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Theory of superconductivity mediated by topological phonons
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Topological phononic insulators are the counterpart of three-dimensional quantum spin Hall insulators in
phononic systems and, as such, their topological surfaces are characterized by Dirac cone-shaped gapless
edge states arising as a consequence of a bulk-boundary correspondence. We propose a theoretical framework
for the possible superconducting phase in these materials, where the attractive interaction between electrons
is mediated by topological phonons in nontrivial boundary modes. Within the BCS limit, we develop a self-
consistent two-band gap equation, whose solutions show that the superconducting critical temperature has a
nonmonotonic behavior with respect to the phononic frequency in the Kramers-like point. This remarkable
behavior is produced by a resonance that occurs when electrons and phonons on the topological surfaces have
the same energy: this effectively increases the electron-phonon interaction and hence the Cooper pair binding
energy, thus establishing an optimal condition for the superconducting phase. With this mechanism, the Tc can
be increased by well over a factor 2, and the maximum enhancement occurs in the degenerate phononic flat-band
limit.
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I. INTRODUCTION

The discovery of a topological classification for electronic
band systems [1,2] has shed new light also on the topo-
logical phononic systems, leading to the extension of the
topological framework over phononic states [3]. Similar to
electrons, phononic quantum Hall-like states can be hosted
in time-reversal symmetry breaking phases [4,5], while quan-
tum spin Hall-like ones require novel degrees of freedom to
reproduce the Kramers doublet at the time-reversal invariant
momenta [6–8]. Specifically, in three-dimensional lattices,
the introduction of a crystalline-protected pseudospin degree
of freedom provides the required energy degeneracy [9,10],
leading to a time-reversal invariant topological classification
for phonons. Nontrivial states thus obtained are referred to
as “phononic topological insulators” (PTIs) [11], being the
counterpart of three-dimensional (3D) topological insulators
in phononic materials [12,13]. Similarly to electrons [14,15],
their topological surfaces are characterized by Dirac cone-
shaped gapless edge states, which arise as a consequence of
a bulk-boundary correspondence [1] and have great research
interest because of their unconventional transport proper-
ties [11].
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The purpose of this paper is to investigate the role of
phonons in topological boundary states as mediators of the
superconducting interaction between electrons. We propose a
theoretical framework for the possible superconducting phase
where the Cooper pairing is mediated by the topological
phononic edge states. We describe the nontrivial electron
pairing through a self-consistent gap equation within the
BCS limit [16], where the phonon dynamics is accounted
for by a suitable propagator [17–19]. Numerical solutions
to this gap equation show that the critical superconduct-
ing temperature Tc displays a nonmonotonic behavior as a
function of the frequency parameter ω0, namely, the phonon
frequency at the Kramers-like point. Moreover, we find that
the shape of the topological phononic modes affects the su-
perconducting pairing in such a way that the highest peak
of the critical temperature is observed in correspondence
of flat degenerate bands. The optimal ω0, corresponding to
the maximum Tc enhancement in the surface of the mate-
rial, is related to a resonance effect that occurs when the
(standard) electrons and the topological phonon states at the
interface have the same energy. This effectively increases
the coupling constant and hence the Cooper pair binding
energy, thus establishing an optimal condition for the super-
conducting phase. In agreement with our numerical results,
the overall effect of resonance decreases with increasing the
slope of the Dirac cone-shaped bands, implying that the high-
est critical temperature is produced by flat-band degenerate
modes.
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FIG. 1. (a) Surface and bulk vibrational modes for a PTI, com-
puted through the tight-binding scheme proposed in [11]. Black lines
represent bulk modes, while red and blue lines stand for topological
phononic states that live in the upper and lower surfaces of a finite
crystal, respectively. (b) Schematic Dirac cone-shaped edge states
described by Eq. (1) as an approximation to describe crossing bands
near the high symmetry points K and K

′
. The vertices of the upper

and lower cones coincide at the degenerate Kramers-like point with
frequency ω0. The slope of the crossing bands is given by the Dirac
velocity vD.

