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Domain-wall dynamics driven by thermal and electrical spin-transfer torque
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According to spin Seebeck effect, a thermal spin current will be produced when a temperature gradient is ap-
plied to the metallic ferromagnet. Similar to the electrical spin transfer torque (ESTT) induced by spin-polarized
current, there is also a thermal spin transfer torque (TSTT) caused by the thermal spin current, which can be
attributed to the s-d interaction between the conduction electrons and the local magnetization. In this paper, the
generalized analytical expressions of thermal spin current and TSTT are derived based on the spinor Boltzmann
equation (SBE) under the local equilibrium approximation. This generalized TSTT has different terms compared
to the previous phenomenological form, and the phenomenological coefficients can be determined theoretically
within our framework. Combined with the SBE under the applied electric field and temperature gradient, we
solve the Landau-Lifshitz-Gilbert-Levy equation to study the domain wall (DW) motion driven by the ESTT and
TSTT. We investigated the temperature-dependent DW motion, the total spin torque, and TSTT in permalloys.
We found that the velocity of the DW can be promoted by increasing temperature and temperature gradient,
which provide a path to effectively utilize the Joule heating in spintronics devices.
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I. INTRODUCTION

Spintronics provides a feasible scheme for the development
of nonvolatile, high-density, and high-speed memory devices.
Since the discovery of the giant magnetoresistance effect
[1] and spin transfer torque (STT) [2,3], magnetoresistance
random access memory (MRAM) driven by spin-polarized
current has been successfully developed and gradually re-
alized industrially [4–7]. According to different driving
mechanisms, MRAM can be classified as STT-MRAM [6,8]
and SOT-MRAM; the latter use the spin-orbit torque (SOT)
as the driving force [5,7,9–11]. In addition, the racetrack
memory (RTM) based on the motion of a domain wall (DW)
[12,13] and magnetic Skyrmion [14] driven by spin-polarized
current has also attracted great interest from researchers. RTM
is expected to become the latest generation of memory due
to its advantages in size and energy consumption compared
with MRAM. The writing operation of the above-mentioned
memories is essentially carried out by switching the magne-
tization state with a high-intensity electrical current at least
105A/cm2 ∼ 107A/cm2 [15–17]. Because of this high current
density, the significant rise in temperature due to the Joule
heating effect may cause irreversible losses to the device, such
as the reduction in lifetime and the degradation in the stability
of the device. In other words, the difficulty in heat dissipation
is one of the challenges faced by new magnetic memory
devices. Therefore, to enhance the writing endurance, it is nec-
essary to consider the thermal effects in the writing process in
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spintronics, that is to say, to develop the transport theory in the
coupling case of charge, spin, and heat current, which gives
birth to a developing branch of spintronics—spin caloritronics
[18].

As early as 1987, Johnson et al. explored the dynamic
laws for the simultaneous existence of charge, heat and spin
current in magnetic metals [19]. In 2000, Wang et al. theo-
retically studied the spin-dependent thermoelectric transport
in the spin valve structure [20]. In the latter, the discovery
of spin Seebeck effect, which shows that the temperature
gradient in a ferromagnet can induce a spin voltage or pure
spin current [21,22], implies that there is a possibility to
prolong the lifetime and improve the efficiency of magnetic
memory device by rationally utilizing and controlling Joule
heat. Since 2007, some theoretical calculations on the reversal
of magnetization by heat currents in spin valves [23,24] have
predicted the existence of spin heat accumulation and thermal
spin transfer torque (TSTT) in the presence of temperature
gradient. These predictions were experimentally confirmed by
Yu et al. in the spin valve system of Co/Cu/Co [25]. At the
same time, the role of temperature gradient on magnetic DWs
also attracted extensive attention. Theoretically, the mecha-
nism of temperature gradient-induced DW motion in magnetic
nanowires was discussed by different methods [26–30]. Ex-
perimentally, Jiang et al. [31] directly observed the thermally
driven DW motion in a magnetic insulator, and found that the
DW “moves towards hot regime” when a temperature gradient
is applied, and its velocity has a linear dependence on the
temperature gradient. They proposed a magnonic STT mech-
anism to explain their observations, which is strong evidence
for the existence of heat current-induced TSTT in continuous
magnetic materials.
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Theoretical studies on DW motion driven by electri-
cal spin transfer torque (ESTT) from spin-polarized current
are mostly carried out by numerically solving the Landau-
Lifshitz-Gilbert (LLG) equation involving the ESTT [32].
Similarly, exploiting the LLG equation containing TSTT to
investigate the DW motion induced by TSTT from heat
current will prove to be efficient. But the crucial point is
how to accurately determine the expression of TSTT. In
Refs. [26,28], based on the phenomenological ESTT in a static
magnetization texture τc = − h̄

e
γ

2AMs
PG�V ( ∂M

∂x − βcM× ∂M
∂x )

