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RbFe2+Fe3+F6 is an example of an antiferromagnet with charge ordering of the octahedrally coordinated Fe2+

and Fe3+ ions. As well as different spin values, Fe2+ (S = 2) and Fe3+ (S = 5
2 ) possess differing orbital ground

states with Fe2+ having an orbital degeneracy with an effective orbital angular momentum of l = 1. The resulting
low-temperature magnetic structure is noncollinear with the spins aligned perpendicular to nearest neighbors [S.
W. Kim et al. Chem. Sci. 3, 741 (2012)]. The combination of an orbital degeneracy and noncollinear spin
arrangements introduces the possibility for unusual types of excitations such as amplitude modes of the order
parameter. In this paper we investigate this by applying a multilevel analysis to model neutron spectroscopy
data [M. Songvilay et al. Phys. Rev. Lett. 121, 087201 (2018)]. In particular, we discuss the possible origins of
the momentum and energy broadened continuum scattering observed in terms of amplitude fluctuations allowed
through the presence of an orbital degree of freedom on the Fe2+ site. We extend previous spin-orbit exciton
models based on a collinear spin structure to understand the measured low-energy excitations and also to predict
and discuss possible amplitude mode scattering in RbFe2+Fe3+F6.

DOI: 10.1103/PhysRevB.106.054431

I. INTRODUCTION

The concept of spin waves was first introduced by Bloch
to describe the renormalization of the spontaneous magneti-
zation of the simple ferromagnet [1]. Since this initial work,
subsequent contributions by Dyson [2], and Holstein and
Primakoff [3] have further expanded our understanding of
the quasiparticle spectrum in magnetically ordered insulators.
The importance of spin wave theory expanded significantly to-
wards the latter part of the 20th century, following the advent
of neutron scattering techniques by Shull and Brockhouse,
which offered a way of directly probing the fundamental spin
wave excitations of magnetic systems through the spin-spin
correlation function. To this day, linear spin wave theory
(LSWT) remains one of the primary tools of investigating
long range magnetically ordered phases of matter as a means
of understanding the underlying interactions. Its success in
understanding spin interactions in insulators has resulted in
several widely used computer routines for modeling neutron
scattering data including SpinWave [4,5], SpinWaveGenie [6],
and SpinW [7]. Such programs have opened up neutron scat-
tering to a broader user base and have contributed significantly
to the success of new neutron instrumentation and the expan-
sion of the user community.

LSWT is fundamentally a semiclassical technique and re-
sults from the expansion in 1/S about a classical ground
state. Physically, it can be interpreted as describing transverse
fluctuations of an ordered magnetic moment around a fixed
direction. It therefore enjoys greatest success in describing
large-S systems, where corrections to the leading order theory
are small and the ground state is not dominated by quantum
fluctuations [8]. For small-S systems there exist many funda-

mental excitations, which are not well-described by LSWT
such as spinons, breathers, and solitons [9–11]. Nonetheless,
LSWT has been surprisingly successful in describing physics
away from the large-S, long-range ordered limit [12–15].

The typical LSWT treatment of coupled magnetic ions
directly treats the spin degree of freedom based on a
Hamiltonian with dominant Heisenberg terms. The effect
of single-ion terms, such as spin-orbit coupling, in the
magnetic Hamiltonian can be included perturbatively via
Dzyaloshinskii-Moriya interactions and anisotropy terms
[16]. However, this treatment precludes the possibility of
longitudinal amplitude fluctuations of the order parameter
[17,18], which give rise to new types of excitations given
that the observable Ŝz does not commute with the magnetic
Hamiltonian. Furthermore, the integrating out of the orbital
degree of freedom can leave behind the incorrect single-ion
ground state given the mixing of orbital and spin degrees of
freedom.

Recently, effects of spin-orbit coupling on the magnetic
excitations have been of intense interest in 4d or 5d transi-
tion metal ions [19–21]. However, given that the spin-orbit
coupling scales as the atomic number squared (λ ∼ Z2) [22],
the energy scale for spin-orbit coupling is reduced for 3d tran-
sition metal ions, introducing the possibility of mixing of spin
and orbital degrees of freedom on a energy scale measurable
with neutron scattering [23]. In such a situation, treatment of
the magnetic excitations needs to incorporate the single-ion
properties of the local crystalline electric field, which define
the eigenstates of the magnetic ions of interest.

In this paper we revisit the spin excitations previously
reported in RbFe2+Fe3+F6 [24,25]. RbFe2+Fe3+F6 has a
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structure related to the α pyrochlores A2B2X6X ′, but with a
vacancy on one out of two A cations and another on the
X ′ anion site that does not contribute to the BX6 octahedra.
Several compounds with similar structures have been reported
in the literature [26,27]. Charge order originates from the two
different iron sites, which have differing valences of Fe2+

and Fe3+. While the magnetic ground state of Fe3+ is S = 5
2

with each of the five d orbitals half filled following Hund’s
rules and the Pauli principle, the situation for Fe2+ is slightly
more complicated with an extra electron occupying one of
the t2g states with S = 2 and an effective l = 1 (which we
discuss in more detail below). As a direct result of this orbital
degeneracy [28–30], the Fe2+F6 octahedra are considerably
more distorted than the Fe3+F6 octahedra.

The goal of this paper is to investigate the spin fluctuations
in RbFe2+Fe3+F6, specifically the role of orbital contribu-
tions, which are coupled to the spin response via spin-orbit
coupling, in the neutron cross section. To understand the spin
fluctuations and the role of the differing spin and orbital con-
tributions from each of the iron sites, we present an extension
to the Green’s function formalism treating coupled multilevel
sites to account for noncollinear magnetic order. We apply this
formalism to the noncollinear charge-ordered antiferromag-
net RbFe2+Fe3+F6, calculating the excitation spectrum. We
discuss the low-energy excitations and compare the results to
previous neutron experiments and then investigate the ampli-
tude fluctuations in magnitude of the order parameter resulting
from the nonconservation of Ŝz.

In this paper, we leverage the Green’s function approach
with the local symmetry to predict the existence of amplitude
fluctuations of the ordered magnetic moment proportional
to 〈Ŝz〉. The existence of this mode originates from the im-
portance of spin-orbit coupling (∝ L · S) in the magnetic
Hamiltonian. This additional term means that the observable
operator Ŝz no longer commutes with the magnetic Hamilto-
nian and therefore fluctuations ∝ d〈Ŝz〉

dt �= 0, are allowed. We
show how the energy scale of the amplitude mode is con-
trolled through single-ion terms in the Hamiltonian such as
uniaxial anisotropy as well as spin-orbit coupling. Owing to
the single-ion nature of this excitation it is expected to be less
dispersive than lower energy transverse excitations.

