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Critical fields of superconductors with magnetic impurities
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The upper critical field Hc2, the field Hc3 for nucleation of the surface superconductivity, and the thermo-
dynamic field Hc are evaluated within the weak-coupling theory for the isotropic s-wave case with arbitrary
transport, and pair-breaking scattering. We find that, for the standard geometry of a half-space sample in a
magnetic field parallel to the surface, the ratio R = Hc3/Hc2 is within the window 1.55 � R � 2.34, regardless
of temperature or the scattering type. While the nonmagnetic impurities tend to flatten the R(T ) variation,
magnetic scattering merely shifts the maximum of R(T ) to lower temperatures. Surprisingly, while reducing the
transition temperature, magnetic scattering has a milder impact on R than nonmagnetic scattering. The surface
superconductivity is quite robust; in fact, the ratio R ≈ 1.7 even in the gapless state. We used Eilenberger’s
energy functional to evaluate the condensation energy Fc and the thermodynamic critical field Hc for any
temperature and scattering parameters. By comparing Hc2 and Hc, we find that, unlike transport scattering, the
pair-breaking pushes materials toward type-I behavior. We find a peculiar behavior of Fc as a function of the
pair-breaking scattering parameter at the low-T transition from gapped to gapless phases, which has recently
been associated with the topological transition in the superconducting density of states.
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I. INTRODUCTION

The question of the critical fields Hc2 and Hc3 is practically
relevant since it is directly related to the critical temperature
Tc(H ) where superconductivity emerges in the applied mag-
netic field H . In type-II materials at a fixed T , in the increasing
field, the vortex phase in the bulk is destroyed at Hc2, but
the superconductivity may survive in a coherence-length-deep
surface layer up to Hc3.

In recent decades, the interest in limiting fields was fur-
ther fueled by the significant progress in superconducting
resonator cavities used in particle accelerators [1,2] and even
more recently in the hardware for superconducting circuits-
based quantum computing [3,4]. Of particular interest are
effects of disorder that influence cavities quality factors and
superconducting qubit coherence times [1,5].

The ratio R = Hc3/Hc2 for the applied field parallel to the
surface of the isotropic superconducting half-space has been
evaluated by Saint-James and DeGennes (SJDG) [6] by solv-
ing the linearized Ginzburg-Landau (GL) equations for the
order parameter � subject to the boundary condition of a van-
ishing normal gradient ∇n� = 0 at the sample surface. Their
seminal result is R = 1.695. Since then, surface superconduc-
tivity has been observed in many experiments, but the ratio
R varied depending on surface quality, sample anisotropy,
setup geometry, scattering, and temperature [7–11]. Theo-
retically, effects of material anisotropy have been discussed
in Ref. [12], where it was shown that, for sufficiently high
anisotropy for some surface orientation, the ratio R may fall
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under unity. In other words, surface superconductivity does
not exist.

An interesting development came recently, showing that,
within microscopic Bardeen-Cooper-Schrieffer (BCS) the-
ory, R(T ) has a maximum at intermediate temperatures
which, however, disappears with increasing transport scatter-
ing [13]. In this contribution, we extend this study to the case
when both magnetic and nonmagnetic scattering channels
are present. The discussion is limited to isotropic material
with an isotropic Fermi surface and s-wave order parameter.
Given that Hc2 is enhanced by nonmagnetic transport scatter-
ing whereas it is suppressed by magnetic impurities [14], the
question of the effect of magnetic impurities on Hc3 is not
obvious.

II. THE PROBLEM OF Hc2 AND Hc3

Consider an isotropic material with both magnetic and non-
magnetic scatterers; τm and τ are the corresponding average
scattering times. The problem of the second-order phase tran-
sition at Hc2 and Hc3 is addressed on the basis of Eilenberger’s
quasiclassical version of Gor’kov’s equations for normal and
anomalous Green’s functions g and f . At the second-order
phase transition, g = 1, and we are left with a linear equa-
tion for f [15,16]:

(2ω+ + v · �) f = 2�

h̄
+ 〈 f 〉

τ− , (1)

ω+ = ω + 1

2τ+ ,

1

τ± = 1

τ
± 1

τm
. (2)
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Here, v is the Fermi velocity, � = ∇ + 2π iA/φ0 with the
vector potential A and the flux quantum φ0. Also, �(r) is
the order parameter; Matsubara frequencies are defined by
ω = πT (2n + 1) with an integer n; in the following (except
some final results), we set h̄ = kB = 1; 〈...〉 stand for averages
over the Fermi surface. Solutions f of Eq. (1) along with �

should satisfy the self-consistency equation:

�

2πT
ln

Tc0

T
=

∑
ω>0

(
�

ω
− 〈 f 〉

)
, (3)

where Tc0 is the critical temperature in the absence of pair-
breaking scattering.

