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Quantum fluctuations in electrical multiport linear systems
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We present an extension of the classical Johnson-Nyquist theorem for multiport classical electrical passive
linear networks by Twiss [J. Appl. Phys. 26, 599 (1955)] to the quantum case. Conversely, we extend the
quantum fluctuation-dissipation result for one port electrical systems to the multiport case, both reciprocal and
nonreciprocal, performing a detailed quantum analysis of the canonical Foster lossless immittance expansions.
Our results are extended to lossy systems by depicting resistive components as continuous limits of purely
lossless lumped-element networks. Simple circuit examples are analyzed, including a linear system lacking a
direct impedance representation.
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I. INTRODUCTION

Electrical circuit models are regularly used to describe a
plethora of phenomena both in the classical [1] and quantum
regimes [2]. Lately, they have become a fundamental tool
in the design of quantum processors made of superconduct-
ing materials, upon which quantum information protocols
are run [3]. Among their immense applications, electric
lumped-element circuits have been employed to understand
fundamental aspects of noise, be it classical [4] or quantum in
nature [5].

In essence, the superconducting chips that form the cores of
the biggest quantum processors [3,6] involve linear and non-
linear systems in mutual interaction. A very common scenario
is that of multiple Josephson-junction-based qubits embedded
in a linear (possibly nonreciprocal) environment. There, the
nonlinear units define input-output ports to complex electro-
magnetic surroundings. Thus, the growing need for multiport
analysis has become a reality. A variety of solutions have been
proposed [7–10], and yet further analysis is required.

On a different line, nonreciprocity is expected to become
a crucial element for future quantum computers, and it is
of fundamental interest by itself in the context of supercon-
ducting circuits. Some steps towards the implementation of
nonreciprocal (and thus necessarily multiport) elements in
the quantum regime have already been taken [11–15]. These
elements are very much desired because they allow nontrivial
quantum information directionality in a chip, and they are part
of the solution to the frequency-crowding problem [16,17].

For any kind of device that works in a quantum regime,
be it reciprocal or nonreciprocal, one-port or multiport, we
require a clear view of how quantum fluctuations appear and
are to be described. At a minimum, a theoretical description of
fluctuations in the ideal models used for these devices is nec-
essary to understand their possible fundamental limitations.
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To date, however, the strongest fundamental result on quan-
tum fluctuations in (superconducting) electrical circuits is the
one presented by Devoret for the one-port case [18,19]. On the
classical side, Twiss [20] gave a nonreciprocal extension of the
Johnson-Nyquist noise theorem [21,22]. Regarding the need
for multiport elements in superconducting circuits, Solgun
et al. [23] have constructed effective Hamiltonian descriptions
for qubits coupled to reciprocal multiport environments.

In this article, we weave together these three strands of in-
quiry, i.e., multiport analysis, nonreciprocity, and the study of
quantum fluctuations, by extending the Johnson-Nyquist noise
theorem for electrical multiport nonreciprocal linear systems
presented by Twiss [20] to the quantum regime in the spirit
of Devoret [18,19] by making use of the multiport version
[24] of Foster’s reactance theorem [25]. Such models are
commonly used to describe various types of quantum noise
[26,27] when a continuous infinite-limit number of harmonic
oscillators is taken, ideas first presented and used by Feyman
and Vernon [5] and Caldeira and Leggett [28]. Even though
our presentation uses the language of electrical circuits, its
applicability extends to all quantum passive linear systems.

The results presented here rely on the partial fraction de-
composition of causal lossless linear responses described by
complex matrix functions with a discrete set of poles; see
Refs. [8,29–31] for related quantum network analysis of loss-
less and lossy linear systems. A proof based on the exact
solution of Heisenberg’s equations is derived in the Appendix.
Under standard conditions for the existence of a continuous
limit of harmonic resonant frequencies, the result extends to
linear systems with energy losses.

The article is structured as follows. In Sec. II we present
the main results, i.e., the general formulas for computing two-
point correlators of flux and charge variables in general linear
systems. We verify the recipe in Sec. III for the fundamental
two-port nonreciprocal harmonic oscillator, comparing it with
a direct computation. The proof is extended to more general
lossless systems in Sec. IV by making use of the multiport
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Foster expansions. In Sec. V, we argue the use of the formulas
in the context of lossy systems, considered as continuous
limits of lossless responses with an infinite number of poles.
In Sec. VI, we exemplify the main results by computing a
flux-flux correlator for a singular network for which no direct
impedance response is at hand. We finish with conclusions
and a perspective on future work in Sec. VII.

II. GENERAL FORMULAS FOR LINEAR SYSTEMS

Equilibrium fluctuation-dissipation relations on linear cir-
cuits are usually obtained from immittance matrices, yet not
all general linear systems accept such a direct description.
This manuscript provides a method to obtain generic relations,
within the context of electric circuits, that can be easily gen-
eralized to other physical linear systems.

In electric circuits, a multiport linear device can always be
described by its scattering matrix parameters S(s) [1], where
s ∈ C [written in Laplace space, with f (s) = ∫ ∞

0 f (t )e−st dt],
i.e., a matrix relating voltages (V ) and currents (I) at its
ports, b = Sa, where bk = (Vk − Z∗

k Ik )/
√

Re{Zk} and ak =
(Vk + ZkIk )/)/

√
Re{Zk} are output and input signals at port k,

respectively. Without loss of generality, we take the reference
impedances to be homogeneous and real, Zk = R ∈ R. We
denote the number of ports by N in what follows.

