero-flux and π -flux phases of a QSL,
and hence the PSG implementation realized in the QSL. The
results remain valid even if the phonon frequencies are much
larger than those of QSL excitations via renormalization of the
Raman vertex for the spins. Such phonon-mediated Loudon-
Fleury contributions are expected to be the leading contributor
to the Raman response in non-Kramers quantum spin ice.
Given the recent development in synthesising high-quality
single crystals of Pr2Zr2O7 and obtaining their Raman re-
sponse, albeit so far only at high temperatures, we hope that
our work will contribute to the uncovering of the experimental
signatures of QSLs in the context of the search for fractional-
ized quantum phases of matter in d = 3.

The present calculations use a generalized mean-field the-
ory applied to lattice gauge theory. While such approaches can
generally provide the correct description of the physics of the
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QSL qualitatively, fluctuations of the emergent U(1) gauge
field will affect the quantitative comparison of the present
results with experiments. While a perturbative (in the gauge-
matter coupling) calculation, presented here, shows that such
effects are subdominant, the premise of the smallness of the
coupling is an assumption of the present paper. In fact, there
are indications that the coupling between matter (monopoles)
and light (photons) is larger in spin ice than in ordinary QED,
as well as tunable from material to material, calling for a
research program addressing the phenomenology of eQED
at intermediate to strong coupling [91]. The deviation of
the present results due to strong gauge-matter interactions
provides an important and interesting theoretical as well as
experimental context to study strong-coupling eQED. In this
regard, experimental deviations of the above Raman signa-
tures in candidate materials will provide concrete motivation
to understand concrete experimental consequence of such a
strongly coupled emergent QED. Such a research program
would obviously be of interest well beyond the spin-ice set-
ting.
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APPENDIX A: DETAILS OF THE PYROCHLORE LATTICE

1. Local basis for the spins

The spins on a tetrahedron are described by

si = sx
i x̂i + sy

i ŷi + sz
i ẑi, (A1)

where (x̂i, ŷi, ẑi ) is the set of local basis defined at site i of
a tetrahedron(see Fig. 3). In terms of the global coordinates,
these local basis vectors for an up tetrahedron are given by

ẑ0 = (1, 1, 1)√
3

, x̂0 = (2̄, 1, 1)√
6

, ŷ0 = (0, 1̄, 1)√
2

,

ẑ1 = (1̄, 1̄, 1)√
3

, x̂1 = (2, 1̄, 1)√
6

, ŷ1 = (0, 1, 1)√
2

,

ẑ2 = (1̄, 1, 1̄)√
3

, x̂2 = (2, 1, 1̄)√
6

, ŷ2 = (0, 1̄, 1̄)√
2

,

ẑ3 = (1, 1̄, 1̄)√
3

, x̂3 = (2̄, 1̄, 1̄)√
6

, ŷ3 = (0, 1, 1̄)√
2

. (A2)

2. Lattice vectors

The four nearest-neighbor vectors, which connect the cen-
ter of an up tetrahedron to that of its adjacent down tetrahedra,

TABLE I. Transformation of the transverse components of spins
under lattice symmetries and time reversal.