[33–36] (γ , Ms, and A are the gyromagnetic ratio, saturation
magnetization and the cross section of magnetic nanowire,
respectively, P is the spin polarization, G is the conductance,
�V is the voltage gradient), this torque is caused by electrical
spin current density jc = h̄

e
γ

2AMs
PG�V M, which simplifies

the spin current as adiabatically following the local magneti-
zation Ref. [33]. Bauer et al. phenomenologically introduced
the expression of TSTT in a dynamic magnetization as τQ =
− h̄

e
γ

2AMs

P′S
LT JQ( ∂M

∂x − βQM× ∂M
∂x ), where P′ is called a spin

conversion factor that converts the heat current JQ into thermal
spin current, S and L are the Seebeck coefficient and Lorenz
number, respectively, JQ stands for the heat current induced by
the temperature gradient, and βc and βQ are called the β fac-
tors parametrizing the out-of-plane torque which is associated
with �V and �T , respectively. Similar to phenomenological
electrical spin current density jc, the thermal spin current
density resulting in the above phenomenological τQ is approx-
imated as jQ = h̄

e
γ

2AMs

P′S
LT JQM. It should be pointed out that

the phenomenological material-dependent parameters P and
P′, βc and βQ need to be determined experimentally. To ex-
press the STT accurately, starting from the spinor Boltzmann
equation (SBE), Wang rigorously derived the total spin torque
in the presence of external field and temperature gradient,
where the total spin torque contains both the ESTT and TSTT
[37]. Based on Wang’s method in Ref. [37], this paper simul-
taneously solves the SBE under an external electric field and
a temperature gradient with the Landau-Lifshitz-Gilbert-Levy
(LLGL) equation to explore thermally induced DW dynam-
ics in a 1D magnetic nanowire with single DW. In addition
to giving the analytical expression of TSTT, we systemati-
cally investigate the influence of temperature and temperature
gradient on local magnetization, DW speed, and spin accumu-
lation as well as the spin current of conduction electrons. The
numerical results are comprehensive for us to enlighten how
to take advantage of Joule heat in spin caloritronic devices.

This paper is organized as follows: In Sec. II, under the
local equilibrium assumption, the spin diffusion equation sat-
isfied by spin accumulation and spin current density is derived
from SBE, which contain both the ESTT from bias and
TSTT from temperature gradient. In Sec. III, as an example,
we numerically solve both the SBE and LLGL equation in
permalloy, where the ESTT and TSTT are considered. Finally,
a summary and discussion is given in Sec. IV.

II. THEORETICAL FORMALISM

Consider a narrow 1D ferromagnetic metal wire with a
single DW, as shown in Fig. 1. Driven by an external electric
field Ex, the spin-polarized electrons by the left DW will
move to the right, resulting in a STT. Besides, as described in

FIG. 1. The schematic structure of 1D ferromagnetic metal
nanowire with a single DW in the presence of an x− axis external
electric field and a temperature gradient. The DW is a typical 180◦

Néel wall with width d . The magnetic domain on the left side of
the DW is a pinnedlike layer which is used to polarize the spin of
electrons. Under the drag force of spin torques induced by field and
temperature gradient, the DW will move toward the right (hotter) end
of the wire.

Ref. [21], the existence of spin Seebeck effect in ferromagnets
will induce an additional pure spin current due to the temper-
ature gradient. Therefore, the total spin torque applied to the
DW are composed of ESTT from external electric field and
TSTT from temperature gradient. To explore the expression
of each torque, we take the SBE satisfied by the conduction
electrons as the starting point [38],(

∂

∂t
+ v̂x

∂

∂x
− eEx

∂

∂ p

)
f̂ + i

h̄
[ε̂, f̂ ] = −

(
∂ f̂

∂t

)
collision

, (1)

where spinor distribution function f̂ can be written as a 2×2
matrix f̂ = ( f↑↑ f↑↓

f↓↑ f↓↓), the spinor energy is defined as ε̂(p) =
ε(p)Î + 1

2 Jex(p)M(x, t ) · σ̂, in which Jex(p) is the s − d ex-
change coupling strength, M(x, t ) represents the unit vector
of magnetization in the DW, and σ̂ are the Pauli spin matrices.
The spinor velocity v̂x is

v̂x = ∂ε̂

∂ p
= ∂ε

∂ p
Î + 1

2

∂Jex

∂ p
M · σ̂ = vx Î + uxM · σ̂, (2)

where vx = ∂ε
∂ p and ux = 1

2
∂Jex
∂ p .

Since any 2×2 matrix can be expanded using the complete
basis {Î, σ̂x, σ̂y, σ̂z}, based on the local equilibrium assump-
tion, we decompose the above f̂ as the sum of the local
equilibrium and nonequilibrium distribution function,

f̂ (p, x, t ) = f̂ 0(p, x) + [ f 1(p, x, t )Î + g1(p, x, t ) · σ̂], (3)

where the local equilibrium distribution function adopt

the form of diagonal matrix f̂ 0(p, x) = ( f 0
� 0
0 f 0

�
). For

the ferromagnetic metal, the diagonal components
are taken as the Fermi distribution function f 0

�(�) =
{exp[

ε(p)± 1
2 Jex−μ(x)

kBT (x) ] + 1}−1, where kB is Boltzmann constant,
μ is the chemical potential, and μ ≈ EF (Fermi energy) at
finite temperature, the temperature distribution is simply
chosen as T (x) = T0 + κx, which is linearly dependent on the
position. By use of the above complete basis {Î, σ̂x, σ̂y, σ̂z},
we further expand f̂ 0 as f̂ 0 = 1

2 ( f 0
� + f 0

�)Î + 1
2 ( f 0
� − f 0

�)σ̂z.
The scalar distribution function f 1(p, x, t ) and the vector
distribution function g1(p, x, t ) in Eq. (3) are the distributions
that deviate from local equilibrium, which correspond to
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the charge distribution and spin distribution, respectively.
For simplicity, we assume F = 1

2 ( f 0
� + f 0

�) + f 1 and
G = {g1

x, g1
y,

1
2 ( f 0
� − f 0

�) + g1
z}, where we have rearranged

the coefficients of {Î, σ̂x, σ̂y, σ̂z} in Eq. (3) together. The
collision term on the right side of Eq. (1) can be simplified in
the relaxation time approximation as(

∂ f̂

∂t

)
collision

= F − 〈F 〉
τ

Î + G · σ̂ − 〈G · σ̂〉
τs

, (4)

where τ and τs are the momentum and spin-flip relaxation
time, respectively.