The scattering response encodes all the information about
the system, e.g., a network is lossless when S is unitary,
or reciprocal (time-reversal invariant) when S = ST . Other
common descriptions of multiport linear systems are the
impedance Z = R(1 − S)−1(1 + S) and admittance Y = Z−1

matrices that relate voltages and currents, or fluxes and
charges at the output ports as �(s) = Z(s)Q(s) [1]. Here, and
in the rest of the article, we assume charges and fluxes at initial
times to be zero. It is, however, well known that immittance
descriptions of linear devices, reciprocal or not, do not always
exist, so that working with S is sometimes unavoidable [1,32].
Mathematically, this is a consequence of voltage and/or cur-
rent constraints at the ports, and it happens whenever the S
matrix has +1 and −1 eigenvalues, corresponding to very
particular phase differences in signals passing through the
system from port i to port j. For example, ideal circulators
with an even number of ports, and an even number of “+1”
and “−1” entries, admit only an S representation [10]. These
situations can be handled properly and exactly, as described
in Sec. VI, due to the universal equivalence of, on the one
hand, scattering responses with, on the other hand, lower-rank
immittances filtered by a network of ideal transformers. In
what follows, we assume that such an analysis has already
been performed.

The main result of this article is the proof that flux and
charge fluctuations at the ports of causal linear (nonreciprocal)
quantum systems at thermal equilibrium are determined by the
immittance matrix responses in the form

〈�(t )�(0)T 〉th = h̄

π

∫
R

dω

ω
[nth(ω) + 1]Z̄H (ω)e−iωt , (1)

〈Q(t )Q(0)T 〉th = h̄

π

∫
R

dω

ω
[nth(ω) + 1]ȲH (ω)e−iωt , (2)

for open and shorted ports, respectively. Here aT = (a1, . . . ),
F̄ = PT

F F̃PF , and F̃ ∈ {Z̃, Ỹ} are the filtered and lower-rank

FIG. 1. Representations of linear systems in terms of scattering
matrices can always be described in terms of an initial network
of ideal (Belevitch) transformers (T) and an (a) impedance Z or
(b) admittance Y response.

immittance response matrices, respectively. PF are (possibly)
rectangular submatrices of the full-rank square transformer
matrices TF ; see Fig. 1.

The full-rank immittance matrices are connected to out-
put ports through ideal Belevitch transformers [33]. Thus,
for the reduced impedance description we have the relation
� = TT

Z �̃, where � and �̃ are the external and internal flux
vectors, respectively, of nontrivial (nonzero) dimensions N
and N − k (0 � k < N). Analogously, the internal and exter-
nal loop charges are related as Q = −TT

Y Q̃ for the reduced
admittance description. PF are constructed from the N − k
rows of their corresponding orthogonal transformation matrix
[24]. In what follows, we do not use the tilde/bar symbols (nor
are the transformers required) for immittance matrices of the
same rank as their scattering responses.

Linear systems representable by their immittance re-
sponses do not require such ideal transformer networks, i.e.,
PF , TF → 1N ; see Ref. [24] for further details. The Hermi-
tian part of the immittance matrices in the general formulas
Eqs. (1) and (2) is defined as FH

i j = (Fi j + F∗
ji )/2, and we have

also used the standard number thermal distribution nth(ω) =
[coth(β h̄ω/2) − 1]/2.

We recall that the immittance responses appearing there are
the causal Fourier representations of the linear systems (s =
−iω + 0+), i.e., Z(ω) ≡ lims→−iω+0+ Z(s), where the abuse of
notation must be properly understood. We further remind the
reader that simple poles at the origin and infinite frequency
do not contribute to the above expressions given that the
open/short conditions at the ports imply that only nontrivial
loops, i.e., those formed by two components of the triad of
capacitors—inductors and/or gyrators—are accounted for; see
below.

Finally, we remark that the conjugated 〈�(t )�(0)T 〉
(〈π(t )π(0)T 〉) and cross 〈�(t )�(0)T 〉 (〈Q(t )π(0)T 〉) corre-
lations to the accessible open node-flux (short loop-charge)
variables can be also easily computed in terms of more general
immittance-gain matrices [34], where � ↔ � (π ↔ Q) are
the conjugated charges (fluxes) to the node-flux (loop-charge)
variables; see the Appendix. It must be remarked, however,
that such conjugated variables are not trivially accessible from
the output port electrical variables.

III. NONRECIPROCAL HARMONIC OSCILLATOR

The core of the proof resides in the analysis of the canon-
ical quantization procedure for the two-port nonreciprocal
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FIG. 2. Fundamental nonreciprocal circuits for the (a)
impedance and (b) admittance representations described by
configuration-space coordinates �i and Qi, and pairs of quantized
conjugated phase-space variables �̃1 ↔ �̃1 and Q̃1 ↔ π̃1,
respectively.

harmonic oscillator (NR HO) circuit, which plays an analo-
gous role to the LC-oscillator for one-port devices [18,19].
As a consequence of the multiport Foster expansion theorem
[24], a general lossless multiport linear response can always
be decomposed into weighted contributions of reciprocal and
nonreciprocal harmonic oscillators, as will be seen in the
following section. Thus, let us first focus on the fundamental
circuits implementing only simple pairs of poles of a non-
reciprocal two-port system in their impedance (admittance)
response, which can be represented by a parallel (series)
connection of capacitors (inductors) and a gyrator [35]; see
Figs. 2(a) and 2(b). We remind the reader that the gyrator rep-
resents the fundamental two-port ideal nonreciprocal lumped
element implementing lossless time-reversal symmetry break-
ing in the form of constraints between voltages (�̇) and
currents (Q̇) at its ports, i.e., Q̇ = Y�̇, where the admittance
matrix is