Symmetry Transformation of spin operators

C3[111] sx
0 → − 1

2 sx
0 +

√
3

2 sy
0; sy

0 → −
√

3
2 sx

0 − 1
2 sy

0

sx
1 → − 1

2 sx
2 +

√
3

2 sy
2; sy

1 → −
√

3
2 sx

2 − 1
2 sy

2

sx
2 → − 1

2 sx
3 +

√
3

2 sy
3; sy

2 → −
√

3
2 sx

3 − 1
2 sy

3

sx
3 → − 1

2 sx
1 +

√
3

2 sy
1; sy

3 → −
√

3
2 sx

1 − 1
2 sy

1

C2[ẑ] sx
0 → sx

1; sy
0 → sy

1

sx
1 → sx

0; sy
1 → sy

0

sx
2 → sx

3; sy
2 → sy

3

sx
3 → sx

2; sy
3 → sy

2

σd [x = y] sx
0 → − 1

2 sx
0 −

√
3

2 sy
0; sy

0 → −
√

3
2 sx

0 + 1
2 sy

0

sx
1 → − 1

2 sx
1 −

√
3

2 sy
1; sy

1 → −
√

3
2 sx

1 + 1
2 sy

1

sx
2 → − 1

2 sx
3 −

√
3

2 sy
3; sy

2 → −
√

3
2 sx

3 + 1
2 sy

3

sx
3 → − 1

2 sx
2 −

√
3

2 sy
2; sy

3 → −
√

3
2 sx

2 + 1
2 sy

2

S4[ẑ] sx
0 → − 1

2 sx
2 −

√
3

2 sy
2; sy

0 → −
√

3
2 sx

2 + 1
2 sy

2

sx
1 → − 1

2 sx
3 −

√
3

2 sy
3; sy

1 → −
√

3
2 sx

3 + 1
2 sy

3

sx
2 → − 1

2 sx
1 −

√
3

2 sy
1; sy

2 → −
√

3
2 sx

1 + 1
2 sy

1

sx
3 → − 1

2 sx
0 −

√
3

2 sy
0; sy

3 → −
√

3
2 sx

0 + 1
2 sy

0

T sx
0 → sx

0; sy
0 → sy

0

sx
1 → sx

1; sy
1 → sy

1

sx
2 → sx

2; sy
2 → sy

2

sx
3 → sx

3; sy
3 → sy

3

are given by

e0 = (1, 1, 1)√
3

, e1 = (1̄, 1̄, 1)√
3

,

e2 = (1̄, 1, 1̄)√
3

, e3 = (1, 1̄, 1̄)√
3

. (A3)

The FCC lattice vectors are given by

dμ = e0 − eμ for μ = 1, 2, 3. (A4)

3. Symmetry table for spins

The tetrahedral group, Td , is made out of 24 symmetry
elements which can further be classified into five conjugacy
classes. To decompose the vector space of (sx

i , sy
i ) operators

into the irreducible representations (see Sec. III), we com-
pute their transformations under one representative symmetry
transformation from each nontrivial class: C3[111] [threefold
rotation about the global (1,1,1) axis], C2[ẑ] (twofold rotation
about the global ẑ axis), σd [x = y] (reflection about the x = y
plane), and S4[ẑ] (reflection about the z = 0 plane followed
by fourfold rotation about the global ẑ axis). This is given in
Table I for the transverse spin components, sx

i and sy
i . Here we

do not consider time-reversal odd sz
i operators, since these are

not relevant to the linear magnetoelastic coupling.
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APPENDIX B: DETAILS OF THE GMFT
OF QUANTUM SPIN ICE

The lattice gauge theory description of the spin Hamilto-
nian in Eq. (3) is given by

H0 =
∑

r

Jzz

2

(
Q2

r,A + Q2
r,B

)

− J±
4

∑
r,μ �=ν

φ
†
r+dμ,B ei(Ar,ν−Ar,μ ) φr+dν,B

− J±
4

∑
r,μ �=ν

φ
†
r−dμ,A ei(Ar−dμ ,μ−Ar−dν ,ν )φr−dν,A, (B1)

subject to the hard-core constraint
φ†

r φr = 1, (B2)
arising from the spin-1/2 Hilbert space dimension of the non-
Kramers doublet. In Eq. (B1), A, B denote two sublattices of
the diamond lattice. dμs (μ = 1, 2, 3) are the lattice vectors
and d0 = 0 (see Appendix A 2).

1. GMFT of monopole dynamics in the zero-flux phase

To implement the unitary constraint of the monopole oper-
ators described by Eq. (B2), we introduce a new term to the
Hamiltonian with a global Lagrange multiplier, λ:

λ
∑

r

(φ†
r φr − 1). (B3)

The constraint is imposed softly if we consider λ to be a large
number (more precisely, it needs to be the largest energy scale
of the problem). With this term, the constraint can be relaxed
by rewriting monopole operators as φ†

r = eiχr (where χr takes
real eigenvalues from (0, 2π ] and satisfies [χr,Qr′ ] = iδr,r′ )
and expanding it up to linear order of χr:

φ†
r ≈ 1 + iχr. (B4)