This paper is divided into five sections including this intro-
duction. In Sec. II we write out the definitions of the Green’s
function formalism applied here and extend it from previous
papers to a noncollinear magnet relevant here. This section il-
lustrates the role of single-ion physics in modeling neutron
spectra and magnetic fluctuations. In Sec. III we apply this
to the situation in RbFe2+Fe3+F6 and discuss the single-ion
physics for Fe2+ and Fe3+ relevant in defining the ground state
that is coupled via the random phase approximation (RPA) in
our Green’s function approach. In Sec. IV we calculate the
neutron response and finish the paper with a discussion and
concluding remarks in Sec. V.

II. GREEN’S FUNCTION

In this section we discuss the calculation of the Green’s
function in a noncollinear magnet and its relation to neutron
spectroscopy. The Green’s function formalism allows for the
treatment of multilevel systems in a manner similar to SU(N)

spin wave theory and the flavor wave expansion approach
[17,31–35]. By formulating the calculation in terms of re-
sponse functions, a direct connection can be made to the
neutron scattering intensity.

A. Relation to neutron spectroscopy

The intensity measured with neutron scattering is directly
proportional to the structure factor S(q, ω),

S(q, ω) = g2
L f 2(q)

∑
αβ

(δαβ − q̂α q̂β )Sαβ (q, ω),

corresponding to a product of the Landé g factor gL, the
magnetic form factor f (q), a polarization factor providing
sensitivity to the component perpendicular to the momentum
transfer q, and the dynamic spin structure factor Sαβ (q, ω).
This itself corresponds to the Fourier transform of the spin-
spin correlations

Sαβ (q, ω) = 1

2π

∫
dteiωt 〈Ŝα (q, t )Ŝβ (−q, 0)〉,

where α, β = x, y, z. Sαβ (q, ω) as written above considers
only the spin contribution to the neutron scattering cross
section. The contributions from orbital fluctuations are ig-
nored given that the expectation value of the orbital angular
momentum 〈L〉 ≡ 0 via quenching for d orbitals [16]. The
assumption to only consider the spin part of the neutron cross
section depends on our experiment remaining in a single
|L, mL〉 multiplet and this is justified given the energy scales
under consideration. Total moment sum rule analysis confirms
that the spin contribution to the scattering cross section is
dominant in RbFe2+Fe3+F6 [36]. As discussed in the follow-
ing sections, orbital contributions to the structure enter via the
spin-orbit (L · S) coupling term in the magnetic Hamiltonian.

The relation of the structure factor Sαβ (q, ω) to the
response function is given by the fluctuation-dissipation
theorem

Sαβ (q, ω) = − 1

π

1

1 − exp(ω/kBT )
	Gαβ (q, ω),

and allows the magnetic neutron cross section to be defined
in terms of a Green’s response function Gαβ (q, ω) [37]. Rec-
ognizing that the neutron response function is proportional
to the temperature dependent Bose factor multiplied by the
Fourier transform of the retarded Green’s function shows that
calculating the Green’s function response provides a means of
modeling the neutron response.

B. Laboratory frame

Building on previous papers [38–42], we now extend the
Green’s function formalism to treat noncollinear magnetic
structures of arbitrary unit cell size. We begin by defining the
Green’s function equation of motion in the laboratory frame

Gαβ

γ̃ γ̃ ′ (i′ j′, t ) = −i	(t )
〈[

Ŝα
i′γ̃ (t ), Ŝβ

j′γ̃ ′ (0)
]〉
.

The indices α and β label the spatial components in Cartesian
coordinates, whilst γ̃ and γ̃ ′ label the atom site within the unit
cell. The labeling convention for the indices used throughout
this paper are summarized in Table I.
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TABLE I. Summary of labeling convention for indices.

Index Description

γ , γ ′ sites within unit cell
i, j unit cell
α, β, μ, ν Cartesian coordinates

Causality is enforced by the Heaviside step function 	(t ),
which precludes negative values of t . Taking the derivative of
both sides with respect to time and multiplying by a factor of
i, one finds that

i∂t G
αβ

γ̃ γ̃ ′ (i′ j′, ω) = δ(t )
〈[

Ŝα
i′γ̃ (t ), Ŝβ

j′γ̃ ′
]〉

− i	(t )
〈[

i∂t Ŝ
α
i′γ̃ (t ), Ŝβ

j′γ̃ ′
]〉
. (1)

Taking advantage of the Heisenberg equation of motion,
i∂t Ŝα

iγ (t ) = [Ŝα
iγ (t ),H], and performing a Fourier transform in

time, Eq. (1) can be written as

ωGαβ

γ̃ γ̃ ′ (i′ j′, ω) = 〈[
Ŝα

i′γ̃ , Ŝβ

j′γ̃ ′
]〉

+ Gγ̃ γ̃ ′
([

Ŝα
i′γ̃ ,H

]
, Ŝβ

j′γ̃ ′ , ω
)
. (2)

For a system, which consists of coupled multilevel sites,
one can separate the Hamiltonian into single-ion and interion
terms

H =
∑

iγ

H′(i, γ ) + Hint,

where H′(i, γ ) contains all of the manifestly single-ion terms
such as spin-orbit coupling and the crystalline electric field
whilst Hint describes the interion terms such as the exchange
interaction between sites and is therefore a sum over all bonds.
In order that we expand about the correct single-ion ground
state, we now perform a mean field decoupling Siγ → 〈Siγ 〉 +
δSiγ , discarding terms ∼O(δSiγ )2. Following this decoupling,
the single-ion Hamiltonian gains a molecular mean field
Zeeman term, which breaks spin-rotational symmetry.

Assuming an interaction Hamiltonian of the form Hint =
1
2

∑γ γ ′
i j J γ γ ′

i j Siγ · S jγ ′ , where J γ γ ′
i j is a Heisenberg exchange

parameter, the decoupled Hamiltonian becomes

H =H1 + H2,

H1 =
∑

iγ

{
H′(i, γ ) +

∑
jγ ′

J γ γ ′
i j

[
Siγ − 1

2
〈Siγ 〉

]
〈S jγ ′ 〉

}
,

H2 =1

2

γ γ ′∑
i j

J γ γ ′
i j Siγ · S jγ ′

−
γ γ ′∑
i j

J γ γ ′
i j

[
Siγ − 1

2
〈Siγ 〉

]
〈S jγ ′ 〉.