Helfand and Werthamer [17] had shown that, at the second-
order phase transition at Hc2, the order parameter satisfies a
linear equation

�2� = k2�. (4)

It was realized later that this equation holds at any second-
order transition from normal to superconducting state away
from Hc2, e.g., in proximity systems or at Hc3, provided
k2 = −1/ξ 2 satisfies the self-consistency equation of the
theory [18,19]. It turned out that the coherence length so
evaluated depends not only on temperature and scattering but
also on the magnetic field (except in the dirty limit or near
Tc). In this sense, Eq. (4) in fact differs from the linearized
GL equation that forms the basis for SJDG prediction of the
surface superconductivity at Hc3 [6]. It is worth noting that, if
ξ would have been H independent, the ratio Hc3/Hc2 would
have been a constant equal to 1.695 at all temperatures. As
was shown in Ref. [13], this is not so (except for the dirty
limit).

Thus, the order parameters at both Hc2(T ) and Hc3(T )
satisfy the same Eq. (4). The difference, however, comes from
boundary conditions: �(r) should be finite everywhere for
Hc2, whereas ∇n�(r) = 0 at the sample surface for Hc3 (∇n

is the gradient of � along the normal to the sample surface).
At any second-order phase transition, � → 0, and one can

deal with linear Eq. (1). Repeating the derivation of Ref. [18],
one finds (see the outline in Appendix A)

〈 f 〉 = �
2τ−S

2ω+τ− − S
, (5)

where S is given by a series:

S =
∞∑

j,m=0

(−q2) j

j!(2m + 2 j + 1)

[
(m + j)!

m!

]2(
�+

β+

)2m+2 j

×
m∏

i=1

[
k2 + (2i − 1)q2

]
, q2 = 2πH

φ0
, (6)

where

�+ = vτ+, β+ = 1 + 2ωτ+. (7)

This sum can be transformed to an integral, which is more
amenable for the numerical work [19]:

S =
√

π

u

∫ 1

0

dη (1 + η2)σ

(1 − η2)σ+1

[
erfc

η√
u

− cos(πσ )erfc
1

η
√

u

]
.

(8)

Here,

u =
(

q�+

β+

)2

= h

[P+ + t (2n + 1)]2
, (9)

where the reduced field h, temperature t , and the scattering
parameters P± are introduced:

h = H
h̄2v2

2πφ0T 2
c0

, t = T

Tc0
, P± = h̄

2πTc0τ± (10)

(h̄ is written explicitly to stress that h and P± are dimension-
less). Note that P± = P ± Pm, where

P = h̄v

2πTc0τ
, Pm = h̄v

2πTc0τm
. (11)

The parameter σ is defined as

σ = 1

2

(
k2

q2
− 1

)
= −1

2

(
1

q2ξ 2
+ 1

)
. (12)

At Hc2, σ = −1 and

S(u) =
√

π

u

∫ 1

0

dη

1 + η2

[
erfc

η√
u

+ erfc
1

η
√

u

]
. (13)

Near Tc, the order parameter satisfies the linearized GL
equation −ξ 2�2� = �, and at Hc3, SJDG obtained ξ 2q2 =
1.695 [6].

Therefore, at Hc3, we get

σ = −1

2

(
1

1.695
+ 1

)
≈ −0.795. (14)

Thus, to calculate Hc3(t, P, Pm ) with the help of Eqs. (3)
and (5), one has to use S of Eq. (8) with σ = −0.795.

For numerical work, we recast the self-consistency equa-
tion to the dimensionless form:

− ln t =
∞∑

n=0

[
1

n + 1
2

− 2tS

2t
(
n + 1

2

) + P+ − SP−

]
. (15)

The calculated ratio R = Hc3/Hc2 as function of the re-
duced temperature T/Tc0 for a few values of scattering
parameters P and Pm is shown in the upper panel of Fig. 1;
the lower panel shows the same results plotted vs T/Tc. One
can see that the maximum of R shifts to lower T with in-
creasing transport scattering P. Effects of magnetic scattering
are mostly in suppressing the actual critical temperature Tc

and larger values of R at low temperatures as compared with
purely transport scattering.