Substituting the above expansion in the bare monopole Hamil-
tonian [obtained by freezing the dual gauge fluctuations in
Eq. (B1)] along with the Lagrange multiplier term, we obtain

H0 ≈ Jzz

2

∑
r

Q2
r,B − J±

4

∑
r,μ �=ν

χr+dμ,Bχr+dν ,B

+ λ
∑

r

χr,Bχr,B + B → A

=
∑

k

[
Jzz

2
|Qk,B|2 +

(
ε0

k

)2

2Jzz
|χk,B|2

]
+ B → A, (B5)

where ε0
k is the bare monopole dispersion in the zero flux

sector and given by Eq. (16). In the above equation, we
ignore the unimportant additive constant. We note that the
above Hamiltonian describes a bunch of decoupled Harmonic
oscillators which can be easily diagonlized using the standard
ladder operator formalism:

Qk,A/B = −i

√
ε0

k

2Jzz
(ak,A/B − a†

−k,A/B),

χk,A/B =
√

Jzz

2ε0
k

(ak,A/B + a†
−k,A/B),

FIG. 18. Unit cell of the diamond lattice with π flux. The gauge
mean field is chosen such that Ar,r+eμ

= π on the yellow bonds
and Ar,r+eμ

= 0 on the black bonds. A1, A2, B1, B2 denote the four
sublattices in the enlarged unit cell of the π -flux phase.

The monopole Hamiltonian is simplified to

H0 =
∑

k

ε0
k(a†

k,Aak,A + a†
k,Bak,B + 1). (B6)

a. Action for the magnetic monopoles

We can obtain the action for the monopoles correspond-
ing to the mean-field Hamiltonian H0 using standard Trotter
decomposition technique and implementing the unitary con-
straint of φr field via the Lagrange multiplier term in the path
integral formulation. We note that since A and B monopoles
are decoupled in the mean-field Hamiltonian, their action is
additive:

S0 = SA
0 + SB

0 ,

SA
0 =

∑
k,ω

φ∗
kω,A

[
ω2

2Jzz
+ λ − J±

2

∑
μ>ν

cos(k · (dμ − dν ))

]
φkω,A,

SB
0 =

∑
k,ω

φ∗
kω,B

[
ω2

2Jzz
+ λ − J±

2

∑
μ>ν

cos(k · (dμ − dν ))

]
φkω,B.

(B7)

We can further compute the Green’s function for monopoles
from the above action which is given by Eq. (36) of the main
text.

2. GMFT of monopole dynamics in the π− flux phase

The bare dynamics of the magnetic monopoles in the π -
flux phase can be obtained by choosing a suitable gauge
fixing condition shown in Fig. 18. It can further be written as
Ar,μ = εμQ · r with εμ = {0, 1, 1, 0} and Q =

√
3π
2 (1, 0, 0).

Similar to the zero-flux case, the monopoles can hop only
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inside the A or B sublattice. Hence, the monopole dynamics can be expressed in terms of the following action:

Sπ = SA
π + SB

π ,

SA
π =

∑
k,ω

(φ∗
kω,A1 φ∗

kω,A2)

(
ω2

2Jzz
+ λ + J±

4 dA(k) J±
4 fA(k)

J±
4 f ∗

A (k) ω2

2Jzz
+ λ − J±

4 dA(k)

)(
φkω,A1

φkω,A2

)
, (B8)

SB
π =

∑
k,ω

(φ∗
kω,B1 φ∗

kω,B2)

(
ω2

2Jzz
+ λ + J±

4 dB(k) J±
4 fB(k)

J±
4 f ∗

B (k) ω2

2Jzz
+ λ − J±

4 dB(k)

)(
φkω,B1

φkω,B2,

)
(B9)

where

dA(k) = 2(cos (k · d1) + cos (k · (d1 − d3))),

fA(k) = 1 + e−ik·d1 + e−ik·d2 − e−ik·d3 + e−ik·(d1+d2 ) − e−ik·(d3−d1 ) + e−ik·(d2+d3 ) + e−ik·(d2+d3−d1 ),

dB(k) = 2(cos (k · d1) − cos (k · (d1 − d3))),

fB(k) = 1 − e−ik·d1 + e−ik·d2 + e−ik·d3 + e−ik·(d1+d2 ) − e−ik·(d3−d1 ) + e−ik·(d2+d3 ) + e−ik·(d2+d3−d1 ).

