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Quantum dimer model on fullerenes: Resonance, scarring, and confinement
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The earliest known examples of quantum superposition were found in organic chemistry—in molecules
that “resonate” among multiple arrangements of π -bonds. Small molecules such as benzene resonate among
a few bond arrangements. In contrast, a large system that stretches over a macroscopic lattice may resonate
among an extensive number of configurations. This is analogous to a quantum spin liquid as described by
Anderson’s resonating valence bond picture. In this article, we study the intermediate case of somewhat large
molecules, the C20 and C60 fullerenes. We build a minimal description in terms of quantum dimer models
(QDMs), allowing for local resonance processes and repulsion between proximate π -bonds. This allows us to
characterize ground states, e.g., with C60 forming a superposition of 5828 dimer covers. Despite the large number
of contributing dimer covers, the ground state shows strong dimer-dimer correlations. Going beyond the ground
state, the full spectrum of C60 shows many interesting features. When repulsive terms are neglected, the energy
values are placed symmetrically about zero. This reflection symmetry originates from a chiral symmetry of the
Hamiltonian, which in turn originates from the local bond geometry of C60. This property also leads to a large
number of protected zero-energy states. In general, the spectrum contains many scarlike states, corresponding
to localized dimer-rearrangement dynamics. Resonance dynamics in QDMs can manifest in the behavior of
defects, potentially binding defects via an effective attractive interaction. To test this notion, we introduce pairs
of vacancies at all possible separations. Resonance energy reaches its lowest value when the vacancies are closest
to one another. This suggests confinement of monomers, albeit within a finite cluster. We discuss qualitative
pictures for understanding bonding in fullerenes, and we draw connections with results from quantum chemistry.
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I. INTRODUCTION

A quantum spin liquid is a magnetic phase with no long-
range order and a high degree of entanglement. Within the
resonating valence bond picture of Anderson [1], it is de-
scribed as a superposition of multiple singlet arrangements.
Spins within the magnet pair up to form singlets, leading to a
macroscopic state with no magnetization. However, pairs can
be formed in many ways, corresponding to various arrange-
ments of singlets on the underlying lattice. The entire magnet
is in a coherent superposition of all such configurations. This
point of view is inspired by the concept of resonance in or-
ganic chemistry, exemplified by benzene and its two Kekulé
structures. This ultimately derives from the notion of quantum
superposition, which allows a system to simultaneously exist
in multiple configurations. The quantum dimer model (QDM)
is a framework that is specifically designed to capture these
ideas [2,3].

In this article, we study QDMs on fullerene graphs. As
molecules containing few tens of carbon atoms, fullerenes
can exhibit resonance over mesoscopic lengthscales [4,5].
Fullerenes also differ from typical benzenoid systems in
geometry, as they form spherical surfaces. The closed, bound-
aryless space of a sphere may allow for a higher degree of
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resonance. This idea has motivated quantum chemical studies
on “spherical aromaticity” [6,7]. Graph theoretical and com-
binatorial concepts have been employed to shed light on this
question, e.g., in enumerating the number of Kekulé struc-
tures on C60 [4,8,9]. We build on these results to construct a
minimal statistical-physics-inspired model. As our approach
neglects several microscopic details, we do not claim to de-
scribe the precise nature of chemical bonding. Nevertheless,
our results provide insight into the physics of fullerenes and
fullerene-based materials. They can help interpret the re-
sults of more realistic calculations as well as experimental
data.

Canonical examples of quantum spin liquids are found
in QDMs on macroscopic lattices [10]. Their ground states
involve resonance among an extensive number of config-
urations. Stationary states are divided into sectors, usually
distinguished by winding numbers [11]. Our results on
fullerenes show analogs of these features on a finite system.
In lattice systems, the behavior of defects is known to reflect
the nature of the ground state. A high degree of resonance
leads to deconfined defects, with no energy cost to separate
a pair of defects. Ordered ground states, with no resonance,
are confined phases where defects cannot be separated. We
explore this notion in the fullerenes, where we find a high
degree of resonance and yet an energy cost to separate defects.
Admittedly, this result pertains to finite separations within a fi-
nite system. Nevertheless, it suggests that resonance-mediated
interactions can play a role at mesoscopic lengthscales.
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FIG. 1. Schlegel diagrams for C20 (top) and C60 (bottom).