The projection of the spin operators onto the space spanned
by the eigenvectors of the single-ion Hamiltonian, H1 can be

written as

Ŝα
iγ =

∑
pq

Sγ
αpqc†

p(i, γ )cq(i, γ ),

where the sum extends over all eigenstates |p〉 of the
Hamiltonian and Sγ

αpq = 〈p| Ŝα
γ |q〉. The operators c†

q create the
single-ion eigenstate |q〉. Now one must calculate the commu-
tator in the right hand side of Eq. (2) using the projected spin
operator. The terms in the commutator are quartic in bosonic
operators, however a random phase decoupling [43] can be
performed,

c†
p(i, γ )cq(i, γ )c†

m( j, γ ′)cn( j, γ ′)

= fp(i, γ )δpqc†
m( j, γ ′)cn( j, γ ′)

+ fm( j, γ ′)δmnc†
p(i, γ )cq(i, γ ),

where fp(i, γ ) is the Bose occupation factor of level p on site
γ in unit cell i. In Cartesian coordinates, the commutator can
be written as [Ŝα

i′γ̃ ,H] = ∑4
s=1 Cs, with the individual terms

given by

C1 =
lkpq∑
jγ ′

φqp(i′, γ̃ )c†
k ( j, γ ′)cl ( j, γ ′)Sγ̃

αqpSγ̃
xpqSγ ′

xklJ
γ̃ γ ′

i′ j (3a)

C2 =
lkpq∑
jγ ′

φqp(i′, γ̃ )c†
k ( j, γ ′)cl ( j, γ ′)Sγ̃

αqpSγ̃
ypqSγ ′

yklJ
γ̃ γ ′

i′ j (3b)

C3 =
lkpq∑
jγ ′

φqp(i′, γ̃ )c†
k ( j, γ ′)cl ( j, γ ′)Sγ̃

αqpSγ̃
zpqSγ ′

zklJ
γ̃ γ ′

i′ j (3c)

C4 =
∑

pq

(ωp − ωq)c†
q(i′, γ̃ )cp(i′, γ̃ )Sγ̃

αqp, (3d)

where φqp(i′, γ̃ ) = ( fq(i′, γ̃ ) − fp(i′, γ̃ )). It should be noted

that we have taken J γ γ ′
i j to be a Heisenberg coupling but off-

diagonal terms can readily be considered and give rise to terms
∼Sγ̃

αqpSγ̃
μpqSγ ′

νkl , where μ �= ν. By substituting Eqs. (3a)–(3c)
into Eq. (2) and performing a spatial Fourier transform one
recovers an expression for the Green’s function equation of
motion

Gαβ

γ̃ γ̃ ′ (q, ω) = gαβ

γ̃ γ̃ ′ (ω)δγ̃ γ̃ ′

+
∑
γ ′

gαx
γ̃ γ̃ (ω)Jγ̃ γ ′ (q)Gxβ

γ ′γ̃ ′ (q, ω)

+
∑
γ ′

gαy
γ̃ γ̃ (ω)Jγ̃ γ ′ (q)Gyβ

γ ′γ̃ ′ (q, ω)

+
∑
γ ′

gαz
γ̃ γ̃ (ω)Jγ̃ γ ′ (q)Gzβ

γ ′γ̃ ′ (q, ω), (4)

with the single-ion Green’s function given by

gαβ

γ̃ γ̃ ′ (ω) =
∑
qp

Sγ̃
αqpSγ̃ ′

βpqφqp

ω − (ωp − ωq)
, (5)

where we have used translational symmetry to drop the
site index on φqp. To describe magnon excitations at
zero temperature, we sum over transitions to and from
the ground state. For collinear systems the expression
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for the Green’s function [Eq. (4)] decouples into three
matrix equations for the xx, yy, and zz spin wave
modes, with the dimension of the Green’s function ma-
trix given by the size of the crystallographic unit cell [41].
Equation (4) is general and can be used to treat antiferro-
magnetic systems by doubling the unit cell to account for
the differing mean field on antialigned spins [42]. However,
for noncollinear systems, the use of an enlarged supercell is
not convenient, and in the case of incommensurate magnetic
structures this is not possible. In the next section we present a
general method for treating any single Q magnetic structure.

C. Rotating frame formalism

The scheme presented in the previous section cannot treat
general noncollinear magnetic structures since, in the labora-
tory frame, (x, y, z), each unit cell has a different mean field
Hamiltonian [and hence different gγ γ (ω)] up to the period
of the magnetic supercell. This deficiency can be overcome
by transforming to a reference frame that rotates with the
magnetic structure [44], (x̃, ỹ, z̃). In this rotating frame, the
magnetic moment at each site is orientated along the z̃ axis.
The spin vector in the laboratory frame can be related to the
rotating frame by the rotation

Siγ = Riγ S̃iγ

where S̃iγ are the spin operators in the rotating frame. The
rotation can be broken into two parts, the rotation of the spins
within the unit cell onto a common coordinate system for
the unit cell and a rotation of each unit cell onto a common
rotating frame coordinate system, Riγ → RiRγ . In order to
relate Ri to the magnetic ordering wavevector Q, and spin
rotation plane n, we make use of the Rodrigues formula

Ri = eiQ·ri T + e−iQ·ri T ∗ + nnT , (6a)

T = 1
2 (1 − nnT − i[n]×). (6b)

The matrix elements of the skew symmetric matrix can be
conveniently written using the Levi-Civita symbol in Einstein
notation, [[n]×]i

j = εi
jknk .

In the rotating frame, the intersite exchange Hamiltonian
becomes

Hint = 1

2

γ γ ′∑
i j

ST
iγJ

γ γ ′
i j S jγ ′ = 1

2

γ γ ′∑
i j

S̃T
iγ RT

γ RT
i J

γ γ ′
i j R jRγ ′ S̃ jγ ′ .

To proceed with the calculation, we write Siγ using the basis
vectors of the space formed by the tensor product of the sub-
lattice space and R3, V3N = VN ⊗ R3, where N is the number
of sites in the unit cell. Although competing Heisenberg ex-
change can give rise to noncollinear order, many noncollinear
magnetic systems in nature arise due to more complicated
exchange terms including Dzyaloshinskii-Moriya and other
off-diagonal couplings. These terms can be motivated on sym-
metry grounds [45] and arise due to third order processes,
involving exchange between excited spin-orbit levels [16,46].
These can be readily incorporated into this model by defining
the exchange matrix in the full 3N × 3N-dimensional space

V3N as

J γ γ ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J11
xx J11

xy J11
xz J12

xx

J11
yx J11

yy J11
yz J12

yx . . .