It was shown in Ref. [13] that, in the absence of magnetic
impurities and a strong transport scattering, the ratio R(T )
flattens, and the T dependence disappears in the dirty limit in
which R(T ) ≈ 1.7 at all T . This is due to the disappearing
field dependence of the coherence length ξ [19] in this limit.
It is thus instructive to see that the magnetic scattering does
not change this qualitatively, see the upper panel of Fig. 2.

Hence, magnetic impurities do not drastically change the
behavior of Hc3 relative to Hc2. We find that, within the
isotropic s-wave theory, for the standard geometry of a half-
space sample in a field parallel to the surface, the ratio R =
Hc3/Hc2 is within the window 1.55 � R � 2.34, regardless of
temperature and magnetic or nonmagnetic scattering.
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FIG. 1. (a) R(P, Pm ) = Hc3/Hc2 vs T/Tc0 for the scattering pa-
rameters indicated. (b) The same plotted vs the actual reduced
temperature T/Tc(Pm ).

On the dirty side (with strong transport scattering), the
maximum of R(T ) moves to T ≈ 0, as is seen in the lower
panel of Fig. 2. Effects of pair breaking here are not drastic;
even for the gapless situation (0.128 < Pm < 0.14, [16]), we
still have R ≈ 1.7.

III. TYPE OF SUPERCONDUCTIVITY AND
MAGNETIC IMPURITIES

The basic Eqs. (1) and (3) can be obtained minimizing the
energy functional as is done in Eilenberger’s paper [15] for
exclusively transport scattering:

 = N (0)

[
�2 ln

T

Tc0
+ 2πT

∑
ω>0

(
�2

ω
− 〈I〉

)]
, (16)

I = 2� f + 2ω(g − 1) + f 〈 f 〉
2τ− + g〈g〉 − 1

2τ+ . (17)

FIG. 2. (a) R(T ) = Hc3/Hc2 vs T/Tc0 for strong transport scat-
tering and a set of Pm values for magnetic scattering. (b) R vs
pair-breaking scattering parameter Pm at a low reduced temperature
T/Tc(Pm ) = 0.1 for a set of P values of transport scattering. Note:
The maximum Pm possible is 0.1404.

The function g in Eq. (17) is an abbreviation for
√

1 − f 2. The
free energy difference between superconducting and normal
states is obtained by substituting solutions of Eq. (1) in .
Considering the self-consistency equation, we obtain for the
condensation energy density Fc = Fn − Fs:

Fc

2πT N (0)
=

∑
ω>0

〈
� f + 2ω(g − 1) + f 〈 f 〉

2τ− + g〈g〉 − 1

2τ+

〉
.

(18)

This expression reduces to known BCS results for isotropic
s-wave cases with or without magnetic impurities [20]. For
the uniform zero-field state, the averaging brackets can be
omitted, and the scattering part is − f 2/τm. Introducing the
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dimensionless order parameter δ = �/2πTc0 one has

Fc

4π2T 2
c0N (0)

= t
∞∑

n=0

[
δ f + t (2n + 1)(g − 1) − Pm f 2

]
.

(19)

The thermodynamic critical field follows

Hc =
√

8πFc = {
32π3N (0)T 2

c0

}1/2
U (t ), (20)

where

U (t ) =
{

t
∞∑

n=0

[δ f + t (2n + 1)(g − 1) − Pm f 2]

}1/2

. (21)

Hence, we have the dimensionless thermodynamic field:

hc = Hch̄2v2

2πφ0T 2
c0

= h̄2v2

φ0Tc0

√
8πN (0)U (t ). (22)

The prefactor by U , which is a characteristic of the clean
material, can be expressed in terms of the GL parameter κ0 for
the clean limit [21]:

κ0 = 3φ0Tc0

h̄2v2
√

7ζ (3)πN (0)
. (23)

Thus, we obtain

hc(t, Pm) = 3

κ0

√
8

7ζ (3)
U (t, Pm). (24)

To evaluate the condensation energy in Eq. (19), one first
must find f and δ for given t and Pm. For the uniform zero-
field state, these are solutions of the Eilenberger equation for
f and of the self-consistency equation. In our notation, this
system of two equations for f (t, Pm) and δ(t, Pm) reads√

1 − f 2(δ − Pm f ) − t
(
n + 1

2

)
f = 0, (25)

−δ ln t =
∞∑

n=0

(
δ

n + 1
2

− t f

)
. (26)

The system can be solved numerically with the help of Wol-
fram Mathematica or MATLAB. Evaluation of hc(t, Pm) is
then straightforward.