The smallest known fullerene is C20, with 20 carbon atoms
located at the sites of a dodecahedron [12]. The first fullerene
to be discovered was C60, also called buckminsterfullerene,
which forms a truncated icosahedron [13]. There are several
other members of the fullerene family, with sizes reaching few
thousands of carbon atoms [14]. The main focus of this article
is C60. However, we also discuss C20 as a simpler case that
illustrates our approach.

II. FRAMEWORK: DIMER COVERS
AND QDM CONSTRUCTION

Each fullerene molecule can be viewed as a discretization
of a sphere. This can be represented as a graph where the
nodes are carbon atoms, with proximate atoms connected by
bonds. If these graphs are flattened onto a plane, they are
called Schlegel diagrams. Figure 1 shows the Schlegel dia-
grams corresponding to C20 and C60. As seen in the figure,
each carbon atom has three proximate neighbors. This is a
property that is shared by all fullerenes. Ignoring the effects
of curvature, we assume that each carbon atom forms three
σ -bonds with these neighbors. To satisfy carbon’s valency of
4, each atom must form one π -bond with one of its neighbors.
A configuration where every site is attached to precisely one

double-bond is called a Kekulé structure or a dimer cover. On
a graph with Ns sites and Nb bonds, a dimer cover will have
Ns/2 dimers that can occupy Nb locations. The dimers obey
a hardcore constraint, whereby only one dimer can reside on
bonds connected to a single site. In C20, we have 10 dimers
on the 30 bonds of the Schlegel diagram. In C60, we have 30
dimers that reside on 90 bonds.

The set of all dimer covers serves as the configura-
tion space for the QDM. Given a graph, enumerating all
dimer covers is a well-known problem. The Fisher-Kasteleyn-
Temperley (FKT) algorithm [15] provides an efficient method
to count the number of dimer covers on any planar graph.
Although C20 and C60 are spherical molecules, their Schlegel
diagrams are planar graphs—as seen from Fig. 1, the edges
do not cross one another. However, the FKT algorithm does
not suffice—it only gives the total number of dimer covers,
not the precise form of each dimer cover. In every calculation
described below, we take the following approach. We first use
an FKT routine [16] to ascertain the number of dimer covers.
We then generate dimer covers using a stochastic branching
algorithm, proceeding until the number of unique dimer cov-
ers matches the FKT result.

Within the QDM approach, dimer covers are taken to
be orthogonal to one another, forming a Hilbert space [3].
Dynamics arises from local rearrangements of dimers. This
requires loops containing an even number of bonds. If such a
loop contains alternating dimers, they can be shifted without
disturbing dimers positioned elsewhere. The dominant contri-
bution arises from the smallest such loops. Potential energy,
arising from repulsion between dimers, is also taken into ac-
count. The dominant contribution stems from plaquettes that
are maximally packed with dimers. Below, for C20 and C60,
we describe the dominant kinetic and potential energy terms
and include them within suitable QDM Hamiltonians.

III. QUANTUM DIMER MODEL ON C20

The structure of C20 is shown in Fig. 1 (top) as a Schlegel
diagram. The number of dimer covers on this graph is 36. We
enumerate these states to characterize the Hilbert space for the
QDM.

We construct the QDM Hamiltonian as follows. The small-
est closed loops in C20 are pentagons. As they have an odd
number of sites, they do not allow for local dynamics. That
is, dimers within a pentagon cannot be rearranged with-
out disrupting the bond configuration elsewhere. The next
largest loops contain eight sites, enclosing two neighboring
pentagons. If one such eight-site loop hosts four dimers on
alternating bonds, this allows for a local rearrangement where
each dimer can be shifted by one bond along the loop. We
assign a “hopping amplitude”, t , to this process. We next con-
sider repulsion between dimers. On a given pentagon, we may
have zero, one, or two dimers. We associate a repulsive energy
cost, V , with every pentagon that hosts precisely two dimers.
These considerations lead to the following Hamiltonian:

(1)
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FIG. 2. Bond correlations in the ground state of C20 when
V/t = 0. The reference bond is shown in red. On all other bonds, the
bond thickness shown is proportional to the correlation with respect
to the reference bond (see text).

where the sum over runs over all pairs of neighboring
pentagons. In the potential term, the sum runs over every pen-
tagon of C20. The operator n̂ counts the number of dimers
residing on a given pentagon. If the number is 2, the system
incurs a repulsion cost of V .