J11
zx J11

zy J11
zz J12

zx

J21
xx J21

xy J21
xz

. . .
...

JNN
xx JNN

xy JNN
xz

JNN
yx JNN

yy JNN
yz

JNN
zx JNN

zy JNN
zz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

forming a 3N × 3N matrix. Note that for Heisenberg cou-
pling, only the diagonal elements of each 3 × 3 block are
nonzero. In order that the rotation Riγ acts only within R3,
we project into V3N , so that T3N = I3 ⊗ T , where I3 is the
3 × 3 identity matrix and T is defined by Eq. (6b). Since the
rotation matrices are unitary, RT

i R j = Ri j , and the correspond-
ing exponential factors from the Rodrigues formula [Eq. (6a)]
can be absorbed into the definition of the Fourier transform of
the exchange interaction. Expressed in the 3N × 3N product
space, the full intersite Hamiltonian can then be written as

Hint = 1

2

∑
q

̃ST
q

{
X ′

[
J (q + Q)T3N

+ J (q − Q)T ∗
3N + J (q)(I3 ⊗ nnT )

]
X

}̃S−q (7a)

[J (q)]γ γ ′ =
∑

i j

J γ γ ′

i j
e−iq·(ri−r j ) (7b)

X = diag(R1, R2, ..., RN ) (7c)

X ′ = diag
(
RT

1 , RT
2 , ..., RT

N

)
(7d)

where ̃ST
q = (S̃x

1(q), S̃y
1(q), ..., S̃z

N (q)). The contents of the
braces {} can be identified as a rotated exchange parameter

J̃ (q), defined such that, Hint = 1
2

∑
q

̃ST
q J̃ (q)̃S−q. Even for

Heisenberg coupling, this is no longer diagonal in R3 and
contains terms that couple orthogonal modes.

Note that we have performed the summation in Eq. (7a)
over the unit cell rather than over all sites as is required in
the definition of the dynamical structure factor. This allows us
to absorb the exponential factors from the Rodrigues formula
[Eq. (6a)] into the definition of J . The effect of summing over
the unit cell is to create interference between the ions in the
unit cell and can thus be regarded as a type of form factor.

In this rotated coordinate system, the calculation can be
performed in a manner similar to that outlined in the previous
section, except in our new coordinate frame the coupling is
not in general a diagonal Heisenberg coupling. The Green’s
function in the rotating frame can be written down by inspec-
tion of Eq. (4), noting that in our new rotating frame J̃ can
couple orthogonal modes, hence

G̃αβ

γ̃ γ̃ ′ (q, ω) = gαβ

γ̃ γ̃ ′ (ω)δγ̃ γ̃ ′ +
μν∑
γ ′

gαμ
γ̃ γ̃ (ω)J̃ μν

γ̃ γ ′ (q)G̃νβ

γ ′γ̃ ′ (q, ω)

where G̃(q, ω) is the Green’s function in the rotating frame.
This can be solved as a matrix equation in a manner similar to
that described in Ref. [41]. All that remains is to rotate back
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into the laboratory frame

G(q, ω) =Dq(I3 ⊗ nnT )XG̃(q, ω)X ′(I3 ⊗ nnT )D−q

+ DqT ∗
3N XG̃(q + Q, ω)X ′T ′

3N D−q

+ DqT3N XG̃(q − Q, ω)X ′T ∗′
3N D−q

where T ′
3N = (I3 ⊗ T T ) and T ∗′

3N = (I3 ⊗ T †) and the trans-
lational invariance of the correlation function has been used.
The matrix Dq = δγ γ ′eiq·δγ ⊗ I3 accounts for the interference
between ions in the unit cell. If the ordering wavevector is
Q = (0, 0, 0), we can perform the sum over all ions in the
Fourier transform of the exchange interaction J (q), in which
case the Green’s function in the laboratory frame is simply
G(q, ω) = XG̃(q, ω)X ′.

III. APPLICATION TO RUBIDIUM IRON FLUORIDE

We now turn our attention to the low-energy magnetic fluc-
tuations in the noncollinear antiferromagnet RbFe2+Fe3+F6.
The crystal structure of RbFe2+Fe3+F6 is in the Pnma space
group (No. 62), with lattice parameters a = 6.9663(4), b =
7.4390(5), and c = 10.1216(6) Å at T = 4 K [24]. The charge
order originates from the differing valence on the two Fe
sites, with one site occupied by an Fe2+ ion and the other
by an Fe3+ ion (henceforth referred to site A and B respec-
tively). Consequently, the two ions have different single-ion
ground states, the former having an orbital degree of freedom,
with S = 2, L = 2 and the latter being an orbital singlet, S =
5/2, L = 0. As a result, whilst a projection onto a spin-only
Hamiltonian is well justified for the Fe3+ ions, the same is not
necessarily true of the Fe2+ ions, where evidence of the in-
fluence of orbital physics in the correlated magnetic behavior
has already been reported [34].

The advantage of formulating the calculation in the manner
described above is that one can explicitly treat the single-
ion physics of the coupled magnetic ions, thus capturing the
entangled nature of the spin and orbital degrees of freedom.
Not only can inclusion of these single-ion terms change the
energetics of the elementary excitations of the system, but
terms such as spin-orbit coupling can lead to the nonconser-
vation of Ŝz giving rise to correlated fluctuations of the spin
amplitude in the form of longitudinal modes. Such modes are
absent from conventional linear spin wave theory treatments.
We now turn our attention to the single-ion physics of the Fe
ions present in RbFe2+Fe3+F6.

A. Single-ion physics

Whilst both Fe2+ and Fe3+ ions in the unit cell are
surrounded by an octahedral environment of fluorine, the dif-
ferent sublattices are occupied by ions with a differing valence
and local distorted environments. As a result, the ground state
differs between sublattice A (Fe2+) and sublattice B (Fe3+).
In this section (schematically outlined in Fig. 1) we discuss
the single-ion physics on both these sites, which defines the
eigenstates that we couple up using the random phase approx-
imation discussed above.

1. Sublattice A − −Fe2+ single-ion physics

Sublattice A is occupied by Fe2+ ions, which are in the
3d6 configuration. Since the 3d ions experience an interme-
diate ligand field [47], the single-ion ground state can be
determined by the application of the Pauli exclusion princi-
ple and Hund’s rules. Correspondingly, the ground state of
the Fe2+ ions is 5D (S = 2, L = 2) or |L = 2, mL; S = 2, mS〉
[Fig. 1(a)].