Y = 1

R

(
0 1

−1 0

)
. (3)

Realistic gyrators and other more complex nonreciprocal de-
vices like circulators are being very intensely researched, with
theoretical and experimental efforts based on active (driven
nonlinearities) [11–13,15] and passive circuits (Hall effect,
magnetically biased Josephson rings) [14,36–38]. Due to the
current-voltage mixing constraints of the gyrator, a parallel ca-
pacitor in one port is seen as a series inductor on the other, and
vice versa [24,35,39]. Thus, the circuits in Fig. 2 implement
nonreciprocal harmonic oscillators [40]. These circuital rep-
resentations will allow us to compute open- (short-) port flux
(charge) fluctuations. It must be emphasized that fluctuations
of conjugated variables to the node fluxes �i (loop charges
Qi) in Fig. 2 through the use of Heisenberg equations do not
match those computed with the dual formulas Eq. (2) [(1)] due
to the open- (short-) circuit condition not being respected.

Making use of the multiport Foster immittance expansion
theorems [24], we will generalize the results of this sec-
tion to general linear systems down below. Going beyond
discrete systems, careful continuous limits may be taken to
derive meaningful results for lossy networks that connect with
Johnson-Nyquist-Twiss classical noise formulas [20].

Let us begin our study by computing flux fluctuations for
the NR HO circuit depicted in Fig. 2(a). The Laplace trans-

form of its impedance response reads

Z�(s) = 1

s2 + �2

(
s/C −R�2

R�2 s/C

)
, (4)

with � = 1/RC, and a possible Lagrangian description writ-
ten in terms of the flux variables at the active nodes is [40]

L = C

2

(
�̇2

1 + �̇2
2

) − 1

2R
[�̇2�1 − �̇1�2], (5)

where R is the fundamental resistance gyration parameter
describing the gyrator, the minimal device breaking time-
reversal symmetry [35]. Observe the formal similarity with
another system in which time reversal invariance is broken,
namely the Landau problem [41,42]. A dual analysis can be
done for Fig. 2(b) with loop-charge variables [43]. Observe
that the constitutive equations of a gyrator are in fact a con-
straint. However, this constraint cannot be properly expressed
in the configuration space of the two flux variables, nor in
the dual configuration space (with charge variables). As we
have shown previously [10,40,44], this obstacle in the descrip-
tion of nonreciprocal systems can be overcome by using the
redundant configuration space above, and eliminating nondy-
namical variables from the Hamiltonian description. Namely,
the full-rank kinetic (capacitive) matrix in Lagrangian (5)
allows for a Legendre transformation �i = ∂L/∂�̇i to obtain
the Hamiltonian

H̃ = (�1 − �2/2R)2

2C
+ (�2 + �1/2R)2

2C
. (6)

We can now apply a symplectic transformation U of the
two pairs of conjugate variables, X̃ = UX , where X =
(�1,�2,�1,�2), to reveal its one-oscillator nature

H = �̃2
1

2C
+ �̃2

1

2CR2
≡quant. h̄�a†a. (7)

Again, this is formally identical with the usual analysis of
the Landau problem [41,42]. From this point on, the non-
dynamical variables �̃2 and �̃2 are consistently set to zero
and discarded from the subsequent analysis. Any constant
value different from zero would also be possible, and it
would amount to a constant shift in the external variables.
The Hamiltonian we have obtained, Eq. (7), is susceptible to
canonical quantization in the standard manner.

One can compute correlators of the external measurable
coordinates, at the ports, and relate them with the internal
degrees of freedom of the system,

〈�1(t )�1(0)〉th = 〈�̃1(t )�̃1(0)〉th

= h̄R

2

[
coth

(
β h̄�

2

)
cos(�t ) − i sin(�t )

]
,

(8)

which is equal to 〈�2(t )�2(0)〉th for symmetry rea-
sons. Equivalently, the cross correlators 〈�1(t )�2(0)〉th =
−R〈�̃1(t )�̃1(0)〉th of the output port variables depend linearly
on position-momentum correlators of the dynamical internal
variables +π/2 out of phase with respect to Eq. (8). The iden-
tification of Eq. (8) amounts, as stated above, to a particular
choice of origin of coordinates for the external variables, and
is operationally well defined.
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C1

L1

1

1

1

C1

C1

R1

Z(s)

FIG. 3. (a) Canonical realization of a nonreciprocal stage
Z1(s) = sA1+B1

s2+�2
1

for (b) a multipole response Z(s) = ∑
k Zk . Capaci-

tors and inductors implement Ak while nonreciprocal devices realize
Bk . Transformer networks Tk generalize the response seen from the
output ports. Impedance responses with an odd number of ports (N)
must have at least one reciprocal stage per harmonic frequency.

It is easy to check now that the above correlators can be
directly computed with the general formula Eq. (1) through
the Hermitian part of the causal response associated with
Eq. (4), i.e.,

ZH
� (ω) = �πR

2
[(12(δ� + δ−�) + σy(δ� − δ−�)], (9)

where δ±� = δ(ω ∓ �). Correlators for the loop charge vari-
ables for the dual circuit in Fig. 2(b) can be analogously
computed in terms of its admittance response.