A. Ground states in the undoped model

In the basis of dimer covers, the Hamiltonian takes the form
of a 36×36 matrix. We obtain the eigenspectrum by diagonal-
izing this matrix. A particular feature of this Hamiltonian is
its full connectivity. Any element of the Hilbert space can be
reached from any other element by repeated application of the
Hamiltonian. We focus on the character of the lowest energy
state. For t,V > 0, we find a nondegenerate ground state.
It retains the same qualitative character as V/t is varied. To
understand the ground state, we may evaluate the probability
of finding a dimer on any given bond. However, as all bonds
in C20 are equivalent, the probability is uniform. We then
evaluate dimer-dimer correlations with the result shown in
Fig. 2. To define this quantity, we employ a projection op-
erator, P̂(i, j), where (i, j) represents a nearest-neighbor bond
on the C20 graph. When acting on a dimer cover, P̂(i, j) is unity
if a dimer is present at (i, j) and zero otherwise. We define the
dimer-dimer correlation in a state |ψ〉 as

p(i, j),(k,l ) = 〈ψ |P̂(i, j)P̂(k,l )|ψ〉, (2)

yielding a real quantity that ranges from 0 to 1. This repre-
sents a joint probability—the likelihood that both bonds are
simultaneously occupied by dimers. In Fig. 2, the state |ψ〉 is
chosen to be the ground state of the QDM Hamiltonian with
V = 0. The correlation is calculated with respect to a fixed
reference bond, shown in red. At short distances, p(i, j),(k.l )

shows a strong pattern—arising from the condition that two
dimers cannot touch at a site. Some correlations survive even
at the furthest distance. As V is increased from zero, the
dimer-dimer correlation does not change significantly. The
ground state itself evolves smoothly, with the first excited state
always separated by a gap.

We note that kinetic energy and potential energy, as defined
on C20 here, are not truly independent. For a given dimer
cover, the strength of kinetic energy can be gauged from the

FIG. 3. Ground-state energy vs distance between vacancies.
“Undoped” represents the C20 graph with no vacancies. The remain-
ing columns represent vacancies at various distances, e.g., “1nn”
represents vacancies on sites that are first neighbors of one another—
say on sites 0 and 1 as shown in Fig. 1.

number of “flippable” loops. The dimer covers of C20 fall
under two classes: the first consisting of dimer covers with
six flippable loops, and the second with ten flippable loops.
Within each class, the repulsive potential energy takes the
same value. This reveals that kinetic energy and potential
energy reflect the same underlying information.

B. Ground states with doping

We next introduce a pair of static vacancies on the C20

graph. Within the quantum dimer model, we may only in-
troduce an even number of vacancies. An odd number does
not allow for the remaining sites to host dimers in a consis-
tent fashion. With a pair of vacancies, we find ground-state
properties for all possible relative distances between them. In
Fig. 3, we plot the ground-state energy as a function of relative
distance between vacancies.

When V/t is small, introducing a pair of vacancies im-
poses a cost. For any separation between the vacancies, the
ground-state energy is higher as compared to “undoped” C20.
As a function of separation, we see an overall upward trend.
Energy is lowest when the vacancies are immediately adjacent
to each other. We interpret these findings as follows. Dimers
must necessarily avoid the neighborhood of a vacancy. With
two vacancies, we have two inaccessible regions that cannot
be accessed by dimers. This reduces the degree of resonance,
manifesting as an energy cost for introducing vacancies. If the
vacancies are adjacent to one another, the two inaccessible
regions overlap to give rise to a smaller forbidden area. This
allows for increased resonance with dimers moving over a
larger region in the graph. This can be viewed as an effective
attraction between vacancies, generated by resonance in the
background.

For large V/t , introducing vacancies lowers the energy of
the system. A pair of vacancies reduces the number of dimers
by 1. This allows the remaining dimers to move away from
one another. This reduces the potential energy and thereby
the overall ground-state energy. Upon varying the separation
between vacancies, the ground-state energy does not vary
significantly. For any separation, the system finds a similar
configuration that minimizes repulsion.
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IV. QUANTUM DIMER MODEL ON C60

Compared to C20, the C60 structure allows for a simpler
form of dynamics. The smallest flippable loops are single
hexagons that carry three dimers. A hexagon can be “flipped”
if it contains three alternating dimers—changing it from one
Kekulé configuration to another. This represents the dominant
contribution to the kinetic energy term, given by

H.c.
(3)

where the sum runs over every hexagon. We neglect weaker
contributions that can arise from larger loops.

To characterize the potential energy of repulsion, we con-
sider the two smallest closed loops: pentagons and hexagons.
A pentagon can carry at most two dimers, however a hexagon
can host up to three. We assume that the leading contribution
to potential energy occurs from hexagons with three dimers.
We retain this contribution and neglect all others, for simplic-
ity. This leads to

P.E. .
(4)

As with ĤK.E., the sum in ĤP.E. runs over every hexagon on the
C60 graph.