Results for hc and hc2 are shown in the left panel of Fig. 3
for the clean case. For the parameter κ = 0.5, we have type-I
behavior, while type II is realized for κ = 1 and 2, as expected
since the boundary value is κ0 = 1/

√
2 ≈ 0.7. The effect of

pair-breaking scattering is nontrivial; to see this, we show the
case of exclusively pair-breaking scattering, in which for both
κ = 0.5 and 1, the material behaves as type I since hc > hc2.

One may say that pair-breaking scattering pushes materials
toward type I, the conclusion we arrived at in Ref. [22] in a
different manner.

IV. SUMMARY

We have studied the effects of transport and pair-breaking
scattering on the upper critical field Hc2, the thermodynamic
critical field Hc, and the nucleation field Hc3 of surface super-
conductivity for the field parallel to the plane surface of the
half-space isotropic sample. We did not touch on questions of

FIG. 3. Hc (thin dashed lines) for the indicated values of the
Ginzburg-Landau parameter κ0 and Hc2 (thick red line) in units
2πφ0T 2

c0/h̄2v2 vs T/Tc0. (a) Clean case P = Pm = 0. (b) Strong
magnetic scattering Pm = 0.1, in the absence of potential scattering
P = 0. When a dashed blue line is above the solid red line, the
material is a type-I superconductor.

surface roughness, surface curvature, inhomogeneous distri-
bution of impurities [5], material anisotropy [12], etc.

Whereas Hc2 is suppressed by pair-breaking scattering,
Hc3 is found to be suppressed as well so that the ratio R =
Hc3/Hc2 is within the window 1.55 � R � 2.34 regardless
of temperature or magnetic or nonmagnetic scattering. We
find that the magnetic impurities do not qualitatively change
the behavior of the ratio R with changing temperature and
transport scattering: R(T ) is equal to the SJDG value 1.695
at Tc but increases on cooling, goes through a maximum at
intermediate temperatures, and then drops to a P-dependent
value at T = 0 [13]. The addition of magnetic impurities does
not change this qualitative behavior, the suppression of the
critical temperature notwithstanding.

The thermodynamic critical field Hc along with the
condensation energy is also suppressed by pair-breaking scat-
tering, but depending on material parameters and temperature,
the speed of this suppression could be larger or smaller than
that of Hc2. On the other hand, the value of Hc relative to Hc2 is
crucial for the type of emerging superconductivity: type I for
Hc > Hc2and type II for Hc < Hc2. A possibility of changing
the type of material superconductivity by changing the con-
centration of magnetic impurities has also been discussed in
Ref. [22].

The summary of our results for the critical fields at a low
temperature is given in Fig. 4.

Using our routine of calculating the condensation energy,
we looked at the phase transition between gapped and gapless
superconductivity; the question recently attracted the atten-
tion of the community. We found that the third derivative
of the free energy with respect to the pair-breaking parame-
ter has a singular discontinuous jump at T = 0 predicted in
Refs. [23,24]. The transition, however, broadens at finite T ,
see Appendix B.

We mention yet another example of the second-order phase
transition that can be treated within the same formal scheme
as Hc3. This is the problem of nucleation of superconductivity
in thin films in a parallel applied field [19]. The boundary
condition ∇n�(r) = 0 should now be obeyed at both film
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FIG. 4. The summary of our results for Hc2(P, Pm ) (top left),
Hc3(P, Pm ) (top right), R(P, Pm ) = Hc3(P, Pm )/Hc2(P, Pm ) (lower
left), and the ratio Hc2(P, Pm )/Hc(P, Pm ) (lower right) at the same
reduced temperature T/Tc(Pm ) = 0.1. All fields are in units of
2πφ0T 2

c0/h̄2v2.

surfaces, and the emerging state, being physically like that of
the surface superconductivity of SJDG, can even be nucleated
at T > Tc at a nonzero magnetic field. The Tc(H ) enhance-
ment in this geometry had been observed [25,26], but a careful
investigation of this intriguing possibility is still to be done.
Finally, we are unaware of experimental studies of Hc3 in
superconducting materials with magnetic impurities. Perhaps,
this paper will motivate further research.
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APPENDIX A: THE SUM S IN THE PRESENCE OF
MAGNETIC IMPURITIES

The solution f of Eq. (1) can be written as

f = (2ω+ + v�)−1
( F

τ− + 2�
)

=
∫ ∞

0
dρ exp[−ρ(2ω+ + v�)]

( F

τ− + 2�
)
. (A1)

Here, F = 〈 f 〉. Taking the Fermi surface average, we get

F = 1

τ−

∫ ∞

0
dρ exp(−2ω+ρ)〈exp(−ρv�)〉(F + 2�τ−).