IV. PASSIVE LOSSLESS LINEAR SYSTEMS

Having understood the two-port nonreciprocal harmonic
oscillator, it is now easy to generalize the result to multi-
port general linear responses by using the results in matrix
fraction expansions from the previous century [24,25,33,35].
Analogously to the one-port case, any lossless response can
be decomposed in weighted contributions from reciprocal and
nonreciprocal harmonic oscillators through ideal transform-
ers; see a generic lumped-element circuital realization of a a
generic (non)reciprocal stage in Fig. 3. Such electrical lossless
multiport systems can be described in terms of four kinds of
lumped circuit elements: capacitors, inductors, nonreciprocal
elements (gyrators/circulators), and ideal transformers. The
first two elements of the set represent minimal containers of

electrical and magnetic energy, respectively, while the latter
ones induce direct or mixing constraints between dual pairs
of quantities such as fluxes (voltages) and charges (currents).
While transformer constraints can be systematically elimi-
nated if our configuration space contains just either flux or
charge variables, this is not the case for nonreciprocal con-
straints. They can, however, always be handled in the form
portrayed above, i.e., by redundant configuration spaces and
elimination of the nondynamical variables in phase space.

Let us now see how the flux fluctuation formula unfolds for
a general passive lossless system. By virtue of the multiport
Foster theorem [24], linear systems described by impedance
matrices satisfying a causal response (viz. lossless positive-
real matrices) can be decomposed as

Z(s) = B∞ + s−1A0 + sA∞ +
∞∑

k=1

sAk + Bk

s2 + �2
k

, (10)

where s ∈ C, B (A) are (skew-)symmetric matrices, and �k

are a possibly (discrete) infinite set of harmonic resonance
frequencies.

In parallel with the formula for the fluctuations of a one-
port linear device [18,19], only the contributions from the
nontrivial loops (those realized with finite-frequency poles,
i.e., Ak and Bk) are considered in the general formulas Eqs. (1)
and (2). Imposing open boundary conditions, i.e., no external
currents flowing in, means that the currents flowing through
the first three terms of the right-hand side of Eq. (10) are zero,
and thus they will not contribute to the formula Eq. (1). It is
worth remarking that this consideration is superfluous for the
terms B∞ and sA∞, which are directly discarded on taking
the Hermitian part of the matrix ZH (ω), but it is mandatory
for the poles at zero frequency (s−1A0).

Each reciprocal and/or nonreciprocal stage (with/without
Bk) can be generally fraction-expanded in a sum of simple
two-port nonreciprocal and reciprocal stages, connected to
Belevitch transformers [24]

sAk + Bk

s2 + �2
k

=
∑

i

TT
i,kZ�k (s)Ti,k, (11)

where the two-by-two impedance matrix Z�k (s) is either a
diagonal one-by-one matrix for a reciprocal harmonic oscilla-
tor contribution Z�k (s) = (s/C)/(s2 + �2

k ), or that of Eq. (4)
for a nonreciprocal contribution, where Rk = 1/�kCk . Ti,k are
(possibly rectangular) transformer matrices with i � N , and N
the maximum rank of Ak and Bk . Therefore, we can associate
an internal Hamiltonian with each of these two-by-two matri-
ces, as in the case above with one single dynamical variable;
see Eq. (7). We aggregate all internal flux fluctuations of the
multiport system by the linear relation of flux coordinates on
both sides of the ideal transformer matrix, and we compute
correlators for flux variables on the right (inner flux variables
�inner) in terms of those on the left (output port variables �),

〈�(t )�T (0)〉 =TT
〈
�inner(t )�T

inner(0)
〉
T, (12)

where the matrix T is composed from the rows of transformers
Ti,k in all different resonant frequencies. For example, for
the one-pole impedance matrix in Fig. 3(a), the combined
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FIG. 4. (a) Ideal dissipative nonreciprocal harmonic oscillator
with parallel conductances G connected to the output ports, with (b) a
representation of the ideal resistive elements in terms of an infinite
continuous series of harmonic oscillators.

Belevitch transformers are stacked together as

TT
1 = [

TT
1,1 TT

2,1 · · · TT
N,1

]
, (13)

with Ti,1 having the elements n(i)
mn in row m and column n.

We recover by linearity Eq. (1) decomposing the sum over all
frequencies and stages when the impedance matrix directly
exists. Given the open boundary conditions at the external
ports, we just need to add the weighted independent contribu-
tions of all oscillators. An additional (orthogonal) transformer
is required to make the correspondence between inner and
outer variables for more general linear systems; see an exam-
ple below.

A dual analysis can be carried out to derive the general
formula for charge fluctuations Eq. (2) by synthesizing a dual
circuit for the admittance response

Y(s) = E∞ + s−1D0 + sD∞ +
∞∑

k=1

sDk + Ek

s2 + �2
k

, (14)

i.e., connecting in parallel Belevitch transformers whose sec-
ondary ports are directly attached in series to inductors and
gyrators; see Chap. 7 in [24]. In an equivalent manner, the
first three terms on the right-hand side of Eq. (14) will not
contribute under the short-circuit condition at the ports.

V. LOSSY SYSTEMS

The above formulas have been obtained to describe passive
lossless linear circuits, but they can be naturally extended to
cases in which there is a presence of energy loss/decoherence
effects by following the standard routine of representing a
dissipative causal passive function (with a positive smooth
real part) with a continuous limit of an infinite (not unique) se-
quence of lumped degrees of freedom [5,28,45] whose causal
response functions’ real part is a sequence of δ distributions.