We first consider the strong crystalline electric field im-
posed on the Fe2+ by the locally coordinated fluorine atoms,
denoted as HCEF , on the orbital component and then discuss
the effects of spin-orbit coupling below. Using Stevens opera-
tors [49,50], for a d6 ion in an octahedral crystal field this can
be written as

HCEF = B4
(
O0

4 + 5O4
4

)
.

The fivefold degenerate |L = 2, mL〉 states are split into a
ground state orbital triplet and an excited doublet. The crystal
field splitting for 3d ions is on the order of ∼1 eV making
this the largest single-ion energy scale. We note that sim-
plistic point charge calculations enjoy limited success in the
treatment of the 3d ions owing, in part, to the significant role
played by covalency effects [51]. Nonetheless, by measuring
the crystal field splitting using optical spectra or RIXS, ap-
proximate values for the Stevens parameters can be extracted.
The crystal field splitting in octahedrally-coordinated Fe2+

was determined to be 10Dq ≈ 1.2 eV [52], corresponding
to B4 ≈ 10 meV. A similar energy scale has been reported
[53,54] in the oxides CoO [55] and NiO [56]. Writing the
Stevens parameters in terms of the orbital angular momentum
operators and using the notation for changing between |L, mL〉
and the crystal field bases written in Refs. [40,57], we can
diagonalize the crystal field Hamiltonian

ECEF = C−1HCEFC

= B4

⎛
⎜⎜⎜⎝

−48 0 0 0 0
0 −48 0 0 0
0 0 −48 0 0
0 0 0 72 0
0 0 0 0 72

⎞
⎟⎟⎟⎠

and verify that the ground-state orbital triplet is well sepa-
rated from the excited orbital doublet. This is verified by the
Tanabe-Sugano diagram for Fe2+ reproduced in Fig. 1(a) with
Dq/B ≈1.1 [28,47] called the weak-intermediate crystal field
limit. This orbital ground state is referred to as 5D in Fig. 1(c).

Given the ground state is an orbital triplet, we are justi-
fied in projecting our single-ion Hamiltonian into an effective
l = 1 manifold. This transformation carries a projection factor
L = αl [28], which can be read off the l = 1 block of the L̂z

operator projected into the space spanned by the eigenvectors
of HCEF

C−1L̂zC =

⎛
⎜⎜⎜⎝

−1 0 0 0 0
0 0 0 0 2
0 0 1 0 0
0 0 0 0 0
0 2 0 0 0

⎞
⎟⎟⎟⎠

thus α = −1. Similar transformations for L̂x,y show that this
orbital triplet follows the correct commutator and Lie algebra
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FIG. 1. (a) Tanabe-Sugano diagram for a d6 ion with Dq characterizing the strength of the octahedral crystal field and B and C the Racah
parameters [28]. Dq/B ≈1.1 [28,47], hence we cannot neglect orbital angular momentum and instead have a (S = 2, L = 2) ground state.
The Racah parameter C ≈0.5 eV [47]. (b) Tanabe-Sugano diagram for a d5 ion, showing the high spin to low spin transition at Dq/B ≈3.
For Fe3+ ions in an octahedral environment, Dq/B ≈ 1.6 [28,47] motivating a spin only (S = 5/2, L = 0) ground state. The Racah parameter
C ≈0.6 eV [47]. (c) Single-ion energy levels for an Fe2+ ion under the influence of spin-orbit coupling, crystallographic distortions and a
molecular mean field term, following the intermediate crystal field splitting, which gives rise to the l = 1 ground state. (d) Crystal structure
of RbFe2+Fe3+F6, showing the octahedral FeF6 coordination. Red octahedra surround Fe3+ ions and yellow octahedra surround Fe2+ ions.
Figure created using VESTA [48].

for angular moment operators with l = 1. We note that this
is not guaranteed based on degeneracy alone as discussed in
Ref. [58] for the case of Ce3+ in CeRhSi3 in a comparatively
anisotropic crystal field.

Having defined the orbital ground state, we define the new
basis states to include spin as |l = 1, ml , S = 2, ms〉. The next
term to be considered is the spin-orbit interaction, denoted
as HSO in Fig. 1(c) acting on the projected orbital triplet
with spin S = 2 (|l = 1, ml ; S = 2, ms〉) [referred to as 5D in
Fig. 1(c)]. In terms of the projected orbital angular momen-
tum, this can be written as

HSO = λL · S = αλl · S

where λ is the spin-orbit constant, which is negative for a
greater-than-half-full outer shell [16]. For the free Fe2+ ion
αλ ≈ 12.4 meV [28,47]. This value is expected to be reduced
due to the bonding with surrounding ligands, however this
correction is expected to be small and is difficult to disen-
tangle from the effects of Jahn-Teller distortions [28], so we
will neglect this correction from our analysis. The spin-orbit
coupling splits the triply degenerate l = 1 level into three jeff

levels

C−1HSOC = αλ

⎛
⎝−3I3 0 0

0 −I5 0
0 0 2I7

⎞
⎠
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that follow the Landé interval rule. For a 3d6 ion, the ground
state is the triply degenerate jeff = 1 level, with an excited
quintet and septet.

Further to the octahedral crystal field described earlier, the
effect of distortions away from the perfect octahedral coordi-
nation must be considered. The octahedron surrounding the
Fe2+ is subtly compressed with four Fe-F bonds of length
≈2.1 Å and two of length ≈2.0 Å. A tetragonal distortion of
this kind can be described in terms of the Stevens operator

Hdis = B0
2O0

2 = �
(

l̂2
z − 2

3

)
. (8)

The parameter � is negative for an octahedral compression.
This term breaks the triplet orbital degeneracy, leading to a
doublet ground state with an excited singlet. In addition to
this distortion, the octahedra are twisted in a manner, which
destroys the fourfold axial symmetry. Since the point group of
the octahedron surrounding the Fe2+ ion is the low symmetry
C1h = Cs group, in principle, other terms of the form

HCEF =
∑

kq

Bq
kO

q
k (9)

are possible. The number of terms that must be considered can
be reduced by a number of symmetry and physical consid-
erations. The first is that since the Stevens operators depend
on the tesseral harmonics, only terms for which the tesseral
harmonics respect the point symmetry of the local crystal
environment (C1h) are nonzero [59]. The next consideration is
that terms with k > 4 vanish in the 3d ions since the matrix el-
ements of the crystal field Hamiltonian depend on the product
of two spherical harmonics Y −m