V. THE HILBERT SPACE AND ITS CONNECTIVITY

The Hilbert space is the set of all dimer covers on the C60

graph. Figure 4 shows two examples. Both have 30 dimers
placed on the C60 graph, with each site attached to precisely
one dimer. The total number of dimer covers is 12 500 [4,17].
A detailed analysis of these dimer covers and their symmetries
can be found in Refs. [8,9].

In the basis of dimer covers, the potential energy is purely
diagonal. To understand the nature of dynamics, we focus
on the kinetic energy first, representing ĤK.E. as a 12 500 ×
12 500 matrix. This can be viewed as dynamics on a network
of 12 500 nodes, with each node representing a dimer cover.
Each nonzero entry of ĤK.E. serves as a link that connects
two nodes. Notably, this network is bipartite. This can be
seen by characterizing each dimer cover by Npent., the number
of dimers that reside on pentagons. The nodes of the ĤK.E.

network separate into families, characterized by even/odd val-
ues of Npent.. Each link of the network necessarily connects
a node with an odd value of Npent. to a node with an even
value. This structure originates from the geometry of the C60

graph, where each hexagon is surrounded by three pentagons.
As a result, flipping the dimers on a hexagon changes Npent.

by 3. (This indicates deeper structure. Npent modulo 3 is a
conserved quantity that divides the Hilbert space into three
distinct sectors.) As a consequence, under the action of ĤK.E.,
a state with an even (odd) value of Npent. either vanishes or
moves to a state with an odd (even) value.

We formally describe this in terms of an operator,

(5)

FIG. 4. Two dimer covers on the C60 graph. Top: a configuration
with no flippable loops. Bottom: the dimer cover with the largest
number of flippable loops. Each of the 20 hexagons carries three
alternating dimers.

where the sum runs over the 12 pentagons in the C60 graph,
and n̂ is the number of dimers on a given pentagon. This
operator returns ±1 when acting on a dimer cover, depend-
ing on whether the dimer count on pentagons is even/odd.
We have ĤK.E.Ĉ + ĈĤK.E. = 0, i.e., Ĉ anticommutes with the
Hamiltonian. This property can be described as a chiral sym-
metry or a sublattice symmetry [18]. It immediately leads to
spectral reflection symmetry, seen as follows [19]. Given any
eigenstate of ĤK.E., denoted as |ψE 〉 with eigenvalue E , we can
construct another eigenstate |ψ−E 〉 ≡ Ĉ|ψE 〉, with eigenvalue
(−E ). If E �= 0, these two states must necessarily be orthogo-
nal. In other words, nonzero energy eigenvalues occur in pairs
of the form (E ,−E ). This reflection symmetry can be seen in
the density of states, plotted in Fig. 5.
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FIG. 5. Density of states in the C60 QDM in the purely ki-
netic regime, i.e., with V = 0. The inset shows a limited energy
range where three peaks are clearly discernible. The peaks occur at
u1 = 2 cos(2π/5), u2 = 2 cos(π/5), and 3.

The operator Ĉ protects zero-energy states in a manner
similar to an index theorem [19]. The quantity W = |Tr{Ĉ}|
provides a lower bound for the number of zero-energy states.
This can be seen as follows. As Ĉ squares to 1, its eigenvalues
are ±1. The trace in W can be evaluated by going to the basis
of ĤK.E. eigenstates. States with nonzero energies do not con-
tribute to the trace as Ĉ takes each such state to an orthogonal
partner. In the zero-energy sector, states can be reexpressed as
eigenstates of Ĉ. The trace contains contributions from states
with positive and negative eigenvalues of Ĉ. A nonzero value
of W imposes a lower bound on the number of states within
the zero-energy sector.

In C60, we evaluate W by tracing over the 12 500 dimer
covers to find W = 116. The actual number of zero-energy
states far exceeds this lower bound. In the V = 0 limit, we
have 1308 zero-energy states. Remarkably, as V moves away
from zero, we have 256 states that remain pinned at zero
energy. These states are single dimer covers that are “unflip-
pable,” with no hexagon containing three alternating dimers.
An example is shown in Fig. 4 (top). These dimer covers
are eigenstates of ĤP.E. as well as ĤK.E., with both having
eigenvalue zero.

Under the dynamics encoded in Eq. (3), the Hilbert space is
not fully connected. In fact, it separates into 583 independent
sectors. We discuss specific sectors below.