II. THEORETICAL FRAMEWORK

In the derivations below we will use the following main
assumptions: (i) the electron states are well approximated as
nearly free electrons in a 3D bulk material; and (ii) the hypoth-
esis is made that superconductivity is mediated by topological
phononic edge modes in the skin of material.

The hypothesis (ii) is necessary within the broader BCS
theory framework to study the physics of superconductiv-
ity mediated by a certain phonon mode which is singled
out as the one responsible for superconductivity, while other
phonon modes (i.e., the bulk phonons, in our case) are play-
ing no role for the superconductivity. This is an assumption
which obviously cannot be a priori verified since BCS theory
cannot predict which specific phonon mode mediates super-
conductivity in a given material. In this sense, our study
is exploratory and we will discuss in the conclusion which
possible experimental setups could be used to experimentally
detect these effects in future studies. Finally, at the level of
BCS theory fluctuations are neglected due to the mean-field
character of the theory, and this effect should be investigated
in future work. However, there are several examples of two-
dimensional BCS superconductors [20,21], where quantum
fluctuations are not strong enough to suppress superconduc-
tivity [22,23].

Topological insulating states for phonons were theoreti-
cally predicted within a 3D triangular crystal [11], where
the in-plane lattice vibrations were investigated through a
tight-binding scheme [3,4], allowing one to span a wide
range of coupling parameters and find suitable conditions
for a topological phase transition. Phononic modes computed
for a finite system in a topological insulatinglike state are
depicted in Fig. 1(a) as a function of a path joining the
high-symmetry points in the Brillouin zone. Herein, black
lines represent bulk bands, while red and blue colors stand
for vibrational topological states confined in the upper and
lower surfaces of the crystal, respectively. A single pair of
gapless Dirac cone-shaped edge bands [8,11] is located near

the high-symmetry points K and K
′
, where the Kramers-like

degeneracy is guaranteed by the lattice rotational symme-
try [9]. Near these special momenta, the surface bands have
the structure schematically depicted in Fig. 1(b), and they can
be effectively described by a Dirac-like Hamiltonian, which,
in terms of the degenerate momentum, takes the form [11]

Hsur f = ω0σ0 + vD(kxσx + kyσy), (1)

where σi is a complete set of Pauli matrices, and the band
parameters ω0 and vD are phonon frequency and group ve-
locity at the high-symmetry Kramers-like point, respectively.
The parameter ω0 is the “frequency shift,” which quantifies
the energy at the Kramers point where upper and lower bands
cross. The parameter vD represents the slope of the Dirac
cone-shaped bands, which become flat degenerate modes in
the limiting case where vD = 0. In Eq. (1), the appearance
of a mass term Mσz introduces a full gap into the phonon
spectrum, characterizing a phase transition from topological
to ordinary state [1]. We thus selected M = 0 to describe
nontrivial gapless modes in the topological phase.

The superconducting many-body interaction between
electrons and such boundary topological phonon states can
be accounted for in the form of a frequency-dependent
electron self-energy [17,18], giving rise to the retarda-
tion effects that have a great impact on the macroscopic
electron motion [19,24]. The electron self-energy can be
expressed through the Migdal-Eliashberg diagrammatic ap-
proximation [19,24–27], where all the first order processes
are taken into account. Within the BCS [16] weak-coupling
limit, the electron self-energy reduces to the simpler gap
function �(k, iωn), thus we can easily derive the following
self-consistent gap equation [28,29]

�(k, iωn) = − 1

Sβ

∑
k′,m

gλDλλ′ (k − k′, iωn − iωm)gλ′

× �(k′, iωm)

ω2
m + ξk′ 2 + �(k′, iωm)2

. (2)

Here, S is the surface of the topological interfaces, β is the
inverse temperature, gλ is a constant attractive interaction
between electrons and phonons, and Dλλ′ (k, iν) is the matrix
phonon propagator. The frequency sum extends over the Mat-
subara fermionic frequencies ωn = (2n + 1)π/β, while the
momentum one runs over the bidimensional Brillouin zone
boundary describing the interface states of a PTI. Repeated
indices λ and λ′, referred to distinct vibrational states, are
summed according to the Einstein convention. For the sake of
simplicity, we assume a constant and frequency-independent
gap function �(k, iωn) = �, that allows us to cancel the order
parameter in the numerator on both sides of Eq. (2) and
eliminate the ωn dependence, to yield