λ is the global Lagrange multiplier introduced to take into account the constraint φ†
r φr = 1. (A1, A2, B1, B2) denotes four

sublattices of the enlarged unit cell. The above action can further be diagonalized to obtain the dispersion for four monopole
band,

επ
A±(k) =

√
2Jzz

(
λ ± J±

4

√
|dA(k)|2 + | fA(k)|2

)
,

επ
B±(k) =

√
2Jzz

(
λ ± J±

4

√
|dB(k)|2 + | fB(k)|2

)
, (B10)

where A ± (B±) denote two bands made out of linear combination of A1 and A2 (B1 and B2) to diagonalize the SA
π (SB

π ). Since
A and B monopoles do not mix under the above dynamics, their bands are degenerate:

επ
A±(k) = επ

B±(k) ≡ επ
±(k). (B11)

We can compute different Green’s function for monopole from the above action of the monopoles. The Green’s function is
defined as

[
Gπ

φ

]
μν

(k, A/B, iω) =
∫ β

0
dτ 〈T̂ (φk,A/B,μ(τ )φ†

k,A/B,ν (0))〉eiωτ , (B12)

where, μ, ν = 1, 2. The different Green’s functions are given by

[
Gπ

φ

]
11

(k, A/B, iω) = Jzz√|dA/B(k)|2 + | fA/B(k)|2
[√|dA/B(k)|2 + | fA/B(k)|2 + dA/B(k)

ω2 + (επ+(k))2 +
√|dA/B(k)|2 + | fA/B(k)|2 − dA/B(k)

ω2 + (επ−(k))2

]
,

[
Gπ

φ

]
22

(k, A/B, iω) = Jzz√|dA/B(k)|2 + | fA/B(k)|2
[√|dA/B(k)|2 + | fA/B(k)|2 − dA/B(k)

ω2 + (επ+(k))2 +
√|dA/B(k)|2 + | fA/B(k)|2 + dA/B(k)

ω2 + (επ−(k))2

]
,

[
Gπ

φ

]
12

(k, A/B, iω) = Jzz fA/B(k)√|dA/B(k)|2 + | fA/B(k)|2
[

1

ω2 + (επ+(k))2 − 1

ω2 + (επ−(k))2

]
. (B13)

3. The GMFT vertex functions for magnetoelastic coupling in zero-flux case

The vertex functions for the magnetic monopole-phonon interaction vertices of Eqs. (20)and (21) are given by

α
(e)
k = 1

2

∑
μ

eik·dμ , α
(t2 )
1,k = 1

4
(−eik·d0 + eik·d1 + eik·d2 − eik·d3 ),

α
(t2 )
2,k = ei π

3

4
(−eik·d0 − eik·d1 + eik·d2 + eikd3 ), α

(t2 )
3,k = e−i π

3

4
(eik·d0 − eik·d1 + eik·d2 − eik·d3 ). (B14)
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APPENDIX C: VIBRATIONAL RAMAN SPECTROSCOPY

A necessary condition for a phonon mode to be Raman
active is that it should have even parity and the phonon con-
tribution to the polarizability tensor (�) should oscillate as
a function of time. For small amplitude of vibration, we can
expand � as powers of normal modes [116],

� = �0 + ζ(ρ) · [∇ζ(ρ)�]
ζ(ρ)=0, (C1)

where ζ(ρ) is the phonon modes belonging to ρ irreducible
representation of the symmetry group. �0 is the time inde-
pendent part, hence do not contribute to the Raman scattering.
The Raman coupling in Eq. (28) is then given by [116]

HRaman =
∑

p

∫
dk dk′[∇

ζ
(ρ)
p

�
]i j

ζ
(ρ)
p =0

ωin
k ωout

−k′

× ζ (ρ)
p (k − k′)Ain

i (k)Aout
j (k′), (C2)

where A(r) is the vector potential corresponding to the ex-
ternal electric field, Eext(r), – again not to be confused with
emergent electromagnetism. ∇ζ(ρ)� forms a set of symmetric
3 × 3 matrices which have the same symmetry properties as
ζ(ρ). In other words, this set forms an irreducible representa-
tion (ρ) of the symmetry group. The detailed structure of the
matrices are given below.