2 (R)Y m
2 (R) (where k = 2 since

we have d electrons). From the Clebsch-Gordon expansion of
this product, we find that the terms with k > 4 vanish [60].
The Stevens parameters are given by [60]

Bq
k = −|e|pq

k〈rk〉γ q
k 	k, (10a)

γ
q
k = 1

2k + 1

∫
d3R

ρ(R)Zq
k (R)

ε0Rk+1
, (10b)

where Zq
k are the tesseral harmonics, with related numerical

coefficients pq
k , ρ is the electrostatic charge density and 	

is a numerical factor originating from the conversion be-
tween polynomials and their operator equivalents [60]. For
k = 2, 4, 6, 	k are the well-known Stevens coefficients αJ ,
βJ , γJ [49]. The evaluation of the integral [Eq. (10b)] is not
a simple task. Practical calculations generally rely on vast
simplifications such as a point-charge approximation, which,
as discussed previously, does not lead to quantitatively accu-
rate predictions. It is therefore more appropriate to treat Bq

k as
experimentally determined parameters. Since the magnitude
of Bq

k scales as 1
Rk+1 , where R is the distance from the central

ion to the charged ligand, we can exclude the higher order
terms since their effect will likely be small, we therefore
exclude terms with k > 2. Finally, the crystal field potential
must satisfy time reversal symmetry [61], hence we are left
with one further possible distortion term

H′
dis = �′(l2

+ + l2
−
)

(11)

where we have converted to operator equivalent terms and col-
lected all factors into a single distortion parameter [62]. The

FIG. 2. Energy diagram for Fe2+ with spin-orbit coupling and
crystallographic distortions. The black line represents a tetragonal
distortion [Eq. (8)]. The red lines indicate a distortion of the type
described by Eq. (11). A tetragonal distortion gives rise to an orbital
doublet. The asymmetric distortion give rise to splitting of the orbital
triplet. Other qualitative differences can be seen, for example there
are avoided crossings at around 12.5 meV, 13.5 meV, and 13.9 meV
for the asymmetric distortion (indicated by the blue arrows). The
level repulsion at 12.5 meV is between the jeff = 1 and jeff = 2
multiplets.

effect of this term is to break the remaining degeneracy of the
orbital doublet. Notice that the additional term has the same
form as the perturbation in the widely-studied Lipkin model
[63], which exhibits an exceptional point and a transition
from a phase with an avoided crossing to one with a degen-
eracy [64]. In fact, this term gives rise to avoided crossings
at hMF ≈ 12.5 meV, hMF ≈ 13.5 meV, and hMF ≈ 13.9 meV
(Fig. 2), suggesting the presence of an exceptional point in the
complex plane of (�′, hMF ), close to the real axis [65]. These
three identified instances of level repulsion also indicate that
the single-ion eigenfunctions are strongly mixed between the
jeff = 1 and jeff = 2 and the jeff = 2 and jeff = 3 manifolds.

The final term that must be considered in the single-ion
Hamiltonian is the molecular mean field. The exchange inter-
action between magnetic ions results in an effective Zeeman
term from the single-ion perspective. In order that we ex-
pand around the correct single-ion ground state, a mean field
decoupling must be performed Si → 〈Si〉 + δSi to quantify
the strength of this effective Zeeman field. As outlined in
the discussions above, in general a Heisenberg model can be
written as

H = 1

2

γ γ ′∑
i j

J γ γ ′
i j ST

iγ · S jγ ′ .
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We can perform a mean-field decoupling and discard terms
∼O(δSi )2. In the rotating frame, we have

HMF =1

2

γ γ ′∑
i j

([
S̃T

iγ − 1

2

〈
S̃T

iγ

〉]
J̃ γ γ ′

i j
〈S̃ jγ ′ 〉

+ 〈
S̃T

iγ

〉
J̃ γ γ ′

i j

[
S̃ jγ ′ − 1

2
〈S̃ jγ ′ 〉

])
,

where J̃ γ γ ′

i j
= RT

γ RT
i J

γ γ ′
i j R jRγ ′ . Neglecting constant terms,

we can simplify this expression considerably, using the
Rodrigues rotation formula

HMF =1

2

γ γ ′∑
i j

S̃T
iγ

(
J̃ γ γ ′

i j
+ J̃ γ ′γ

ji

)
〈S̃ jγ ′ 〉

=
∑

iγ

S̃T
iγ

∑
jγ ′

Re[J̃ γ γ ′
(Q)]〈S̃ jγ ′ 〉.

In the rotating frame, the expectation value of the spin oper-
ators only have nonzero z components. For the 3d ions, the
interion coupling is predominantly described by a spin-spin
Heisenberg model, owing to the breaking of the ground-
state orbital degeneracy due to crystallographic distortions or
spin-orbit coupling [66]. This motivates a spin-only interion
interaction.

Collecting all of these single-ion terms together, we find
the single-ion Hamiltonian on sublattice A,

HA
1 = HSO + Hdis + H′

dis + HMF .

The presence of Hdis and HSO terms in the single-ion Hamil-
tonian results in the nonconservation of Ŝz. Thus longitudinal
transitions are allowed between different single-ion energy
levels. Longitudinal modes are present in noncollinear mag-
nets due to the loss of spin rotational symmetry about ẑ [67]
and give rise to anharmonic scattering terms corresponding
to coupling between transverse magnons and the two particle
continuum. Systems with nontrivial single-ion physics offer
an exciting opportunity for the observation of correlated am-
plitude fluctuations, since the fundamental excitonic spectrum
includes a longitudinal component.

The effect of spin-orbit transitions between different jeff

levels has been observed in, for example, α, γ -CoV2O6 [68],
α-Co3V2O8 [69], CoTiO3 [70], Na3Co2SbO6 or Na2Co2TeO6

[71,72], and CoO [55,69]. The spin-orbit splitting is typically
on the order of ≈30 meV in 3d ions and hence these spin-orbit
excitons may be expected to be short lived due to a large
kinematically-allowed decay region. The intensity of such
modes depends strongly on the single-ion physics and whilst
these spin-orbit transitions have been observed in Co2+ ions,
they have not been observed in some other 3d ions such as
V3+ [41].