1 = − 1

Sβ

∑
k,m

gλDλλ′ (k,−iνm)gλ′
1

ω2
m + ξ 2

k + �2
, (3)

where νn = 2nπ/β is the bosonic Matsubara frequency. Here
ξk is the free-electron dispersion, which we choose to be
quadratic with a chemical potential μ in order to describe
the superconducting coupling between metallic electrons and
multiband phonons.
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The matrix Green’s function Dλλ′ (k, iω), that takes into
account the whole phonon dynamics in the topological inter-
faces, can be computed through

D(k, ω) =
∑

j

uk ju
†
k j

ω − εk j
, (4)

where the sum extends over all the eigenstates uk j and
eigenenergies εk j of the surface Hamiltonian in Eq. (1).
Dealing with two distinct vibrational bands, corresponding to
upper and lower Dirac cones, the phonon Green’s function is
a 2 × 2 square matrix. Since our interest is to explore hypo-
thetical superconductivity mediated by the surface phonons,
we neglected the bulk dynamics and focused only on the Dirac
cone-shaped bands. As these bands are fully localized over the
topological boundaries, they are responsible for the surface
superconducting coupling.

For a better tractability, we select a constant attractive inter-
action independent of the phononic branch gλ = g. Since the
gap equation is written in units of h̄ = kB = me = 1, frequen-
cies, momenta, and temperature have energy dimensions, and
we can replace them with dimensionless quantities normal-
ized by the attractive interaction, i.e., ω = ω/g. The previous
gap equation thus reduces to

1 = − 4

Sβ

∑
k,m

iνm + ω0[
f

2
vD

+ (νm − iω0)2
](

ω2
m + ξ

2
k + �

2) , (5)

where fvD = vD

√
k2

x + k2
y stands for the Dirac cone-shaped

dispersion relation that characterizes topological phonons.
The Matsubara sum can be performed exactly, while the mo-
mentum sum can be replaced by the bidimensional integral
given by periodic boundary conditions over the infinitely ex-
tended topological surfaces.

III. RESULTS

A. Numerical solutions

A numerical solution for the dimensionless critical tem-
perature T c can be obtained by solving the above gap
equation with a zero gap function � = 0, and is plotted in
Fig. 2 as a function of the dimensionless phononic frequency
ω0 at the Kramers-like point. For small frequency shifts,
phonon states feature negative frequencies, therefore a lattice
instability prevents finding solutions to the gap equation in
that regime. This reflects on the summed function in Eq. (5),
which has odd symmetry in the limit ω0 = 0 and hence gives
a zero contribution to the Matsubara sum. The plot shows that
T c has a nonmonotonic behavior, reaching a maximum at an
optimal frequency whose value depends on the slope vD of the
Dirac cone-shaped topological bands. Specifically, the height
of the peak decreases with increasing the band slope, thus the
highest critical temperature is observed in correspondence to
the limiting case vD = 0 where the Dirac cones degenerate
into flat bands.

The same behavior is also shown by the dimensionless gap
function, which represents the Cooper pairs binding energy.
Numerical solutions, found by solving the gap equation for a
fixed temperature below the critical value T c, are plotted in
Fig. 3 as a function of ω0. Similarly to what happens with

FIG. 2. The dimensionless critical temperature T c is displayed
as a function of the frequency parameter ω0, namely, the phonon
frequency at the Kramers-like point, for fixed chemical potential
μ = 0.235 and various Dirac velocities. For small ω0, the structural
instability related to negative phononic frequencies prevents finding
solutions for T c.

the critical temperature, an optimal value of the frequency at
the Kramers-like point ω0 determines an increase in the gap
function, meaning that the bond between electrons in Cooper
pairs is strengthened. In Fig. 3, we also plot the gap function
versus the dimensionless temperature, for a fixed value of ω0.
This figure shows the typical behavior of a superconducting
gap function, with the highest gap at zero temperature slowing
down to zero at the critical point where the phase transition
occurs.