(A2)

The term 〈...〉 does not contain the scattering parameters;
hence, it is the same as that calculated in Ref. [18] for the
clean case:

〈exp(−ρv�)F̃ 〉

=
∑
m, j

(−q2) j

(m!)2 j!

(2μ)!!

(2μ + 1)!!

(ρv

2

)2μ

(�+)m(�−)mF̃ . (A3)

Here, F̃ = F + 2�τ−, μ = m + j, and �± = �x ± i�y. Af-
ter integrating over ρ, one obtains from Eq. (A2)

F = 1

2ω+τ−
∑
m, j

(−q2) j

j!(2μ + 1)

(
μ!

m!

)2(
�+

β+

)2μ

× (�+)m(�−)mF̃ ,

�+ = vτ+, β+ = 1 + 2ωτ+. (A4)

One can check that, if no magnetic impurities are involved,
this reduces to Eq. (12) of Ref. [18]. Using commutation prop-
erties of operators �± in the uniform field, one manipulates

(�+)m(�−)mF̃ = F̃
m∏

i=1

[k2 + (2i − 1)q2] (A5)

and obtains

F = �
2τ−S

2ω+τ− − S
,

S =
∑
m, j

(−q2) j

j!(2μ + 1)

(
μ!

m!

)2(
�+

β+

)2μ

×
m∏

i=1

[k2 + (2i − 1)q2]. (A6)

APPENDIX B: CONDENSATION ENERGY VS
PAIR-BREAKING PARAMETER Pm

Recently, the character of the quantum phase transition
between gapped and gapless superconductivity at T = 0 [24]
when the pair-breaking scattering parameter Pm varies through
the value exp(−π/4 − γ )/2 = 0.128 (see, e.g., Ref. [16]).
Remarkably, It turned out that the superconducting density
of states as function of energy ω and of the order parameter
�(Pm) undergoes a topological transition at Pm = 0.128. In
the Ehrenfest classification, the transition can be considered of
the 2.5th order, at which the third derivative of the free energy
∂3Fc/∂P3

m is singular.
Although this question is out of the scope of the main sub-

ject of this paper, we utilize here the functionals in Eqs. (16)
and (17) and the condensation energy Fc(T, Pm) of Eq. (18)
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derived above and valid for any T and any scattering parame-
ters P, Pm.

One should mention that solving a coupled system of
Eqs. (25) and (26) is not a trivial task. The lower the temper-
ature, the more Matsubara summations are required. Initially,
calculations were conducted with the help of Wolfram Mathe-
matica; however, it could not handle the lowest temperatures.
Final calculations were performed within MATLAB that still
required at least 100 000 summations to obtain the reported
results (interested readers are welcome to contact the authors
for further technical details).

As can be seen in Fig. 5, temperature affects the
behavior of the third derivative of the condensation en-
ergy dramatically when compared with the exact result at
T = 0 obtained using Eq. (71) from Maki’s review [20]. Our
calculations confirm the existence of a very sharp discon-
tinuity of ∂3Fc(T, Pm)/∂P3

m at T → 0 at Pm = 0.128 (or at
ζ = h̄/�τm = (2πTc0/�)Pm = 1 in notations of Ref. [23]).
However, we were unable to confirm the claim that the dis-
continuity is preserved at nonzero temperatures [23]; our
calculation shows that the singularity in F ′′′

c (Pm) broadens
with increasing T . In fact, at finite temperatures, the singu-
larity disappears while its trace moves to lower scattering
rates Pm. As expected, this confirms that the critical magnetic
scattering rate for a transition to the gapless state decreases
starting from Pm = 0.128 at T = 0 to lower values at higher
temperatures [27].

FIG. 5. The third derivative of the free energy at a set of low tem-
peratures t = T/Tc0 = 0.05, 0.03, 10−2, 10−3, and 5 × 10−5 vs the
pair-breaking parameter ζ = h̄/�τm = (2πTc0/�)Pm. In addition,
the curve at T = 0 obtained using the exact Eq. (71) from Maki’s
review [20]. ζ = 1 and Pm = 0.128 correspond to the transition to
the gapless state at T = 0. In this calculation, the sum over n was
extended up to Nmax = 105.
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