We can then extend Devoret’s argument [18,19] to mul-
tiport linear systems to compute, for example, the flux
fluctuations at the ports of a dissipative nonreciprocal two-
port harmonic oscillator with conductances in parallel, as
in Fig. 4(a), inserting in Eq. (1) the Hermitian part of
the impedance matrix of the system ZH (ω) = Z+ + Z−,

where

Z(s) = 1/C2

(s + G/C)2 + �2

(
G + sC −1/R

1/R G + sC

)
,

Z± = G(�R)2/2

(ω ± �)2 + (G�R)2 (12 ∓ σy),

and C = 1/�R. Charge fluctuations conjugate to the flux vari-
ables at the ports can be easily computed in terms of the
previous flux fluctuations by considering the conductances G
to be the continuous limit of a simple sequence of parallel
LC-harmonic oscillators [18,19]; see Fig. 4(b). A Lagrangian
representation of that circuit is

L = 1

2
(�̇

T C�̇ + �̇
T Y�)

+
∑
α,n

[
Cnφ̇

2
α,n

2
− (φα,n − �α )2

2Ln

]
(15)

with φα,n the internal node-flux coordinates of the LC
harmonic oscillators for port α, and C = diag(C,C).
Possible sequences used to approximate the conductance
G are Cn = 2G/πn2
� and Ln = π/2G
�, where
the frequency step 
� → 0 [18,19]. For this particular
circuit, the conjugate charges to the external flux nodes are
� = ∂L/∂�̇ = C�̇ + Y�, such that the cross-port correlator
can be computed in terms of the flux correlators, i.e.,
〈�1(t )�2(0)〉 = −C2∂2

t 〈�1(t )�2(0)〉 − 1
4R2 〈�1(t )�2(0)〉 −

C
2R∂t [〈�2(t )�1(0)〉 − 〈�1(t )�2(0)〉].

Let us stress again that these charge fluctuations are not
the same as those computed with Eq. (2), where short-circuit
boundary conditions at the ports would be assumed [with zero
net correlations, i.e., 〈Qi(t )Qj (0)〉 = 0], hence the use of a
different symbol.

VI. “SINGULAR” SCATTERING MATRIX

Finally, let us use the general formula for computing flux
quantum fluctuations in an example with a harmonic LC os-
cillator embedded in a three-port scattering matrix (see Fig. 5)
without a straight immittance description, i.e., when +1 is an

1

1

1

FIG. 5. Three-port scattering matrix of Eq. (16) with two “+1”
eigenvalues decomposed into a one-port impedance response (Z̃) and
a Belevitch transformer (TZ ).
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eigenvalue of the scattering matrix S = 1 − 2R(s2+�2 )
s/C+R(s2+�2 ) ddT ,

with dT = (Cz,−SzCx,SzSx ) and Cα = cos(ϕα ) and Sα =
sin(ϕα ). Given that the system is passive and causal, there
always exists an orthogonal transformation TZ [24] such that

S = TT
Z

(
13

2 + S̃
)
TZ , (16)

with 1n
k the identity matrix of rank k embedded in n dimen-

sions, which play the role of k open ports on the right-hand
side of the orthogonal transformer TZ .

In this example, and for the sake of simplicity, one can
choose a basis for the orthogonal space expanded by d such
that the transformer is the sequence of rotations in the z and x
axes in R3, i.e., TZ = Rz(ϕz )Rx(ϕx ). S̃ is a scattering matrix
of rank 1. Assuming a characteristic reference impedance R
at all ports, a reduced (1×1) impedance matrix of a HO is
obtained,

Z̃ = R(1 − S̃)−1(1 + S̃) = s/C

s2 + �2
. (17)

The flux fluctuations at the ports are computed directly, insert-
ing the impedance response seen by the outer ports

Z̄H (ω) = PT
Z Z̃H (ω)PZ = �Rπ

2
ddT (δ� + δ−�) (18)

in Eq. (1), where the projector PZ = dT = (n11, n12, n13) cor-
responds to the first row of the transformer matrix TZ , due
to the relation between internal and external fluxes. We re-
call again that the two open ports on the right-hand side
of the transformer [see Fig. 1(a)] do not contribute to the
fluctuations. In this particular example, the charge fluctuations
given short-circuit boundary conditions can be immediately
computed in terms of its associated admittance matrix because
“−1” is not an eigenvalue of S.

VII. CONCLUSIONS AND OUTLOOK

In this article, we have proved and generalized the compu-
tation of quantum fluctuations of conjugated flux and charge
variables in multiport linear electrical systems by making use
of the multiport Foster expansion of passive causal lossless
matrices. The core of the proof resides in the identification
of the dynamical (quantized) and nondynamical (discarded)
variables for the two-port nonreciprocal harmonic oscillator.

Our results include the case in which the linear system
breaks time-reversal symmetry (reciprocity), thus general-
izing the classical formulas of Johnson-Nyquist-Twiss, and
they are applicable to all quantum linear passive systems.
The correlators can be further used in the context of lossy
nonreciprocal networks under the mapping of the lossy two-
terminal components, i.e., elements with smooth real response
functions, with a continuous limit of infinite sequences of
harmonic degrees of freedom. Applications of our theorem
include, but are not restricted to, the computation of coherence
and decay rates of multiqubit nonreciprocal superconducting
quantum chips [7,8,18,29]. However, further work will be
necessary to bring together the results presented here for mul-
tiport linear passive systems, and the fluctuation-dissipation
theorems for nonlinear systems, such as tunnel junctions; see
[46,47].
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APPENDIX: DERIVATION BASED
ON HEISENBERG’S EQUATIONS

For the sake of completeness, we present in this Ap-
pendix the proof of the general formulas for the computation
of flux and charge quantum fluctuations for linear passive
systems. The first elements of the proof are well known from
the reciprocal context, yet we strive to give all the details also
of those first steps.