By substituting Eqs. (3) and (4) into Eq. (1), we can divide
it into two equations, one is satisfied by the scalar distribution
function F ,(

∂

∂t
+ vx

∂

∂x
− eEx

∂

∂ p

)
F (p, x, t ) + uxM · ∂

∂x
G(p, x, t )

= −F − 〈F 〉
τ

, (5)

and the other is satisfied by the vector distribution function G,(
∂

∂t
+ vx

∂

∂x
− eEx

∂

∂ p

)
G(p, x, t ) − Jex

h̄
M × G(p, x, t )

+ uxM
∂

∂x
F (p, x, t ) = −G − 〈G〉

τs
, (6)

which are coupled together. By further expressing
∂
∂x

1
2 [ f 0
�(p, x) + f 0

�(p, x)] and ∂
∂x

1
2 [ f 0
�(p, x) − f 0

�(p, x)]
in the above equations as

∂

∂x

1

2
[ f 0
�(p, x) + f 0

�(p, x)]

= 1

2

∇T

T

[
1

2
Jex

(
∂ f 0
�

∂ε
− ∂ f 0

�

∂ε

)
− (ε − μ)

(
∂ f 0
�

∂ε
+ ∂ f 0

�

∂ε

)]

(7)

and
∂

∂x

1

2
[ f 0
�(p, x) − f 0

�(p, x)]

= 1

2

∇T

T

[
(ε − μ)

(
∂ f 0
�

∂ε
− ∂ f 0

�

∂ε

)
− 1

2
Jex

(
∂ f 0
�

∂ε
+ ∂ f 0

�

∂ε

)]
,

(8)

where(
−∂ f 0

�(�)

∂ε

)
= 1

kBT

{
exp

[
ε(p) ± 1

2 Jex − μ

kBT (x)

]
+ 1

}−1

×
{

exp

[
μ − (

ε(p) ± 1
2 Jex

)
kBT (x)

]
+ 1

}−1

, (9)

it is obvious that the inhomogeneous terms in Eqs. (5) and
(6) include the gradient of temperature ∇T , which causes the
thermal spin current and heat current in the system.

According to the definition of charge density n(x, t ),
charge current je(x, t ), spin accumulation m(x, t ) and spin
current density js(x, t ) in Ref. [38],

n(x, t ) =
∫

d p F (p, x, t ), (10)

je(x, t ) =
∫

d p [vxF (p, x, t ) + uxM · G(p, x, t )], (11)

m(x, t ) =
∫

d p G(p, x, t ), (12)

and

js(x, t ) =
∫

d p [vxG(p, x, t ) + uxMF (p, x, t )]. (13)

By integrating over the variables p on both sides of Eqs. (5)
and (6), we can obtain the continuity equation for charge
density and charge current as

∂

∂t
n(x, t ) + ∂

∂x
je(x, t )

= −n − 〈n〉
τ

+
∫

d p ux
∂M
∂x

· G(p, x, t ), (14)

and the spin diffusion Eq. (15) for spin accumulation and spin
current density as

∂

∂t
m(x, t ) + ∂

∂x
js(x, t )

= −m − 〈m〉
τs f

+
∫

d p ux
∂M
∂x

F (p, x, t ) +
∫

d p
Jex

h̄
M

× G(p, x, t ). (15)

In practical calculation, we often choose the s-d coupling
strength Jex and the spinor velocity ux as constants. Therefore,
the last two terms on the right side of Eq. (15) can be further
written as uxn(x, t ) ∂M

∂x and Jex
h̄ M × m(x, t ), while the latter

is just the STT given by Levy et al. [39,40]. As we know,
the system will arrive at a steady state after t 
 τs in the
relaxation time approximation, so the time dependence of
charge density, spin accumulation and spin current density
can be expressed as n(x, t ) = 1

2 n(x)[1 + exp(− t
τ

)], m(x, t ) =
1
2 m(x)[1 + exp(− t

τs
)] and js(x, t ) = 1

2 js(x)[1 + exp(− t
τs

)],
respectively, where n(x), m(x) and js(x) are the charge den-
sity, spin accumulation and spin current density at the steady
state, respectively. Substituting n(x, t ), m(x, t ) and js(x, t )
into Eq. (15), as detailed in the Appendix, we can obtain the
spin accumulation m(x) at steady state as

m(x) = 1

1 + ξ 2

{
〈m〉 + ξ 2M

[
M · 〈m〉 − τsM · ∂ js(x)

∂x

+ τsuxM · ∂M
∂x

n(x)

]}
− τs

1 + ξ 2

{
∂ js(x)

∂x
+ ξM

× ∂ js(x)

∂x
− ux

∂M
∂x

n(x) − ξuxM × ∂M
∂x

n(x)

}
, (16)

where ξ = Jex
h̄ τs is a dimensionless parameter.