FIG. 3. The dimensionless gap function is displayed (a) versus
the frequency shift ω0 for fixed temperature T = 0.05, and (b) as a
function of temperature below the critical point for a fixed phonon
frequency ω0 = 0.29. In both plots, we set μ = 0.235. For small
ω0, the structural instability related to negative phononic frequencies
prevents finding solutions to the gap equation.
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FIG. 4. The summed function in Eq. (5) is displayed as a function of the fermionic frequency iωm for flat degenerate phononic bands
with vD = 0 and fixed momentum within the Brillouin zone. The dimensionless frequency shift increases from left to right being (a) ω0 <

ξk, (b) ω0 = ξk, and (c) ω0 > ξk. Black and blue dashed vertical lines represent different poles corresponding to electronic and phononic
frequencies, respectively. When ω0 = ξk, the overlap between distinct poles maximizes the area covered by the function, meaning that there
is a high contribution to the gap equation.

The actual numerical results prove that when the electron
coupling is driven by topological phonons, the Cooper pairs
bond can be tightened, enhancing the superconducting phase
and increasing the critical temperature of ordinary BCS su-
perconductors by well over a factor 2. Topological boundary
phonons with suitable Kramers-like frequencies can also be
combined with other nontrivial effects to increase the su-
perconducting critical temperature. A schematic experimental
setup for standard metallic superconductors and PTI is pro-
posed in the final part of this paper.

B. Physical interpretation

The physical reason for the nonmonotonic behavior of T c

can be understood by studying the poles of the summed func-
tion, which give a high contribution to the Matsubara sum.
Taking the denominator into account and imposing � = 0, the
poles of the gap equation versus the Matsubara frequencies
can be easily computed as

−iωm = ±ξk, −iνm = ω0 ± f vD
, (6)

corresponding to the electronic and phononic energies, re-
spectively. Varying ω0, poles corresponding to the energy of
distinct (quasi)particles may overlap, leading to an increased
contribution to the Matsubara sum that reflects an enhanced
superconducting coupling. At the overlap, phonons and elec-
trons have the same energy, meaning that the underlying
reason for the superconducting enhancement is a resonance
between (quasi)particles.

The effect of such a resonance can be clearly seen in the
instructive case of degenerate phonons. The summed function
for flat bands with vD = 0 is displayed in Fig. 4 versus the
Matsubara fermionic frequency iωm. The Kramers-like point
frequency ω0 increases from left to right. Blue and black
dashed lines represent the poles of the function, corresponding
to electronic ξk and phononic ω0 ± f vD

energies, respectively.
Due to the energy degeneration f vD

= 0, and hence there
is only a single pole corresponding to both phonon states.
For fixed momentum, the resonance condition is given by
ω0 = ξk, which ensures that electrons and phonons over the
topological surfaces have the same energy. Herein, electronic
and phononic poles overlap, and the part of the plot with
negative area included between them vanishes. Therefore, the
overlap of the poles maximizes the positive area covered by
the summed function, thus giving a large contribution to the

gap equation. For ω0 values away from this overlap, there is
a wide range of frequencies that contributes negatively to the
gap equation. This means that, for selected momentum inside
the Brillouin zone boundary, there is a nonmonotonic behavior
peaked at the value of ω0 that guarantees a resonance be-
tween electrons and phonons. The overall effect on the critical
temperature is then given by a sort of “momentum average”
produced by the momentum integral over the Brillouin zone
boundary.

A very similar behavior is featured also by nonflat phonons
(i.e., with a finite slope of the Dirac cone), whose energy states
are split by a nonzero Dirac velocity. Due to the energy split-
ting, there are two distinct overlaps, given by ω0 = ξk ± f vD

for fixed momentum, where electrons and phonons have the
same energy. Herein, the area covered by the summed function
is maximized, but the existence of a secondary phononic pole,
not involved in the resonance with electron states, implies the
presence of a range of Matsubara frequencies with a negative
contribution to the gap equation. Increasing the slope, and
hence the splitting between phonons at the same momentum
state, widens such a negative range. This means that the over-
all effect of resonance decreases with increasing the slope
vD of the Dirac cone-shaped states, in agreement with the
numerical results shown in Figs. 2 and 3. Away from the
resonances, the gap equation behaves in the same way as in
the previous degenerate case, with a wide range of Matsubara
frequencies, included between electronic and phononic poles,
that give a negative contribution to the gap equation and this,
in turn, decreases the electron pairing.