A. Maximally flippable sector

The two dimer covers of Fig. 4 represent two extremes.
The configuration at the top is unflippable, as no hexagon
has three alternating dimers. In fact, there are 256 such dimer
covers on the C60 graph. In contrast, at the bottom, we have
a maximally flippable configuration. Each of the 20 hexagons
of the C60 graph has three alternating dimers. This configu-
ration is unique—all other dimer covers have fewer flippable
hexagons.

The maximally flippable dimer cover has the highest de-
gree of connectivity. As we have 20 flippable hexagons, ĤK.E.

connects this state to 20 others. These states, in turn, connect
to 16 new elements each. Proceeding along these lines, we
span a set of 5828 dimer covers—all accessible from the

maximally flippable configuration of Fig. 4 (bottom). Taking
the Hamiltonian to be a network in Hilbert space, these states
form the largest connected sector. This sector contains the
ground state of ĤK.E. as it allows for the largest spread of the
wave function. We discuss the ground state and its character-
istics in Sec. VI below.

B. Scarlike sectors

As seen from Fig. 5, the density of states shows prominent
peaks at several energies. These arise from small sectors of
the Hilbert space, consisting of a few states that differ by
local rearrangements. In each of these sectors, dynamics is
restricted to a small region within the C60 graph, with the re-
gion outside remaining untouched. In this sense, the dynamics
is nonergodic. The resulting states resemble quantum scars
[20], albeit in a finite system. We illustrate this phenomenon
in Fig. 6, which depicts a sector consisting of 11 states (dimer
covers). These states form a wheel-like structure with a central
node and five spokes. The central node, |ψ0〉, is a dimer cover
with precisely five flippable hexagons, all immediately sur-
rounding a pentagon. The states on the rim, labeled |ψ�〉 with
� = 1, . . . , 10, can be accessed from the central node by one
flip or two flips. In all the dimer covers involved, the dynamics
is restricted to the central region—where the figures show
dimers in red. These dimers are mobile as they are located on
flippable hexagons. In contrast, gray bonds on the periphery
remain static.

The dynamics within this sector can be easily solved as
an 11-site tight-binding problem. Analytic expressions can be
found for the eigenvalues and eigenfunctions. When V = 0,
the eigenvalues (in units of t) are ±2 cos(2π/5), ±2 cos(π/5),
±3, and 0. The eigenvalues expressed using cosines are dou-
bly degenerate, while the others are nondegenerate. In the
density of states of Fig. 5, we see sharp peaks at precisely
these eigenvalues. The peaks arise due to high multiplicity,
which can be seen as follows. The dynamic region in this
sector is centered around a pentagon. We may take any one
of the 12 pentagons of C60 to be this central pentagon. In ad-
dition, for a given central pentagon, 10 distinct arrangements
are possible for the inert outer (gray) region. This leads to 120
copies of the 11-state sector of Fig. 6 in the Hilbert space. This
phenomenon underlies the occurrence of spikes in the density
of states of Fig. 5.

These scarlike states are a fairly generic phenomenon.
Their high multiplicity survives for V �= 0, as the structure of
each sector remains the same. While the energy eigenvalues
may change with V , the multiplicity of eigenvalues remains
intact. Sectors with the same structure can also appear on
larger graphs. For example, this structure can exist in larger
fullerenes such as C70. It can also appear on larger graphs that
describe Goldberg polyhedra [21,22].

VI. GROUND-STATE PROPERTIES

Below, we discuss ground-state character in the “undoped”
QDM on the full C60 graph shown in Fig. 1. We then discuss
the effect of introducing a pair of vacancies.
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FIG. 6. Graphical representation of a self-contained sector within the Hilbert space. The nodes represent dimer covers, with four shown
explicitly. A pair of nodes connected by a bond represents two dimer covers that are connected by a single hexagon-flip process. For example,
by flipping one hexagon at a time, we may traverse the following loop: |ψ0〉 → |ψ1〉 → |ψ2〉 → |ψ3〉 → |ψ0〉.

A. Ground states in the undoped model

We diagonalize the 12 500×12 500 Hamiltonian matrix of
the C60 QDM and identify the ground state. We restrict our
attention to 0 < V/t < 1. In this regime, the ground state falls
within the maximally flippable sector, which consists of 5828
dimer covers.