According to the definition of STT τSTT = Jex
h̄ M × m(x),

the spin accumulation parallel to the background magnetiza-
tion does not produce torque, so the terms 1

1+ξ 2 {〈m〉 + ξ 2[M ·
〈m〉 − τsM · ∂

∂x js(x) + τsuxM · ∂M
∂x n(x)]M} in Eq. (16) does

not contribute to the STT, which represent the adiabatic parts
of spin accumulation, while the other terms in Eq. (16)
that are not parallel to the local magnetization M represent
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the nonadiabatic spin accumulation δm(x) = − τs
1+ξ 2 { ∂ js (x)

∂x +
ξM × ∂ js (x)

∂x − ux
∂M
∂x n(x) − ξuxM × ∂M

∂x n(x)} which will have
contribution to STT. Therefore, the total spin torque can be
rewritten as

τtotal = Jex

h̄
M × δm(x)

= − ξ 2

1 + ξ 2

{
1

ξ
M × ∂ js(x)

∂x
+ M ×

[
M × ∂ js(x)

∂x

]

− ux

ξ
M × ∂M

∂x
n(x) − uxM ×

[
M × ∂M

∂x

]
n(x)

}
.

(17)

The first two items in Eq. (17), which describe the spatial
variation of spin current density, has usually been recog-
nized as the source of spin torques, which has the same
expression with Zhang’s STT [41]. However, it is worth em-
phasizing that the spin current in this paper also includes
the contribution caused by temperature gradient besides the
contribution by electric field because the vector distribution
function G(p, x, t ) and scalar distribution function F (p, x, t )
in our spin current contain local equilibrium distribution func-
tion 1

2 ( f 0
� − f 0

�) and 1
2 ( f 0
� + f 0

�), which depend on T (x) and
will contribute the new temperature-dependent terms. Mean-
while, the spatial inhomogeneity of magnetization from the
last two terms in Eq. (17) also contribute to STT. Similar to
the first two terms, the last two items are also temperature
dependent because they contain the local equilibrium distri-
bution function 1

2 ( f 0
� + f 0

�) in the scalar distribution function
F (p, x, t ). By substituting F (p, x, t ) and G(p, x, t ) into the
definition of spin current Eq. (13), we could divide the total
spin current into two parts js = jV + jT , where jT is the
spin current generated by the temperature gradient with the
components as follows:

jTx =
∫

d p uxMx
1

2
( f 0
� + f 0

�) = A(x)Mx(x, t ),

jTy =
∫

d p uxMy
1

2
( f 0
� + f 0

�) = A(x)My(x, t ),

jTz =
∫

d p

[
vx

1

2
( f 0
� − f 0

�) + uxMz
1

2
( f 0
� + f 0

�)

]

= A(x)Mz(x, t ) + B(x), (18)

where A(x) = 1
2

∫
d p ux( f 0

� + f 0
�) and B(x) =

1
2

∫
d p vx( f 0

� − f 0
�); they are all concerned with the

nonuniform temperature T (x). B(x) is usually smaller
than A(x), especially at high temperature, so the term B(x)
in jT can be ignored, then the thermal spin current density
in Eq. (18) can be approximated as jT (x, t ) ≈ A(x)M(x, t ).
Comparing it with the phenomenological thermal spin current
density jQ = h̄

e
γ

2AMs

S
LT P′JQM in Ref. [26], we find the spin

conversion factor can be determined as P′ = A(x)
CJQ

, where

C = h̄
e

γ

2AMs

S
LT is the constant in phenomenological spin

current jQ. Different from the thermal spin current jT , jV is
the usual electrical spin current

jV =
∫

d p [vxg1(p, x) + uxM f 1(p, x)], (19)

which is caused by the external electric field Ex. Similar to
js, the charge density n can also be divided into two terms
nT + nV , in which the temperature-dependent charge density
nT can be written as

nT =
∫

d p
1

2
( f 0
� + f 0

�), (20)

and nV = ∫
d p f 1(p, x). Analogous to jV , the influence of

temperature on nV is much smaller than that of electric field.
Because the total spin current js and total charge density

n can be decomposed into js = jV + jT and n = nV + nT , re-
spectively, the total spin torque in Eq. (17) can be decomposed
as τ total = τV + τT , where the ESTT τV is expressed as

τV = − ξ 2

1 + ξ 2

{
1

ξ
M × ∂ jV (x)

∂x
+ M ×

[
M × ∂ jV (x)

∂x

]

− ux

ξ
M × ∂M

∂x
nV (x) − uxM ×

[
M × ∂M

∂x

]
nV (x)

}

(21)

and the TSTT τT is expressed as

τT = − ξ 2

1 + ξ 2

{
1

ξ
M × ∂ jT (x)

∂x
+ M ×

[
M × ∂ jT (x)

∂x

]

− ux

ξ
M × ∂M

∂x
nT (x) − uxM ×

[
M × ∂M

∂x

]
nT (x)

}
,

(22)

where the components of the spatial gradient of thermal spin
current density ∂ jT

∂x in τT are

∂ jTx(y)

∂x
= 1

2

∫
d p ux

{
∂Mx(y)

∂x
( f 0
� + f 0

�) + Mx(y)
∇T

T

[
1

2
Jex

(
∂ f 0
�

∂ε
− ∂ f 0

�

∂ε

)
− (ε − μ)