IV. EXPERIMENTAL PROPOSALS AND CONCLUSION

So far, several materials with topological phononics
physics have been reported [30–33], but no 3D topological
insulatinglike states for phonons have been experimentally re-
alized in the hard-matter domain. A candidate material should
be a crystal with lattice symmetries able to produce degenerate
Kramers-like states along the high-symmetry lines [9]. Non-
trivial edge states may be observed over the surfaces where
such symmetries are preserved. Crystals with Cnv symmetries
for n = 3, 4, 6 show interesting physics for electrons [34], and
could be similarly exploited to realize phononic topological
insulators. Different kinds of symmetries, for instance mag-
netic space group symmetry, particle-hole symmetry, and their
combinations, could also be used to define novel pseudospin
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FIG. 5. Schematic plot of the experimental setup: the yellow
box represents a conventional thin-film BCS superconductor, while
the blue one stands for a PTI with nontrivial gapless edge states
over the upper and lower surfaces along the ẑ direction. If the thick-
ness of the superconducting layer is comparable to the coherence
length ξ , the Cooper pairing is mediated by topological surface
phonons.

degrees of freedom [11], in order to control phonons and
construct topological insulatinglike phases.

Besides the possible discovery of a material which com-
bines bulk metallic character and superconductivity mediated
by edge topological phonons, another possible experimental
setup to test the effect presented in our paper is shown in
Fig. 5. Here a conventional thin-film superconductor (yellow
box) is grown over a PTI (blue box) with nontrivial edge states
over the topological surfaces along the ẑ direction. As long as
the thickness of this superconductor is comparable with the
superconducting coherence length [35], the Cooper pairing is
affected by the proximity coupling induced by the topolog-
ical phonons over the surface of the PTI. Therefore, in this
quasi-two-dimensional (2D) limit, the effect of topological
surface phonons on the superconducting phase can be directly
probed as the increase of the critical temperature of the thin
film. Ordinary BCS-type superconductors which maintain the
superconducting phase in thin-film shapes [36,37] are suit-
able materials, in agreement with our assumption of quadratic
bands describing standard metallic electrons. In addition, also
the interface between the two materials should contain the
proposed physics. The enhanced 2D interfacial superconduc-

tivity can be experimentally probed by measuring several
correlation functions: one such quantity is the pair correlation
function that decays as power law [38,39].

To conclude, we have developed a theory of supercon-
ductivity where the superconducting states are mediated by
boundary Dirac-like phonons at the interfaces of topologi-
cal phononics insulators. The surface phonon dynamics is
accounted for by a suitable propagator implemented into a
self-consistent two-band gap equation for the Cooper pairing
between electrons. Upon solving the gap equation, it is found
that the Tc depends nonmonotonically on the phononic fre-
quency ω0 at the Kramers-like point and features a maximum
as a function of ω0. A strong dependence on the slope of the
Dirac cone-shaped bands is also observed, with the highest
peak of critical temperature that occurs in correspondence
to degenerate flat-band topological phonons. The value of
the frequency parameter around which Cooper pairing is the
strongest is set by the effect of a resonance between the
(standard) electrons and the topological phonons. Within this
optimal range of frequencies, the strongly enhanced electron-
phonon interaction increases the superconducting coupling
between electrons. Outside this window, instead, the strength
of pairing deteriorates, leading to a reduction in Tc. In addi-
tion, the electron-phonon resonance is greatly enhanced in the
limit of flat degenerate phononic bands, because both phonon
states are then simultaneously involved in the interaction with
electrons. Conversely, a nonzero slope of the Dirac cone splits
the energy states, thus decreasing the overall superconducting
pairing. Future studies can shed further light on the possible
effects of quantum fluctuations on the 2D phonon states, if
any, and on the possible interplay between edge states and
standard bulk phonons.

It is hoped that this work will encourage the development
of a new route for enhancing the superconducting Tc and
stimulate the search for phononic topological insulators in real
materials.
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