To describe the ground state, we may first consider the
dimer-density on a given bond. Unlike C20, the bonds in
C60 fall in two classes—bonds that separate two hexagons
and bonds that separate a hexagon from a pentagon. Within
each class, the bonds are all equivalent. As we vary V/t , the
dimer-density in the ground state is always higher on hexagon-
hexagon bonds. Going further, we characterize the ground
state in terms of correlations between bonds. This is shown
in Fig. 7 for the case V/t = 0. The bond widths represent
a joint probability defined as in Eq. (2)—the likelihood that
a given bond as well as the reference bond are occupied by
dimers. The reference bond may lie in either class, with the
two cases shown as two plots in the figure. We see strong
correlations that span the entire C60 graph. The pattern of cor-
relations reflects the maximal flippable configuration shown
in Fig. 4 (bottom). Indeed, this configuration is the dominant
component in the ground state. Its amplitude ranges from
∼0.1253 to 0.0134, varying as V/t is tuned from 0 to 0.99.
In numerical terms, this may appear to be small. However,
with 5828 dimer covers participating in the ground state, this
represents a large contribution. The next largest contribution
comes from the 20 states that are connected to the maximally
flippable configuration by a single flip. Each of these states
carries an amplitude of ∼0.066 95 at V/t = 0.

We may rationalize this finding as follows. In our regime
of interest, 0 < V/t < 1, the resonance kinetic energy dom-
inates over the potential energy. The kinetic energy favors
maximum spread of the wave function over the Hilbert space.
To achieve this, the ground state chooses the largest sector,
which contains 5828 states. This sector can be viewed as a
network where the central node is the maximally flippable
configuration of Fig. 4 (bottom). We reach other states by
progressively flipping hexagons that are flippable. With each
flip, we move away from the central node following various
branches. To have maximal spread within this network struc-
ture, the wave function peaks at the central node. It explores
every branch (and their subbranches), with the amplitude de-
creasing steadily as we move away from the central node.
This results in the maximally flippable configuration having
the largest weight.

FIG. 7. Dimer correlations in the ground state of the C60 QDM
with V/t = 0. The top and bottom panels correspond to two choices
for the reference bond. In the top figure, the reference bond separates
a pentagon from a hexagon. In the bottom figure, it separates two
hexagons.
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FIG. 8. Ground-state energy in C60 with two vacancies. The first column (“Undoped”) gives the ground-state energy with no vacancies, for
various values of V/t . Subsequent columns show the ground-state energy for various relative positions of two vacancies. For example, “1nn”
corresponds to two positions that are nearest neighbors on the C60 graph. There are two inequivalent choices for nearest neighbors, shown as
(0,1) and (0,5). The positions are shown using the site labels given in Fig. 1.

The C60 QDM hosts a Rokhsar-Kivelson point [2,3] when
V = t . The kinetic and potential energy terms of the Hamil-
tonian combine to form projection operators, so that the
ground-state energy is zero. There is, in fact, one ground
state within each sector of the Hilbert space, given by an
equal-amplitude superposition of all of its dimer covers.
As V/t approaches unity from below, the ground state re-
mains in the maximally flippable sector. The wave function
approaches the Rokhsar-Kivelson form, with the amplitude

of each dimer cover approaching
√

1
5828 . Despite being an

equal superposition of 5828 dimer covers, this state hosts
a noticeable dimer-dimer correlation pattern—reflecting the
maximally flippable configuration. At V/t increases from 0
to unity, dimer correlations weaken while retaining the same
pattern as shown in Fig. 7.

If V/t is increased beyond unity, there is a qualitative
change, with the 256 unflippable states of the Hilbert space
[e.g., Fig. 4 (top)] having the lowest energy. As these states
have no hexagons carrying three dimers, they minimize po-
tential energy cost.

B. Ground states with doping

We next consider “doping” the C60 system with two va-
cancies. As the two vacancies can be positioned in various
ways, we consider every possible relative position. The al-
lowed states contain 29 dimers with no dimer touching a
vacancy. We enumerate all such dimer covers using the FKT
algorithm and a stochastic branching algorithm. For example,
if the vacancies lie at the end of a bond that separates two
hexagons, the resulting graph allows for 5500 dimer covers.
The resulting 5500×5500 QDM Hamiltonian matrix can be
diagonalized to find the ground-state energy.

Figure 8 shows the ground-state energy for various relative
positions of vacancies, as well as for various values of V/t . For
all V/t < 1, the “undoped” case (with no vacancies) has lower
energy than the doped case. To introduce vacancies, we must
pay an energy cost (apart from any inherent binding energy).
This cost stems from the kinetic energy of resonance. This can
be seen, for example, as a reduction in the number of dimer
covers that contribute to the ground state. In the “undoped”
case, we have 5828 dimer covers that participate in the ground
state. However, with two vacancies, we have 3064 or fewer
participating states.