(
∂ f 0
�

∂ε
+ ∂ f 0

�

∂ε

)]}
,

∂ jTz

∂x
= 1

2

∫
d p

{[
1

2
uxMzJex + vx(ε − μ)

](
∂ f 0
�

∂ε
− ∂ f 0

�

∂ε

)
−

[
uxMz(ε − μ) + 1

2
vxJex

](
∂ f 0
�

∂ε
+ ∂ f 0

�

∂ε

)}∇T

T

+ 1

2

∫
d p ux

∂Mz

∂x

(
f 0
� + f 0

�

)
. (23)

Equation (23) suggests that the TSTT is proportional to ∇T
T . Focusing on the first two terms in τT with temperature gradient

∂T
∂x , i.e., the fieldlike or out-of-plane thermal torque, τ f l = − ξ

1+ξ 2 M × ∂ jT (x)
∂x , and the dampinglike or in-plane thermal torque:

τdl = − ξ 2

1+ξ 2 M × [M × ∂ jT (x)
∂x ], which are related to ∂ jT (x)

∂x in Eq. (22). If we rewrite the dampinglike thermal torque in Eq. (22)
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as τdl = − ξ 2

1+ξ 2 [(M · ∂ jT (x)
∂x )M − ∂ jT (x)

∂x ], then the first two terms in Eq. (22) can be re-expressed as

ξ 2

1 + ξ 2

∂ jT (x)

∂x
− ξ

1 + ξ 2
M × ∂ jT (x)

∂x
− ξ 2

1 + ξ 2

(
M · ∂ jT (x)

∂x

)
M. (24)

Comparing Eq. (24) with Bauer’s phenomenological TSTT
τQ = ∂ jQ

∂x − βQM × ∂ jQ

∂x in Ref. [26], where jQ = CP′JQM is
the density of thermal spin current, we find they are similar
except for the third term in our expression, although the two
expressions of the thermal spin current are different, where
our thermal spin current jT is derived from SBE, which is
more complicated than the phenomenological expression jQ.
For the dampinglike term τdl in Eq. (24) with in-plane torque
∂ jQ

∂x in Bauer’s equation, we find that both of them origi-
nate from the spatial gradients of the thermal spin current.
However, referring to Slonczewski’s STT in magnetic mul-
tilayers [2] and Zhang-Li’s STT in continuous micromagnetic
structures [33], we believe that only the transverse compo-
nent which is perpendicular to magnetization in dampinglike
torque can contribute to the in-plane torque. Therefore, the
third term in Eq. (24) has no contribution to the TSTT and can
be neglected, then the dampinglike thermal torque will reduce
to the Bauer’s expression, in which the gradient of the ther-
mal spin current is just perpendicular to the magnetization.
Focusing on the out-of-plane TSTT ξ

1+ξ 2 M × jT
∂x in Eq. (24)

and βQM × jQ

∂x in τQ, the phenomenological βQ factor can be
determined by

βQ = ξ

1 + ξ 2
, (25)

which depends on the exchange coupling strength Jex and
spin-flip relaxation time τs. Besides the first two terms in
Eq. (22), the TSTT in our paper also contains more new
terms (the third and fourth terms) than the phenomenolog-
ical TSTT, and they are contributed by the charge density,
which is T (x) dependent. It should be noted that the TSTT
in Eq. (22) is strictly derived from the SBE of spin-polarized
electron, so it is more accurate and suitable for the study of
magnetization dynamics driven by thermal and electrical spin
currents.

Driven by ESTT and TSTT, the motion of magnetiza-
tion in the DW follows the LLG equation including the
total spin torque in Eq. (17), which is called the LLGL
equation,

∂M(x, t )

∂t
= −γ M(x, t ) × Heff + α

Ms
M(x, t ) × ∂M(x, t )

∂t

− Jex

h̄
M(x, t ) × m(x), (26)

where α is the Gilbert damping coefficient. Heff in the first
term is the effective field, which usually includes anisotropy
field, exchange coupling field between spins on neighboring
magnetization, external magnetic field, and demagnetizing
field. The second term describes the effect of magnetic damp-
ing on the precession of magnetization. The third term is
the Levy’s STT which contains both electrical and thermal
STT given in Eqs. (21) and (22), respectively. Obviously, it

is impossible to know the motion of magnetization in the
DW by solving Eq. (26) alone. The appropriate and accurate
treatment is to solve the coupled equations SBE + LLGL
simultaneously, that is, the SBE Eqs. (5) and (6) satisfied by
the spin-polarized electron and the LLGL Eq. (26) satisfied by
the local magnetization. The numerical results of Eqs. (5), (6),
and (26) are shown in the next section.