1. Raman matrices

Structures of the Raman matrices are obtained by de-
composing six dimensional space of second order [116]
polynomials(x2, y2, z2, xy, yz, zx) into the irreducible repre-
sentations of symmetry group Td and constructing the Hessian
matrices for different components. The decomposition is as
follows:

a1 ⊕ e ⊕ t2,

where the basis for the irreducible subspaces are

a1 : x2 + y2 + z2, (C3)

e : (2z2 − x2 − y2, x2 − y2), (C4)

t2 : (xy, yz, zx). (C5)

Hence, the relevant polarizability matrices of the Raman scat-
tering are given by

eg :
[∇

ζ
(e)
1,g

�
]
ζ

(e)
1,g=0 ∝

⎛
⎜⎝

−1 0 0

0 −1 0

0 0 2

⎞
⎟⎠,

[∇
ζ

(e)
2,g

�
]
ζ

(e)
2,g=0 ∝

⎛
⎜⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟⎠; (C6)

FIG. 19. Self-energy bubble diagrams for phonon in π -flux
phase. The label Aμ → Aν (Bα → Bβ) implies the Aμ (Bα)
monopole is created in the left vertex and Aν (Bβ) monopole is
annihilated at the right vertex. μ, ν, α, β = 1, 2, hence, there are 16
possible distinct diagrams.

t2g :
[∇

ζ
(t2 )
1,g

�
]
ζ

(t2 )
1,g =0 ∝

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠,

[∇
ζ

(t2 )
2,g

�
]
ζ

(t2 )
2,g =0 ∝

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, (C7)

[∇
ζ

(t2 )
3,g

�
]
ζ

(t2 )
3,g =0 ∝

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠.

APPENDIX D: RAMAN RESPONSE IN π-FLUX PHASE

1. Vertex functions of magnetoelastic coupling

The vertex functions (Mμν

k ) of the magnetic monopole-
phonon coupling in the π -flux phase [see in Eq. (39)] are
given by

M11
k = 2(1 + eik·d1 ), M12

k = 2(1 − eik·(d1−d3 ) ),

M21
k = 2(eik·(d1+d2 ) + eik·(d2+d3 ) ), (D1)

M22
k = 2(1 − eik·d1 ).

2. Self-energy of phonons due to magnetic monopoles

Similar to the zero flux case, the self-energy can be ob-
tained by calculating the bubble diagrams appearing in the
second-order perturbation theory. The only difference is that
due to the larger unit cell, 16 nonequivalent diagrams (see
Fig. 19) need to be taken care of.

For convenience, we introduce the following convention:
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We now compute all the distinct contributions to the phonon self-energy. In the following equations, we group the distinct
diagrams along with their Hermitian conjugate:(

A1 → A1
B1 → B1

)
=

∑
k

M11
k M11

−kJ2
zz√

|dA|2 + | fA|2
√

|dB|2 + | fB|2 [(
√

|dA|2 + | fA|2 + dA)(
√

|dB|2 + | fB|2 + dB)W++

+ (
√

|dA|2 + | fA|2 + dA)(
√

|dB|2 + | fB|2 − dB)W+− + (
√

|dA|2 + | fA|2 − dA)

× (
√

|dB|2 + | fB|2 + dB)W−+ + (
√

|dA|2 + | fA|2 − dA)(
√

|dB|2 + | fB|2 − dB)W−−],(
A1 → A1
B1 → B2

)
+

(
A1 → A1
B2 → B1

)
=

∑
k

Re
(
M11

k M12
−k fB(k)

)
J2

zz√
|dA|2 + | fA|2

√
|dB|2 + | fB|2 [(

√
|dA|2 + | fA|2 + dA)(W++ − W+−)

+ (
√

|dA|2 + | fA|2 − dA)(W−+ − W−−)],(
A1 → A1
B2 → B2

)
=

∑
k

M12
k M12

−kJ2
zz√

|dA|2 + | fA|2
√

|dB|2 + | fB|2 [(
√

|dA|2 + | fA|2 + dA)(
√

|dB|2 + | fB|2 − dB)W++

+ (
√

|dA|2 + | fA|2 + dA)(
√

|dB|2 + | fB|2 + dB)W+− + (
√

|dA|2 + | fA|2 − dA)