The starting point is that a linear system and its im-
mittance responses can be described in terms of quadratic
Hamiltonians characterized by Hamiltonian matrices h, as
we see below. Next we observe that, algebraically, linearity
and passivity imply the restriction to definite semipositive
Hamiltonian matrices h. In a well referenced piece of work
[48], Williamson established all the possible canonical forms
of Hamiltonian matrices according to symplectic invariance.
There he established that these canonical forms correspond
to the Jordan canonical forms of Jh, where J is the canon-
ical symplectic matrix; see more details on normal forms for
positive-semidefinite matrices in [41]. For these purposes, it is
best to organize the variables in such a way that the canonical
symplectic matrix J is in block diagonal form with elementary
two-by-two blocks,

J2 =
(

0 1
−1 0

)
. (A1)

As we have pointed out, we have to consider the case of
positive-semidefinite Hamiltonian matrices. The existence of
zero eigenvalues will be a signal of one or both of two types of
variables, namely nondynamical or free-particle. The original
text of Williamson is somewhat obscure in this regard, albeit
complete, and a much clearer presentation of this fact will
be found in the work of Hörmander [49]. The free-particle
sector will give rise to poles at the origin (or at infinity) in the
corresponding gain-immittance matrices (see below), while
the nondynamical sector, if required, will give a constant term.

We are interested in circuital (system) responses under only
open- and short-circuit type conditions, in which case there is
no contribution from poles at the origin and at infinity. As a
consequence, we consider only Hamiltonian representations
without free-particle dynamics, i.e., there are no independent
capacitor-charge or inductor-flux degrees of freedom. From
the point of view of the Hamiltonian matrix h, the absence of
free particles entails that the canonical form of Jh does not
contain nondiagonal Jordan blocks [48–50].

Coming now to nondynamical degrees of freedom, in the
context at hand (electrical circuits) they can only appear from
a Lagrangian analysis of the system because of the constraints
introduced by nonreciprocal ideal elements. Thus, they will be
fixed at constant values, zero, as a matter of fact, by suitable
choice of the origin of the dynamical coordinates. Moreover,
they play no further role in the description of the system, nor
in the response. Therefore, they will be eliminated at the stage
of the analysis that concerns real physical response.
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Finally, the positive-definite sector of the Hamiltonian
matrix can be symplectically diagonalized into harmonic os-
cillators, with canonical two-by-two blocks of the form �12,
with individual frequencies (energies) �.

After this preliminary exposition of the aspects of
Williamson’s theorem relevant for our purposes, we shall now
proceed as follows: first we shall depict the general relation-
ship between the gain-immittance matrix function and the
Hamiltonian matrix. Next we shall show the integral formu-
las for the causal and anticausal propagators, and put them
together for an integral expression of the fundamental ma-
trix exp(tJh). Once this is given, and considering that under
canonical quantization the Heisenberg equations of motion are
also solved in terms of the fundamental matrix, we particular-
ize for the case with only oscillators to express the quantum
fluctuation–dissipation theorem.

Let the classical dynamical canonical coordinates on phase
space be denoted by ξα , organized in vectors ξ. The clas-
sical Hamiltonian is H = ξT hξ/2, with h a positive-definite
symmetric matrix. The coordinates are canonical, such that
{ξ, ξT } = J.

The evolution of the linear system is governed by H . Given
that we have a quadratic theory, we can study the exact linear
response, that is, evolution driven by an external force f (t )
coupled to a linear combination of the canonical coordinates,
X = xT ξ, where x is a column vector of numerical coeffi-
cients. That is, evolution guided by the Hamiltonian

Hf = H − f (t )X. (A2)

The classical (and Heisenberg) equations of motion in this
case are

ξ̇ = Jhξ − f (t )Jx. (A3)

Denote the (causal) Laplace transforms with a tilde, as in
f̃ (s) = ∫ ∞

0 dt f (t )e−st . We then have

ξ̃(s) = (s1 − Jh)−1ξ(0) − f̃ (s)(s1 − Jh)−1Jx. (A4)

In mechanical and electrical contexts, a gain-immittance re-
sponse function relates a velocity Ẋ with a force fY , Ẋ =
WXY fY . In electrical circuits in particular, the voltage response
to a driving current is called an impedance Z, while the oppo-
site is known as admittance Y. Voltage and current gains are
relations between a drive and an observed quantity with the
same nature. In Laplace space, with classical homogeneous
initial conditions ξ(0) = 0,

(̃Ẋ ) = sX̃ (s) = sxT ξ̃(s)

= −sxT (s1 − Jh)−1Jx f̃ (s). (A5)

Suppose we have a set of variables Xi with corresponding
coefficient vectors xi. Then the response of the linear system
in Laplace space will be

Wi j (s) = −sxT
i (s1 − Jh)−1Jx j . (A6)

One can readily realize that the resolvent (s1 − Jh)−1 is
the Laplace transform of exp(tJh). Defining the response
(gain-immittance) matrix function on the linear symplectic
space spanned by the ξα coordinates as

W(s) = −s(s1 − Jh)−1J, (A7)

we can solve for the resolvent as

(s1 − Jh)−1 = 1

s
W(s)J. (A8)

Now, since the resolvent is the Laplace transform of the funda-
mental matrix exp(tJh), we can invert the Laplace transform,
but writing the resolvent in the form of Eq. (A8). For definite-
ness, we make the step function �(t ) explicit to write

etJh�(t ) = i

2π

∫
R

dω

ω + i0+ eiωt W(−iω + 0+)J. (A9)

Following the same procedure for anticausal forces, we obtain

etJh�(−t ) = −i

2π

∫
R

dω

ω − i0+ eiωt W(−iω − 0+)J. (A10)