III. NUMERICAL RESULTS

Due to the complexity of the coupled partial differential
Eqs. (5), (6), and (26), we need to make some appropriate
approximations before numerical calculation. First, Eqs. (5)
and (6) can be simplified to the SBE at the steady state after
the relaxation time, which means the scalar and vector distri-
bution function satisfy ∂F (p,x,t )

∂t = 0 and ∂G(p,x,t )
∂t = 0. Since

the speed of conduction electrons are much faster than the
motion of local magnetization, the momentum and spin re-
laxation time τ and τs are much smaller than that of the local
magnetization, meaning that the charge and spin redistribution
of polarized electrons occur much faster than the motion of
background magnetization. In other words, we first assume
that the charge density and spin density for the electrons have
reached a quasisteady state before the magnetization starts
to move, then we substitute the quasisteady solution into the
total spin torque in Eq. (26) and solve it. For simplicity, the
complex effective field in Eq. (26) is simplified to the mag-
netization at the initial time Heff(x, t ) = cM(x, 0), where c
is a constant, which is convenient for us to study the effect of
total spin torque in DW motion. The initial state of magnetiza-
tion inside the DW is chosen as M(x, 0) = Ms(cos θ, 0, sin θ ),
where θ = π

2 − x
d π . The equilibrium scalar distribution func-

tion in Eq. (5) is adopted as 〈F 〉 = 1
2 ( f 0
� + f 0

�) and the
equilibrium vector distribution function in Eq. (6) is taken as
〈G〉 = exp(i Jex

h̄vx
x)M(x, t ) [40]. The boundary conditions for

the distribution function are taken as {F (p, xmin ) = 〈F 〉(p, xmin )

F (pmin, x) = 〈F 〉(pmin, x)
and

{G(p, xmin ) = 〈G〉(p, xmin )

G(pmin, x) = 〈G〉(pmin, x).
The differential Eqs. (5), (6), and (26) are

solved by the difference method and the procedure is briefly
described as follows: (1) Substituting the initial magnetiza-
tion M(x, 0) into the SBEs (5) and (6) for the spin-polarized
electrons, the spinor distribution function of the polarized
electrons at the initial times F (p, x, 0) and G(p, x, 0) can be
obtained. According to the definition of spin accumulation
Eq. (12) and spin current density Eq. (13), it is easy to get the
initial spin accumulation m(x, 0) and the initial spin current
density js(x, 0) by integrating F (p, x, 0) and G(p, x, 0) over
the momentum. (2). Substituting the m(x, 0) obtained in the
first step back into the LLGL equation of magnetization and
solving Eq. (26) numerically by the difference method, the
magnetization at the next time M(x, 0 + �t ) driven by total
spin torque which contains both the TSTT and ESTT can be
obtained. Repeat the above two steps until the system, i.e.,
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TABLE I. The physical constants and parameters in our paper.

Physical constants/parameters Symbol Value Unit

Gyromagnetic ratio γ 2.21×105 m
A·s

Saturation magnetization Ms 8×105 A
m

Momentum relaxation time of electron τ 1×10−15 s
Spin-flip relaxation time of electron τsf 1×10−12 s
Fermi energy EF 0.14 eV
Fermi velocity vF 2.21×105 m

s

s-d exchange coupling strength Jex 0.106 eV
Spinor velocity ux 1.93×105 m

s
Width of DW d 5 nm
Electrical field Ex −8×103 V

m

Electrical conductivity σ 1.26×106 1
�·m

Damping parameter α 0.2

magnetization inside the DW and spin accumulation of elec-
trons, reaches the final steady state. The physical constant and
parameters are listed in Table I, where we adopt the materials
parameters for permalloy. Based on the above approximation,
Eqs. (5), (6), and (26) are solved simultaneously. The numeri-
cal results for the physical quantities including magnetization
inside the DW M(x, t ), spin accumulation m(x, t ) of elec-
trons, total spin torque τ total, and TSTT τT are shown below.
Section III A concentrates on the magnetization dynamics at
different temperature gradients κ = ∇T and Sec. III B focuses
on the characters of physical quantities at different cold end
temperature T0.

A. Magnetization dynamics at different temperature gradients κ

By numerically solving the equations SBE + LLGL
simultaneously, the motion of magnetization M(x, t ) =
(Mx, My, Mz ) and spin accumulation m(x, t ) = (mx, my, mz )
inside the DW driven by both ESTT and TSTT can be ob-
tained directly. In this subsection, we take the electric field
as Ex = −8×103 V/m, the temperature at cold port as T0 =
100 K. As shown in Fig. 2, the vector of local magnetization
M(x, t ) (green arrows) and spin accumulation m(x, t ) (red
arrows) at each position for different times is intuitively dis-
played. At the initial time, the magnetization inside the DW is
M(x, 0), which has a different direction with the spin accumu-
lation obtained by calculating SBE. Then the total spin torque
τ total = Jex

h̄ M×m caused by the field and the temperature gra-
dient is applied to change the direction of both M(x, t ) and
m(x, t ). After ∼0.15 ns, the magnetization and spin accumu-
lation tend to be parallel M ‖ m and finally reach the steady
state together, then ∂M(x,t )

∂t = 0 and ∂m(x,t )
∂t = 0. In the steady

state, the direction of magnetization inside the DW is the same
as that of the left domain in Fig. 1, which means that the left
domain has moved to the position of the original DW and the
DW has completely slipped to the right (hot) end after 0.15 ns.
If the time for the system to reach the steady state is ts, then the
velocity of DW can be estimated as vDW = d

ts
, where d is the

width of the DW. In this subsection, we fixed the cold end tem-
perature at T0 = 100 K and calculated the magnetization and
spin accumulation in DW at the temperature gradients κ =
0.5 K/nm, 1 K/nm, 2 K/nm, 4 K/nm, 6 K/nm, respectively.

FIG. 2. The 3D vector diagram of magnetization M(x, t )
(marked by green arrow) and spin accumulation m(x, t ) (indicated
by red arrow). The temperature gradient are taken as κ = 2 K/nm.