Figure 8 also shows the variation in ground-state energy
as we vary the separation between vacancies. For small V/t ,
the ground-state energy is lowest when the vacancies are
immediately adjacent to one another. As the vacancies move
apart, the energy changes nonmonotonically. However, there
is a general upward trend as energy increases with separation.
We interpret this as resonance-induced binding of vacancies.
Each vacancy prohibits the presence of dimers in its imme-
diate vicinity. This reduces the accessible space that dimers
can explore—effectively limiting their kinetic energy. With
two vacancies, we have two such exclusion zones. If the two
dimers are close to one another, the exclusion zones overlap,
leaving a larger region accessible to resonance. This allows
for maximal lowering of kinetic energy.

We note that there are two inequivalent ways in which
two vacancies can be adjacent—they can lie at the ends of
a pentagon-hexagon-bond or a hexagon-hexagon bond. With
the former choice, three hexagons become unflippable. In
contrast, the latter only prohibits dynamics on two hexagons.
This is consistent with our finding that the latter has lower
ground-state energy (for small V/t).
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When V = t , the Rokhsar-Kivelson picture holds true even
if vacancies are present, so long as the vacancies are static.
The Hamiltonian can be written as a sum of projection oper-
ators over plaquettes, excluding those hosting vacancies. The
ground state has zero energy, given by the equal-amplitude
superposition of all dimer covers (within each sector). As a
result, when V ∼ t , the ground-state energy does not depend
on the relative distance between vacancies, as shown in Fig. 8.
We note that the Rokhsar-Kivelson paradigm does not hold
for C20 as its kinetic and potential energy terms operate over
different plaquettes.

C. Similarities with lattice QDMs

The C60 QDM shows many similarities to QDMs on
macroscopic lattices. In lattice models with Rokhsar-Kivelson
points, a typical phase diagram can be described as follows
[3]. For V < t , there is a regime where the ground state is a
“columnar” phase. The dominant weight comes from a dimer
cover with the largest number of flippable plaquettes. This is
reflected as a clear pattern in the dimer-dimer correlations. As
the correlations are long-ranged, this state is referred to as
a (valence bond) “crystal.” This phase also contains weaker
contributions from other states that are accessible from the
columnar dimer cover. At V = t , a Rokhsar-Kivelson point
occurs where each sector of the Hilbert space yields a ground
state. In lattice QDMs such as the square [2] and triangular
[10] lattices, the number of sectors is small, arising from
topological winding numbers and from a few unflippable
states. This results in a “small” ground-state degeneracy at
the Rokhsar-Kivelson point. For V > t , a “staggered” phase
emerges that is unflippable. Typically, the staggered and
columnar phases have small degeneracies, which correspond
to spontaneously breaking the translational symmetry of the
underlying lattice. Both phases are known to be “confining”
with an energy cost to separate defects [3].

In the C60 QDM, for V < t , the ground state can be viewed
as a columnar phase. It is dominated by a maximally flippable
configuration, reflected as the pattern seen in dimer-dimer
correlations. This is also reflected in the binding of vacancies,
with an energy cost to separate defects. However, unlike a
lattice QDM, the C60 QDM has a unique columnar phase
that does not break any symmetry. At V = t in C60, the
Rokhsar-Kivelson argument holds. However, it produces a
large ground-state degeneracy as the Hilbert space consists
of 583 sectors. For V > t , we have unflippable ground states,
analogous to staggered valence bond crystals. However, the
degeneracy is large with 256 such dimer covers present on the
fullerene graph.

VII. DISCUSSION

We model resonance processes in two fullerenes, C20 and
C60, using a quantum dimer model description. In both cases,
we find large quantum superpositions as ground states. These
states can be viewed as mesoscopic spin liquids—an interme-
diate case between benzene and lattice-spin liquids.

We have used a quantum dimer model, implicitly assuming
that distinct dimer covers are orthogonal. We believe this is a
good approximation that does not affect results qualitatively.