We desire to put these two together to obtain an integral
formula relating the fundamental matrix at all times to the
gain-immittance matrix distribution

Wd (ω) := lim
ε→0+

W(−iω + ε). (A11)

To do so, first observe that W†(s) = −W(−s∗), which follows
from

W†(s) = s∗J(s∗1 + hJ)−1
,

where we have used that h is Hermitian and J is anti-
Hermitian. Now, since J2 = −1, we see that J(s∗1 + hJ) =
(s∗1 + Jh)J, from which (s∗1 + Jh)−1J = J(s∗1 + hJ)−1.
Therefore,

eJht = i

π

∫
R

dω e−iωt

[
W(−iω + 0+)

ω + i0+ − W(−iω − 0+)

ω − i0+

]
J

= i

π

∫
R

e−iωt

{
Wd (ω)

ω + i0+ +
[

Wd (ω)

ω + i0+

]†}
J. (A12)

This result [Eq. (A12)] is general. Let us now restrict our-
selves to the case in which the Hamiltonian matrix h is
positive-definite. Then W(0) = 0, and from here

eJht = i

π

∫
R

dω e−iωt 1

ω + i0+ WH (ω)J

= i

π

∫
R

dω e−iωtP 1

ω
WH (ω)J, (A13)

where we have introduced the notation WH for the Hermitian
part of Wd ,

WH (ω) = 1

2
[Wd (ω) + W†

d (ω)]

= 1

2
[W(−iω + 0+) − W(−iω − 0+)]. (A14)

Furthermore, the behavior of W(s) close to the origin is linear,
and thus the principal part sign can be discarded to yield the
final result for positive-definite Hamiltonian matrices,

etJh = i

π

∫
R

dω

ω
WH (ω)J. (A15)

Our objective is the quantum fluctuation–dissipation for-
mula. Thus we shall now make use of these results in the
quantum context. Canonical quantization of oscillatory de-
grees of freedom is achieved by elevating the dynamical phase
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space coordinates to operators, i.e., the minimal set of de-
scriptive variables, with commutation relations [ξ, ξT ] = ih̄J.
Generically for linear systems, the classical and quantum
Heisenberg equations of motion are

ξ̇ = Jhξ (A16)

with solution also given by the fundamental matrix exp(tJh),
ξ(t ) = exp(tJh)ξ(0).

Therefore, the set of two-point correlators 〈ξ(t )ξT (0)〉 is
determined from the equal time correlator as

〈ξ(t )ξT (0)〉 = etJh〈ξ(0)ξT (0)〉. (A17)

Now, having frozen before quantization the nondynamical
variables, which in our case are an artifact created by the
nonreciprocal constraints being expressed in an extended
configuration space, and leaving out of the response all the
free-particle dynamics, i.e., no poles at s = 0 in W(s), we can
express the two-point correlators by the general formula

〈ξ(t )ξT (0)〉 = i

π

∫
R

dω

ω
e−iωt WH (ω)J〈ξ(0)ξT (0)〉, (A18)

where we have made use of Eq. (A15).
Projecting Eq. (A18) on the upper/lower coordinates of

the diagonal, and assuming that the harmonic oscillators are
in thermal equilibrium, we shall now derive the general for-
mulas Eqs. (1) and (2) in the main text (MT) for reciprocal
and nonreciprocal multiport linear systems (with a complete
description in terms of dynamical variables). To achieve this
goal, because of linearity, it is enough to show that for each
term of the form of Eq. (11) in the MT there is a contribution
of the relevant form.

Next assume that ξ are the canonical coordinates, such that
the Hamiltonian matrix has been symplectically diagonalized
and is block-diagonal, with each block being h̄�k12. Then the
equal time correlation matrix is also block diagonal, with each
block being

〈ξ(0)ξT (0)〉k = h̄

[
nth(�k ) + 1

2

]
12 − h̄

2
σy. (A19)

It is also the case that WH (ω) is block-diagonal, and each
block is

WH (ω)k = ωπ

2
(δ−

k 12 − δ+
k σy), (A20)

where we have defined δ±
k = δ(ω − �k ) ± δ(ω + �k ). We

now consider WH (ω)J〈ξ(0)ξT (0)〉, block diagonal, with
blocks

Ik = [WH (ω)J〈ξ(0)ξ(0)T 〉]k

= ωπ

2
(δ−

k 12 − δ+
k σy)[iσy] × · · ·

×
{

h̄

[
nth(�k ) + 1

2

]
12 − h̄

2
σy

}

= ih̄ωπ

4
(δ−

k σy − δ+
k 12)

[
coth

(
β h̄�k

2

)
12 − σy

]

= ih̄ωπ

4

[
coth

(
β h̄ω

2

)
(δ+

k σy − δ−
k 12)

+ (δ+
k σy − δ−

k 12)

]

= ih̄ωπ

2
[nth(ω) + 1](δ+

k σy − δ−
k )

= −ih̄[nth(ω) + 1]WH (ω)k. (A21)

Therefore, for canonical coordinates we can express
Eq. (A18) as

〈ξ(t )ξT (0)〉can. = h̄

π

∫
R

dω

ω
e−iωt [nth(ω) + 1]WH (ω). (A22)

In conclusion, for positive-definite Hamiltonian matrices
and thermal equilibrium for each constituent harmonic oscil-
lator we have obtained the results of Eqs. (1) and (2) in the
canonical case. As the general case is related to the canonical
case by a change of coordinates, we can conclude that for
linear lossless passive systems in open/short boundary condi-
tions, the time evolution of correlations of inner (ξ) variables
is also expressed as Eq. (A22), i.e.,

〈ξ(t )ξT (0)〉 = h̄

π

∫
R

dω

ω
e−iωt [nth(ω) + 1]WH (ω), (A23)

where now the gain-immittance matrix is expressed in the
variables being used.