× (
√

|dB|2 + | fB|2 − dB)W−+ + (
√

|dA|2 + | fA|2 − dA)(
√

|dB|2 + | fB|2 + dB)W−−](
A1 → A2
B2 → B1

)
+

(
A2 → A1
B1 → B2

)
=

∑
k

J2
zz

(
M12

k M21
−k f ∗

A fB + M21
k M12

−k fA f ∗
B

)
√

|dA|2 + | fA|2
√

|dB|2 + | fB|2 [W−− − W−+ − W+− + W++]

(
A2 → A2
B2 → B2

)
=

∑
k

M22
k M22

−kJ2
zz√

|dA|2 + | fA|2
√

|dB|2 + | fB|2 [(
√

|dA|2 + | fA|2 + dA)(
√

|dB|2 + | fB|2 + dB)W−−

+ (
√

|dA|2 + | fA|2 + dA)(
√

|dB|2 + | fB|2 − dB)W−+ + (
√

|dA|2 + | fA|2 − dA)

× (
√

|dB|2 + | fB|2 + dB)W+− + (
√

|dA|2 + | fA|2 − dA)(
√

|dB|2 + | fB|2 − dB)W++](
A2 → A2
B1 → B2

)
+

(
A2 → A2
B2 → B1

)
=

∑
k

Re
(
M21

k M22
−k fB(k)

)
J2

zz√
|dA|2 + | fA|2

√
|dB|2 + | fB|2 [(

√
|dA|2 + | fA|2 + dA)(W−+ − W−−)

+ (
√

|dA|2 + | fA|2 − dA)(W++ − W+−)],(
A1 → A2
B1 → B2

)
+

(
A2 → A1
B2 → B1

)
=

∑
k

J2
zz

(
M11

k M22
−k fA f ∗

B + M11
−kM22

k f ∗
A fB

)
√

|dA|2 + | fA|2
√

|dB|2 + | fB|2 [W−− − W−+ − W+− + W++].

There are five other distinct diagrams which can be obtained by replacing A → B in the above diagrams (more specifically,
second, third, and sixth expressions). Adding up all the above contributions, we obtain

�π
ζ (e) (q =0, i�) = J (e)2

sp

N

∑
k

[P1(k)W++(k, i�) + P2(k)W−−(k, i�) + P3(k)W+−(k, i�) + P4(k)W−+(k, i�)] (D2)

where P1(k), P2(k), P3(k), P4(k) are real functions of momentum and

Wmn(k, i�) = − 1

β

∑
ω

1

(� + ω)2 + (
επ

m (k)
)2

1

ω2 + (
επ

n (k)
)2 . (D3)

The phonon linewidth is obtained from Eq. (D2) by calculating its imaginary part. Apart from the momentum-dependent form
factors, the contribution is mostly dominated by the four Wmn terms. Calculating their imaginary parts, we obtain

lim
δ→0

Im(W±±(k,� + iδ)) = π (1 + 2n(επ
±(k)))

4επ±(k)2
[δ(� + 2επ

±(k)) − δ(� − 2επ
±(k))],

lim
δ→0

Im(W+−(k,� + iδ)) = Im(W−+(k,� + iδ))

= π (1 + n(επ
+(k)) + n(επ

−(k)))

4επ+(k)επ−(k)
[δ(� + επ

+(k) + επ
−(k)) − δ(� − επ

+(k) − επ
−(k))]

+ π (n(επ
+(k)) − n(επ

−(k)))

4επ+(k)επ−(k)
[δ(� + επ

−(k) − επ
+(k)) − δ(� + επ

+(k) − επ
−(k))]. (D4)
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Substituting the above expressions in Eq. (D2), we obtain the linewidth of the phonon in the π -flux phase due to the phonon-
magnetic monopole coupling which is given in Eq. (41) of the main text.