The propensity for longitudinal modes to decay can be
overcome by moving these amplitude fluctuations out of the
kinematically-allowed decay region. Therefore, the search for
long-lived amplitude fluctuations at low energy may be fruit-
ful. Amplitude fluctuations may be observed in other 3d ions
where the excitonic modes originate not from the jeff → jeff

transitions but from a smaller splitting due to Hdis. The inten-

sity of these transitions depends strongly on the nature of the
distortion and the resulting single ion energy levels.

We now demonstrate that crystallographic distortions offer
a mechanism for longitudinal excitons in 3d ions, but that a
large molecular Zeeman field reduces the longitudinal transi-
tion amplitude for many of the transitions in Fe2+ ions. The
neutron scattering intensity is proportional to the transition
amplitude Izz = | 〈1| Ŝz |m〉 |2. In Fig. 3 we plot Izz for the
both the tetragonal and the asymmetric distortions introduced
above. For both distortions, longitudinal transitions from the
jeff = 1 to jeff = 2 have finite amplitude. For a tetragonal
distortion, the transition A1 is the sole longitudinal transi-
tion, which carries nonnegligible intensity. In the case of the
asymmetric distortion, the B1 transition loses intensity with
increasing hMF and is overtaken by B2. For the asymmetric
distortion, an intramultiplet mode, B3, is also observed. As
the mean field is increased, the intensity of most longitudinal
modes decreases, although an increase in the intensity of B2 is
observed, along with an increase in B3 at large values of hMF ,
as the single-ion energy landscape changes.

The longitudinal excitations described in this paper result
from the nonconservation of Ŝz. In other words, they corre-
spond to amplitude fluctuations of the order parameter, in this
case the spin operator. This motivates an analogy [73,74] with
the Higgs mechanism from particle physics, where amplitude
fluctuations of the order parameter [18] in the presence of
a gauge field give rise to the celebrated Higgs boson [75].
The case here is somewhat different, owing to the lack of
a coupling of the order parameter to a gauge field as in the
Higgs mechanism. We shall therefore refer to these excita-
tions as “amplitude modes” to distinguish them both from the
true gauge-field-coupled phenomena such as the Higgs boson
[75], plasmons [76], the Meissner state in superconductors
[77], and from other longitudinal excitations whose origins
are fundamentally different, such as spinons and multimagnon
continua [78,79]. It is worth noting that these fluctuations
can be observed with other experimental techniques with
complementary selection rules to neutron scattering such as
Raman [74].

2. Sublattice B − −Fe3+ single-ion physics

In the case of a 3d5 ion in a perfectly octahedral environ-
ment, the ground state is an orbital singlet, (S = 5/2, L = 0),
hence we should only expect a mean molecular field con-
tribution to the single-ion Hamiltonian. However, in many
3d5 systems, a spectral gap is measured, consistent with a
single-ion anisotropy term [42,80,81]. This gap arises due
to mixing of higher orbital energy levels into the ground
state, facilitated by the cooperative effect of crystallographic
distortions and spin-orbit coupling [82–84]. We account for
this phenomenologically in our model by adding a single-ion
anisotropy term to the Fe3+ spin Hamiltonian,

HB
1 = HMF + Hanis, (12a)

Hanis = μS̃2
z . (12b)

B. Spin Hamiltonian

We now turn our attention to the spin Hamiltonian that
describes the interaction of ions on neighboring sites. The Fe
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FIG. 3. (a) Single-ion energy levels for Fe2+ in a distorted octahedral environment. (b) Longitudinal (or amplitude) transition amplitudes
Izz = | 〈1| Ŝz |m〉 |2 for the excitations out of the ground state. As hMF is increased the amplitude of the transitions A1, B1 and B3 decreases.
For a tetragonal/trigonal distortion (�), only the spin-orbit transition has nonnegligible intensity. For the low-symmetry distortion (�′), the
high-intensity transition B3 corresponds to a transition within the ground state jeff = 1 multiplet. As the mean field increases, the intermultiplet
transition B2 turns on and at large values of hMF the intensity of B3 begins to increase again.

ions in RbFe2+Fe3+F6 form two interpenetrating chain net-
works running perpendicular to one another (Fig. 4). The Fe2+

ions lie on a chain parallel to a with spins pointing along ±b̂,
with Fe3+ ions on a chain parallel to b with spins along ±â.
RbFe2+Fe3+F6 can be described with a unit cell comprising
eight spins (Table II). We now consider a minimal model
of nearest-neighbor exchange for both inter- and intrachain
bonds. The exchange interactions are summarized in Table III.
The intrachain bonds are confined to the the upper-left and
lower-right blocks, with interchain bonds coupling sites {1-4}
with sites {5-8}. Following the approach outlined above, we

FIG. 4. [(a), (b)] Crystallographic structure of RbFe2+Fe3+F6,
displaying the Fe ions and Fe-Fe bonds. Yellow arrows indicate Fe2+

ions and red arrows indicate Fe3+ ions. The Fe2+ ions form chains of
spins along the a-axis and the Fe3+ ions lie in chains along the b axis.
J1 and J2 are intrachain bonds whilst J3 and J4 are interchain bonds.
Figure created using VESTA [48].

now take the Fourier transform of the exchange interaction. In
the rotating frame we need to calculate the matrix

J̃ (q) =X ′[J (q + Q)T3N + J (q − Q)T ∗
3N

+ J (q)(I3 ⊗ nnT )
]
X.

Since the propagation vector, Q = (0, 0, 0), we need not per-
form the rotation of each unit cell and instead have J̃ (q) =
X ′J (q)X , where we have summed over all spins. The matri-
ces, X and X ′ describe the matrices, which rotate the spins
in the unit cell onto a common axis. Since, in the laboratory
frame, the spins lie in the a-b plane, we can define a rotation
matrix

U (θ ) =
⎛
⎝0 sinθ cosθ

0 −cosθ sinθ

1 0 0

⎞
⎠

TABLE II. Definition of ions in the unit cell.

Index Sublattice Valence Position vector

1 B 3+ (0,0,0)
2 B 3+ (0,0.5,0)
3 B 3+ (0.5,0,0.5)
4 B 3+ (0.5,0.5,0.5)
5 A 2+ (0.1986,0.75,0.2698)
6 A 2+ (0.6986,0.75,0.2302)
7 A 2+ (0.3014,0.25,0.7698)
8 A 2+ (0.8014,0.25,0.7302)
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TABLE III. Intersite bonds considered in the minimal model. J1

and J2 represent intrachain bonds with J3 and J4 coupling sites on
different chains.