Their magnetization dynamics are displayed in Fig. S1 in the
Supplemental Material [42]. From Fig. S1, it can be directly
seen that the larger the temperature gradient κ , the faster the
DW motion. In Fig. 3, we plot the total magnetic moment
〈M〉 = ∫ d

0 M(x, t ) dx versus time at different κ , from which
we can simply determine the time ts for the system to stabilize,
that is, the time for the DW to slide to the right end. For
instance, for the maximum temperature gradient κ = 6 K/nm,
ts is ∼0.08 ns, and vDW ≈ 62.5 m/s, while for the minimum
temperature gradient κ = 0.5 K/nm, the magnetization takes
0.23 ns to reach the steady state and vDW ≈ 21.7 m/s, which
is much slower than that at κ = 6 K/nm. Experimentally, it is
widely observed that the velocity of the DWs increases with
the increasing ∇T , both in ferromagnetic materials [43,44]
and in magnetic insulators [31]. The thermal drag force in-
duced by ∇T comes from the angular-momentum driving
force [29,30]. In magnetic metals, the force is called TSTT,
which is the angular momentum transfer between thermal
spin current generated by ∇T and DW, while in magnetic
insulators, it is inferred as magnonic STT [30,31], which
comes from the angular momentum transfer between spin-
wave (magnon) spin current caused by the spin-wave Seebeck
effect [45] and DWs. For magnetic conductors, we derive
a more rigorous analytical expression of TSTT than that
proposed phenomenologically, and its variation with ∇T is
consistent with the experimental phenomenon, as shown in
Fig. 4.

Once the coupling equations SBE + LLGL Eqs. (5), (6),
and (26) are solved numerically, we can also obtain the ther-
mal spin current density jT defined by Eq. (18) and the total
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FIG. 3. The x−, y−, z− component of the total magnetic moment 〈M〉(t ) at different temperature gradients versus time.

spin current density js defined by Eq. (13), where js is the sum
of electrical spin current density jV and thermal spin current
density jT . By inserting js into Eq. (17) and jT into Eq. (22),
the variation of total spin torque τ total and TSTT τT with
position x at different times can be calculated accordingly. We
have shown τ total and τT at the initial time t = 0 in Fig. 4,
which implies that both the total spin torque and the TSTT
increase with the temperature gradient. The TSTT increases
because it is proportional to the temperature gradient ∇T
according to Eq. (23), while the total spin torque increases
due to the TSTT. By comparing the total spin torque τ total

and TSTT τT at a time under a certain ∇T in Fig. 4, we can
find that the TSTT is more than half of the total spin torque,
which indicates that the TSTT induced by a temperature gra-
dient is greater than the ESTT induced by the electric field
8×103 V/m (or electrical current 106A/cm2 for a permalloy
with conductivity 1.26×106�−1m−1).

B. Magnetization dynamics at different cold end temperature T0

In this subsection, we will show the influence of differ-
ent cold end temperature T0 on various physical quantities;
here we adopt the electric field as Ex = −8×103 V/m, the
temperature gradient as κ = 5 K/nm. In Fig. 5, the magne-
tization M(x) and spin accumulation m(x) versus position
at time t = 0.05 ns for different cold end temperatures T0 =
150 K, 175 K, 200 K, 225 K, 250 K are shown. The dynam-
ics is given in Fig. S2 in Supplemental Material. From Fig. S2,
it is easy to find that the higher the cold end temperature T0,
the larger the spin accumulation and the faster the DW moves.
Similar to Fig. 3, Fig. 6 shows the total magnetic moment
〈M〉(t ) at different cold end temperatures, from which the
velocity of DW motion can be evaluated, which accelerates
with T0. It is not only agreement with the predictions of
theoretical calculations [46,47] but also with the experimental
observations of thermally induced DW motion in nanowires

FIG. 4. (a), (b), (c) are the x, y, and z components of total spin torque τ total and (d), (e), (f) are the x, y, and z components of TSTT τT

versus position at different temperature gradients at t = 0.
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FIG. 5. The 3D vector diagram of magnetization M(x, t )
(marked by green arrow) and spin accumulation m(x, t ) (indicated
by red arrow). The temperature gradients are taken as κ = 2 K/nm.

[48–51]. It should be pointed out that there are different views
on how the thermodynamics participates in and assists the
current-induced DW motion: the thermally reduction of de-
pinning field and critical current density [46,50], the thermally
reduction of saturation magnetization [48], the thermally re-
duction of magnetocrystalline anisotropy [52–54], and so on.
In our theory, the thermally activated and assisted process is
explained by the variation of spin accumulation and STT with
temperature, as shown in Fig. 7.

The influence of different T0 on TSTT τT and the total
spin torque τ total are demonstrated in Fig. 7, from which it
can be seen that the amplitude of TSTT at the initial time
increases with T0, which also leads to the increase of the total

FIG. 6. The x, y, z components of the total magnetic moment 〈M〉(t ) at different temperatures versus time.

spin torque. It should be noted that, at first glance, Eq. (23)
indicates that the TSTT is proportional to 1

T , it means that the
increase of temperature will lead to the decrease of the TSTT,
which is contrast to the numerical result in Fig. 7. In fact, it
can be explained as follows: As we know, only the electrons
near Fermi energy EF can participate in the transport; the
increase of temperature will increase the number of thermally
activated electrons that participate in the transport procedure,
which means there are more electrons that will contribute to
the transport procedure. According to the definitions of spin
accumulation Eq. (12), total spin current density Eq. (13), and
thermal spin current density Eq. (18), which are the integral
of spinor distribution function over momentum p within the
interval �p, this will result in the increase of spin accumu-
lation, the total spin torque, and TSTT, as shown in Fig. 7.
Therefore, the Joule heating effect of spintronics devices can
play a positive role in the operating efficiency.