APPENDIX E: EFFECT OF GAUGE FLUCTUATIONS FOR THE MAGNETIC MONOPOLES

The vertex functions of the photon-magnetic monopole interaction of Eq. (42) are given by

γ
μν
B (k, k′) = e−ik·dμeik′ ·dν − e−ik·dν eik′ ·dμ ,

γ
μν
A (k, k′) = e−ik·(dμ−dν ) − eik′ ·(dμ−dν ). (E1)

Due to the photon-monopole interaction, the interaction vertices of phonon-monopole coupling is modified. The leading order
contribution to the vertex correction obtained from the perturbative expansion is given by

δα(ρ)(q, p, i�, iωm) = − J2
±

16N
3
2

∑
k

∑
μ,ν

(
α

(ρ)
k + α

(ρ)
k+q

)
γ

μ
B (p, k + q)γ ν

A (k,−q + p)
1

β

∑
ωn

Gφ (k + q, B, i� + iωn)

× Dμν (k + q − p, i� + iωn − iωm)Gφ (k, A, iωn), (E2)

where γ
μ
A,B(k, k′) = ∑

ν( �=μ) γ
μν
A,B(k, k′).

To further simplify the above expression, we first perform the frequency summation of the above expression using the
Matsubara method and then the momentum integrals are computed using the several approximations. The monopole band
structure is expanded around the minima at k = 0 up to the first nonzero term,

ε0
k ≈ � + m0k2, (E3)

where m0 is a constant measuring the curvature of the band at k = 0. Further, the vertex functions are also expanded in
momentum and approximated to the leading term to obtain from Eq. (B14),

∣∣α(e)
k

∣∣ ≈ 2, |α(t2 )
k | =

√∑3
p=1

∣∣α(t2 )
p,k

∣∣2
3

≈ k

3
, (E4)

and from Eq. (E1),

γ
μν
A (k, k′) ≈ i(k + k′) · (dν − dμ),

γ
μν
B (k, k′) ≈ i(k + k′) · (dν − dμ). (E5)

We substitute the above expressions in Eq. (E2). Due to Raman criterion, only q = 0 limit is considered. Further, we set
� = ωm = 0 to find the frequ0independent correction. We redefine the notations as

δα(e)(0, p, 0, 0) = δα(e)
p ,

δα(t2 )(0, p, 0, 0) = δα(t2 )
p .

Finally, applying all the approximations described above, the leading corrections to the vertex functions are obtained, which
is given in Eqs. (43).

APPENDIX F: SPIN-PHONON INTERACTION: QUADRATIC IN SPIN OPERATORS

The detailed form of the quadratic spin-phonon coupling, described in Eq. (49), is given by

H1 =
∑
r,μ,ν

(
∂Jzz

∂Ra
μν

δa
μν (r)sz

r,r+eμ
sz

r,r+eν
− ∂J±

∂Ra
μν

δa
μν (r)

(
s+

r,r+eμ
s−

r,r+eν
+ H.c.

))
, (F1)

H2 =
∑
r,μ,ν

(
1

2

∂2Jzz

∂Ra
μν∂Rb

μν

δa
μν (r)δb

μν (r)sz
r,r+eμ

sz
r,r+eν

− 1

2

∂2J±
∂Ra

μν∂Rb
μν

δa
μν (r)δb

μν (r)
(
s+

r,r+eμ
s−

r,r+eν
+ H.c.

))
. (F2)

Further, the above interactions can be rewritten in terms of the fractionalized degrees of freedom in a QSL phase using the
parton decomposition of spins described in Sec. IV. Within GMFT approximation, it is given by

H1 =
∑
r,μ,ν

(
∂Jzz

∂Ra
μν

δa
μν (r, A)Br,μBr,ν + ∂Jzz

∂Ra
μν

δa
μν (r, B)Br−dμ,μBr−dν,ν

− ∂J±
∂Ra

μν

δa
μν (r, A)

(
φ

†
r+dν,B

φr+dμ,B + H.c.
) − ∂J±

∂Ra
μν

δa
μν (r, B)

(
φ

†
r−dν,A

φr−dμ,A + H.c.
))