This can be seen by comparing our results with Ref. [5],
which solves the Heisenberg model on C60 by exact diag-
onalization in the nearest-neighbor-valence-bond basis. This
rigorous approach leads to a ground state that is dominated
(∼99.82%) by states of the maximally flippable sector dis-
cussed in Sec. V A above. For comparison, the QDM yields a
ground state that lies entirely within the maximally flippable
sector. Within Heisenberg-like spin models, there is a well-
known prescription to calculate overlaps of dimer covers. On
the C60 graph, no pair of dimer covers is orthogonal [5]. How-
ever, the set of dimer covers is linearly independent [5,23].
This property provides some justification for using the QDM
approach.

Previous theoretical studies on the fullerenes have used
microscopic approaches such as the Hubbard model, the t-J
model, and the Heisenberg model. For smaller fullerenes,
exact diagonalization has been used to solve these models
[24,25]. In the larger C60 system, classical variational wave
functions [26], variational Monte Carlo [27,28], and density-
matrix renormalization group (DMRG) [29] have been
employed. All studies, including our QDM calculation (see
Fig. 7), obtain similar correlations in the C60 ground state—
with the strongest correlation on hexagon-hexagon bonds.

QDMs and other models of constrained dynamics have
been shown to host zero modes and scar states [30]. The
fullerene QDM spectrum possesses a large number of zero
modes, some of which arise from unflippable dimer covers. In
the purely kinetic limit, zero energy states are protected with
a relatively large lower bound on their number. An interesting
future direction is to examine whether these features survive
when resonance on larger loops is included. Apart from zero
modes, the spectrum has many scarlike states that manifest
as peaks in the density of states. They represent localized
dynamics. Their high multiplicity can provide signatures in
spectroscopic measurements. Similar features may also be
found on larger systems, e.g., on Goldberg polyhedra [21,22].

We have demonstrated resonance-induced binding of va-
cancies within the QDM. Physically, vacancies can be
introduced on the fullerene cage in at least two ways.
One is through substitution, exemplified by dihydrogenated
fullerene, C60H2. The hydrogen atoms can be added at various
relative positions. For any choice, they saturate two of the
carbons on the cage, disallowing their participation in dimer
formation. Quantum chemical calculations of Ref. [31] show
that the most stable configuration has two hydrogen atoms on
neighboring sites that are connected by a hexagon-hexagon
bond. Our QDM approach arrives at the same conclusion,
using a simple picture for the bonding processes involved. A
second approach is to induce ionic character in the C60 cage
[32,33]. It has been suggested that molecular solids of the
form A3C60, where A is an alkali metal, may have C60 in the
2− ionic state [34,35]. In this point of view, C2−

60 has higher
stability due to resonance, driving superconductivity in these
materials. Our QDM provides some support for this picture,
with a direct explanation for resonance-induced correlations
within a single fullerene molecule.

Resonating valence bond (RVB) theory has been invoked to
explain the occurrence of superconductivity in the fullerenes
[34–37]. These studies are formulated at the mean-field
level, presupposing a spinon-holon description. The QDM
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description shows RVB ideas in a more direct fashion—by
describing resonance in a manner that can be easily visualized.
Exciting future directions include incorporating dynamics
of vacancies and dimer-hopping between adjacent fullerene
cages.
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[9] D. Vukičević and M. Randić, in The Mathematics and Topol-

ogy of Fullerenes, edited by F. Cataldo, A. Graovac, and
O. Ori, Carbon Materials: Chemistry and Physics, (Springer,
Netherlands, 2011), Chap. 8, p. 153.

[10] R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881 (2001).
[11] S. A. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. Rev. B

35, 8865 (1987).
[12] F. Lin, E. Sørensen, C. Kallin, and J. Berlinsky, in Handbook

of Nanophysics: Clusters and Fullerenes, 1st ed., edited by K.
Sattler (CRC Press, Boca Raton, FL, 2010).

[13] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E.
Smalley, Nature (London) 318, 162 (1985).

[14] F. Hagelberg, Fullerenes, in Magnetism in Carbon Nanos-
tructures (Cambridge University Press, Cambridge, 2017),
pp. 131–146.

[15] P. W. Kasteleyn, in Graph Theory and Theoretical Physics,
edited by F. Harary (Academic Press, New York, 1967),
Chap. 2, pp. 44–110.

[16] S. Caldera, D. Deford, M. Duchin, S. C. Gutekunst, and C. Nix,
Mathematics of Nested Districts: The Case of Alaska—FKT
Algorithm Code, Statistics Public Policy 7 (2020).

[17] G. Tesler, Adv. Appl. Math. 14, 217 (1993).
[18] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course

on Topological Insulators (Springer International, Cham,
2016).

[19] M. Schecter and T. Iadecola, Phys. Rev. B 98, 035139 (2018).
[20] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
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