To complete the proof, we need to relate the port variables
to the inner (ξ) ones. This is achieved by linear transfor-
mations, and the impedance and admittance matrices are
determined by those same linear transformations, thus com-
pleting the proof of Eqs. (1) and (2) for linear passive lossless
multiport systems.

Even though this proof is now complete and general, the
concrete computation for the two most relevant examples
might prove illustrative for the reader, and we now present
those two. First the standard LC oscillator, and next the two-
port nonreciprocal example of Fig. 2(a) in MT.

1. Quantum LC oscillator

The quantum LC circuit is described by the standard
Hamiltonian

H = Q̃2

2C
+ �̃2

2L
, (A24)

whose causal impedance function is Z (s) = s/C
(s2+�2 ) , with

frequency � = (LC)−1/2. The generalized gain-immittance
matrix Eq. (A7) for the canonical form of the Hamiltonian
Hc = �

2 ξT ξ is

W(s) = s

s2 + �2

(
� −s
s �

)
. (A25)

This canonical form of the Hamiltonian is the symplectic
diagonalization of the initial one. For the initial Hamiltonian
of Eq. (A24), it follows from the symplectic transformation

X̃ =
(

�̃

Q̃

)
= Sξ =

(
R1/2 0

0 R−1/2

)
ξ, (A26)

where R = √
L/C. We compute the flux and charge time cor-

relators with Eq. (A18) above as

〈X̃ (t )X̃ (0)〉 = S〈ξ(t )ξT (0)〉ST

= i

π

∫
R

dω

ω
e−iωt SWH (−iω + 0+)ST J

× S
〈
ξ(0)ξT (0)

〉
ST . (A27)
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The causal part of the generalized response matrix is

W(−iω + 0+) = ωπ

2
(12δ− − σyδ+)︸ ︷︷ ︸

W̃H

+ i
ω

2
[P−12 − P+σy]︸ ︷︷ ︸

W̃A

, (A28)

where we have defined the distributions δ± = δ� ± δ−� (δ� =
δ(ω − �)), and the combinations of Cauchy principal val-
ues P± = P 1

ω−�
± P 1

ω+�
. The Hermitian part of the internal

impedance matrix is given by just the first two terms. The
internal fluctuations at time t = 0 of the canonical coordinates
are of the form of Eq. (A19). When sandwiching W̄H and
〈ξ0ξ

T
o 〉 with S and ST , the matrix

SST = R =
(

R 0
0 R−1

)
(A29)

appears.
Putting everything together, the relevant part of the inte-

grand of Eq. (A18) reads

i
(
SWH ST

)
J
(
S

〈
ξ0ξ

T
0

〉
ST

)
= h̄�π

4
[R( f�δ− + δ+) − σy( f�δ+ + δ−)],

= h̄ωπ [nth(ω) + 1]

2
[Rδ− − σyδ+],

with f� = coth( h̄β�

2 ), where we recall that nth(ω) =
[coth(β h̄ω/2) − 1]/2. We recover the result for flux and
charge fluctuations by inserting the value of its corresponding
top and bottom diagonal element in the formula Eq. (A27),
obtaining the same result as using Eqs. (1) or (2), respectively.
Cross correlations between the conjugated variables can be
computed with the off-diagonal terms, proportional to the gain
responses [34].

2. Two-port NR quantum harmonic oscillator

The general formulas for the two-port nonreciprocal har-
monic oscillator are trivially computed using the canonical

transformation between the internal (quantized) degrees of
freedom and the nondynamical coordinates. We present here
the case for the circuit in Fig. 2(a) of the MT of a gyrator
with capacitors in parallel. The analysis for its dual circuit,
in Fig. 2(b), can be trivially performed using as configuration
space coordinates the loop charges instead of the node-fluxes.

The dynamical coordinates X̃
T
1 = (�̃1, �̃1) and the (vir-

tual) nondynamical X̃ 2 degrees of freedom, which will be
set to zero before quantization, are assembled in a vector of
internal variables X̃ . This is related to the set of the external
variables X by

X = U−1X̃ = U−1Sξ, (A30)

where the symplectic transformation specific to the circuit in
Fig. 2(a) of the MT is

U−1 =

⎛
⎜⎜⎝

1 0 0 −R
0 −R 1 0
0 1

2
1

2R 0
1

2R 0 0 1
2

⎞
⎟⎟⎠.

We have also introduced the canonical coordinates ξ, two of
which correspond to the dynamical and two to the nondynam-
ical sector. We denote the dynamical canonical coordinates
as ξdy. Note as well the permutation of the coordinates
in the definition of the internal and external vectors, X =
(�1,�2,�1,�2)T and X̃ = (�̃1, �̃1, �̃2, �̃2)T , for conve-
nience in extracting impedance and admittance. The external
variable correlators are finally computed by setting the non-
dynamical variables to zero,

〈
X t X T

0

〉 = U−1S
(〈

ξdy(t )ξT
dy(0)

〉
0

0 0

)
ST (U−1)T .

Extracting the upper diagonal block matrix with a rectangular
matrix P, we finally obtain the result〈

�t�
T
0

〉 = P
〈
X t X T

0

〉
PT

= h̄R

2

∫
R

dω[nth(ω) + 1](12δ− + σyδ+),

where the Hermitian part of the causal impedance matrix can
be read from the integrand, matching the one presented in
Eq. (9).
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