, (F3)
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H2 =
∑
r,μ,ν

(
1

2

∂2Jzz

∂Ra
μν∂Rb

μν

δa
μν (r, A)δb

μν (r, A)Br,μBr,ν + 1

2

∂2Jzz

∂Ra
μν∂Rb

μν

δa
μν (r, B)δb

μν (r, B)Br−dμ,μBr−dν,ν

−1

2

∂2J±
∂Ra

μν∂Rb
μν

δa
μν (r, A)δb

μν (r, A)
(
φ

†
r+dν,B

φr+dμ,B + H.c.
)

−1

2

∂2J±
∂Ra

μν∂Rb
μν

δa
μν (r, B)δb

μν (r, B)
(
φ

†
r−dν,A

φr−dμ,A + H.c.
))

. (F4)

APPENDIX G: HAMILTONIAN AND FORM FACTORS
IN THE PARAMAGNETIC PHASE

For the convenience of calculation, we express the Hamil-
tonian given in Eqs. (6) and (7) in momentum space
representation:

H (e)
sp = J (e)

sp

∑
k

3∑
μ=0

(
ζ

(e)
1,g (k)sx

μ(−k) + ζ
(e)
2,g (k)sy

μ(−k)
)

× (1 + eik·dμ ), (G1)

H (t2 )
sp = J (t2 )

sp

∑
k

3∑
p=1

∑
α=x,y

3∑
μ=0

L(t2 )
p,α,μζ (t2 )

p,g (k)sα
μ(−k)

× (1 + eik·dμ ). (G2)

From the above Hamiltonians, we can obtain the self-energy
of the phonon using a similar kind of perturbation theory as
applied to the QSL phase. Again, the first nonzero contribu-
tion comes in the second order [O(J (ρ)2

sp )] in the perturbative
series and is given in Eq. (50) of the main text. The form
factors in Eq. (50) are given by

η(e)
μν (q) = 1 + eiq·dν + e−iq·dμ + eiq·(dμ−dν ),

η(t2 )
μν,α (q) = (1 + eiq·dν + e−iq·dμ + eiq·(dμ−dν ) )

×
3∑

p=1

L(t2 )
p,α,μL(t2 )

p,α,ν . (G3)

APPENDIX H: PHONON MEDIATED LOUDON-FLEURY
VERTEX

The phonon-mediated Loudon-Fleury vertex between ex-
ternal photons and magnetic monopoles (emergent photons) is
obtained by integrating out the phonons from Eqs. (20), (21),
and (C2) [Eqs. (24) and (C2)]. The leading order interaction
vertices are then given by

Hφ
LF = 〈HRamanHsp〉ζ , (H1)

HA
LF = 〈

H2
RamanHphonon−photon

〉
ζ

− 〈
H2

Raman

〉
ζ
〈Hphonon−photon〉ζ , (H2)

where 〈Ô〉ζ =
∫

Dζ Ô e−βHζ∫
Dζ e−βHζ

and Hsp = H (e)
sp + H (t2 )

sp . Simplify-

ing the above expressions, we get

Hφ
LF = J (ρ)

sp

2ω0

∫ 4∏
i=1

d3ki[∇ζ (ρ)�]i j
ζ (ρ)=0ω

in
k1

ωout
k2

(
αk3 + αk4

)
× Ain

i (k1)Aout
j (k2)φ†

k3,A
φk4,B

× δ(k1 + k2 + k3 + k4) + H.c., (H3)

HA
LF = 1

2ω2
0

∫ 8∏
i=1

d3ki[∇ζ (ρ)�]i j
ζ (ρ)=0[∇ζ (ρ)�]mn

ζ (ρ )=0

× Gαβ (k1, k2, k3, k4)Aα
k3

Aβ

k4
Ain

i (k5)

× Aout
j (k6)Ain

m (k7)Aout
n (k8)

× δ(k5 − k6 + k1)δ(k7 − k8 + k2), (H4)

where the optical phonon band structure is approximated
as ωq ≈ ω0. Clearly, the above contributions are suppressed
by the optical phonon energy scale compared to the usual
Loudon-Fleury vertex [87]. Feynman diagram for Eqs. (H3)
and (H4) are shown in Figs. 16 and 20, respectively.

FIG. 20. Feynman diagram for phonon-mediated Loudon-Fleury
vertex for emergent photons.
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