IV. SUMMARY AND DISCUSSION

In the framework of the SBE, the temperature is intro-
duced into the spinor distribution function by making a local
equilibrium approximation, and the continuity Eq. (14) and
the spin diffusion Eq. (15) satisfied by the spin accumulation
m(x, t ) and spin current density js(x, t ) driven by external
electric field Ex and temperature gradient ∇T are derived. In
the relaxation time approximation, we solve the spin diffusion
equation, and obtain the expression of spin accumulation m(x)
at the steady state. Substituting m(x) into the definition of
Levy’s STT, we can get the analytical expression of the total
spin torque τ total Eq. (17), which contains both the ESTT
and TSTT. Our expression of TSTT is derived analytically,
which has different terms than Bauer’s phenomenological
TSTT. The first two terms in Eq. (22) correspond to Bauers’s
TSTT, which are induced by the temperature gradient, from
which we can determine the spin conversion factor P′ and
the phenomenological coefficient βQ in Bauer’s expression
theoretically, where we find that βQ depends on the spin-flip
relaxation time of electron and exchange coupling strength
between itinerant electron and local magnetic moments; while
the last two terms are caused by the inhomogeneity of mag-
netization in DWs, which depend on the temperature by the
charge density. The analytical expression of TSTT Eq. (22) is
our main result.
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FIG. 7. (a), (b), (c) are the x, y, z components of total spin torque τ total and (d), (e), (f) are the x, y, z components of TSTT τT versus
position at different temperatures at t = 0.

By numerically solving the coupled equations SBE +
LLGL Eqs. (5), (6), and (26), we investigate the magneti-
zation dynamics at different temperature gradient ∇T and
cold end temperature T0 in a DW. We find (1) the velocity
of the DW vDW increases with temperature gradient ∇T at a
fixed cold end temperature, because the TSTT is proportional
to the ∇T , which drives the motion of the DW and (2) the
vDW increases with cold end temperature T0 when we fix
the temperature gradient ∇T . Although the TSTT appears
to be proportional to 1

T , the increase of T0 leads to the in-
crease of spin accumulation m(x) and the spin current density
js(x), as well as total spin torque. The above conclu-

sion is consistent with the experimental observations in
Refs. [31,43,44,48–51].
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APPENDIX: DERIVATION OF THE EXPRESSION OF SPIN ACCUMULATION AT STEADY-STATE EQ. (16)

In this Appendix, we will present the detailed derivation of Eq. (16). Substituting n(x, t ) = 1
2 n(x)[1 + exp(− t

τ
)], m(x, t ) =

1
2 m(x)[1 + exp(− t

τs
)], and js(x, t ) = 1

2 js(x)[1 + exp(− t
τs

)] into the spin diffusion Eq. (15), the spin diffusion equation under
relaxation time approximation is

− 1

τs
exp

(
− t

τs

)
m(x) +

[
1 + exp

(
− t

τs

)]
∂ js(x)

∂x

=
[

1 + exp

(
− t

τs

)]{
−m(x) − 〈m〉

τs
+ Jex

h̄
M × m(x)

}
+

[
1 + exp

(
− t

τ

)]
ux

∂M
∂x

n(x). (A1)

When t 
 τs, we can obtain the steady-state spin diffusion equation

∂ js(x)

∂x
= −m(x) − 〈m〉

τs
+ Jex

h̄
M × m(x) + ux

∂M
∂x

n(x), (A2)

which can be rewritten as

m(x) = −τs
∂ js(x)

∂x
+ ξM × m(x) + τsux

∂M
∂x

n(x) + 〈m〉, (A3)
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where ξ = τs
Jex
h̄ . To explore the expression of the steady-state spin accumulation m(x), we first multiply M× on both sides of

Eq. (A3),

M × m(x) = −τsM × ∂ js(x)

∂x
+ ξM × [M × m(x)] + τsuxM × ∂M

∂x
n(x) + M × 〈m〉, (A4)

where M×〈m〉 = 0 because the equilibrium spin accumulation is always parallel to the magnetization. Equation (A4) can be
expanded as

M × m(x) = −τsM × ∂ js(x)

∂x
+ τsuxM × ∂M

∂x
n(x) + ξ{[M · m(x)]M − |M|2m(x)}. (A5)

Then, multiplying M· on both sides of Eq. (A3),

M · m(x) = −τsM · ∂ js(x)

∂x
+ τsuxM · ∂M

∂x
n(x) + M · 〈m〉. (A6)

Inserting Eqs. (A5) and (A6) into Eq. (A3), the steady-state spin accumulation can be obtained as

m(x) = 1

1 + ξ 2

{
〈m〉 + ξ 2M

[
M · 〈m〉 − τsM · ∂ js(x)

∂x
+ τsuxM · ∂M

∂x
n(x)

]}

− τs

1 + ξ 2

{
∂ js(x)

∂x
+ ξM

∂ js(x)

∂x
− ux

∂M
∂x

n(x) − ξuxM × ∂M
∂x

n(x)

}
, (A7)

which is Eq. (16).
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