1 2 3 4 5 6 7 8

1 0 J1 0 0 J3 J4 J4 J3

2 J1 0 0 0 J3 J4 J4 J3

3 0 0 0 J1 J4 J3 J3 J4

4 0 0 J1 0 J4 J3 J3 J4

5 J3 J3 J4 J4 0 J2 0 0
6 J4 J4 J3 J3 J2 0 0 0
7 J4 J4 J3 J3 0 0 0 J2

8 J3 J3 J4 J4 0 0 J2 0

that rotates spins by angle θ in the a-b plane. In terms of this
rotation matrix, we have

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U−a 0 0 0 0 0 0 0
0 Ua 0 0 0 0 0 0
0 0 Ua 0 0 0 0 0
0 0 0 U−a 0 0 0 0
0 0 0 0 Ub 0 0 0
0 0 0 0 0 U−b 0 0
0 0 0 0 0 0 U−b 0
0 0 0 0 0 0 0 Ub

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Ua = U (0), U−a = U (π ) and U±b = U (±π
2 ), such that

Ua

⎛
⎝0

0
1

⎞
⎠ =

⎛
⎝1

0
0

⎞
⎠ (13a)

U−a

⎛
⎝0

0
1

⎞
⎠ =

⎛
⎝−1

0
0

⎞
⎠ (13b)

Ub

⎛
⎝0

0
1

⎞
⎠ =

⎛
⎝0

1
0

⎞
⎠ (13c)

U−b

⎛
⎝0

0
1

⎞
⎠ =

⎛
⎝ 0

−1
0

⎞
⎠. (13d)

Using these rotation matrices, we can write down the
molecular mean field Hamiltonian for each site. In this min-
imal model the mean field is the same for all spins on each
sublattice,

HMF =
∑

iγ

hMF (i, γ )S̃z
iγ , (14a)

hMF (i, γ ∈ A) = −2J2〈SA〉 = −4J2, (14b)

hMF (i, γ ∈ B) = −2J1〈SB〉 = −5J1. (14c)

The molecular mean field does not depend on the interchain
bonds since the spins on sublattice A are perpendicular to
sublattice B.

The matrix J (q) = ∑
i j J γ γ ′

i j
eiq·(riγ −r jγ ′ ) can be con-

structed from Tables II and III, and is written out explicitly
in the Appendix. The exchange matrix in the laboratory frame
contains only diagonal elements but on transforming to the

TABLE IV. Summary of the parameter values used in the Green’s
function calculation of the dynamical structure factor.

Parameter Value (meV)

J1 1.9
J2 1.4
J3 1.4
J4 0.75
αλ 12.4
� –1.5
μ –0.075

rotating frame acquires components that couple y and z com-
ponents of spins on different sublattices.

IV. DYNAMICAL STRUCTURE FACTOR CALCULATIONS

A. Parameter choice

We now use the rotating frame Green’s function formalism
to calculate the dynamical structure factor of RbFe2+Fe3+F6.
Samples of RbFe2+Fe3+F6 produced using hydrothermal
growth techniques are typically small rod-like crystals, with
the long-axis coinciding with the crystallographic b axis
[24,25]. Neutron scattering experiments thus necessitate the
coalignment of many single crystals and a broad integration
of spectral weight along directions perpendicular to the scat-
tering wavevector, offering sensitivity to fluctuations along
all three directions. Consequently, we drop the form fac-
tor and polarization factor in the structure factor and sum
over all components of the partial dynamical structure factor,
Stot (q, ω) = ∑

αβ Sαβ (q, ω). The parameters of the model are
summarized in Table IV. Exchange parameters J1–J4 are taken
from Ref. [25], along with the phenomenological anisotropy
parameter μ. The value of λ was chosen in accordance with
perturbative calculations and paramagnetic resonance of Fe2+

in MgO [85,86]. The distortion parameter � is chosen to be
small, on the order of meV (� = −1.5 meV), consistent in
scale with the parameter extracted from fits to neutron data
in Co2+ [40,87] and V3+ [41] compounds. In the case of a
purely tetragonal or trigonal distortion, the sign of the distor-
tion parameter can be inferred from the crystal structure, with
� < 0 corresponding to a compression of the octahedron and
an orbital doublet ground state [88,89]. The term originating
from the low symmetry nature of the local environment, ap-
pearing in H′

dis, has no such intuitive interpretation. However,
this term fully breaks the degeneracy of the l = 1 ground state
and hence results in an orbital singlet ground state, regardless
of the sign of this distortion. We therefore take this distortion
to be negative along with the tetragonal distortion.

B. Neutron scattering response

The neutron scattering response is plotted in Figs. 5(a) and
5(b) for a tetragonal distortion [Eq. (8)] and Figs. 5(d) and 5(e)
for an asymmetric distortion [Eq. (11)]. For both distortion
types the spectra are qualitatively similar to the measured
neutron response [25] with a gapped upper dispersive mode,
which reaches the zone boundary at around E ≈ 10 meV. A
further low-energy mode is seen at around E ≈ 2.5 meV. This
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FIG. 5. Dynamical structure factor calculation for RbFe2+Fe3+F6. In the right-hand column is the longitudinal component in the rotating
frame, which contains the contribution from amplitude fluctuations. Panels [(a)–(c)] show the calculated response with exchange parameters
taken from Ref. [25], along with a tetragonal compression, � = −1.5 meV. Panels [(d)–(f)] show the corresponding calculation with an
asymmetric distortion �′ = −1.5 meV.

mode has a smaller gap and bandwidth, with a spin wave
velocity that approaches zero away from the zone center. Both
modes are observed to split for this set of parameters, in
agreement with Ref. [25]. The splitting of both modes shows
some difference between the two distortions, reflecting the
quantitative difference between the Fe2+ single-ion energy
levels for each distortion.

The presence of these modes in the linear spin wave calcu-
lation for RbFe2+Fe3+F6 [25] is reflective of the predominant
transverse component, which is also captured by the Green’s
function formalism presented here.

C. Amplitude fluctuations

A particular aspect of this analysis is the prediction of
amplitude fluctuations in the neutron scattering response to
first order in the Dyson expansion where d〈Ŝz〉

dt �= 0. Such
excitations are not present in conventional spin wave theory
based on the Landau equation. In this section we analyze the
key ingredients that allow such fluctuations to exist to first
order in the neutron scattering response. It is important to
note that these excitations appear in the zz component of the
rotating frame, where the spins are coaligned and fluctuations
in the magnitude of the order parameter appear along the
common ẑ axis. Upon rotating back to the laboratory frame,
these fluctuations are no longer confined to the zz compo-
nent of the structure factor. We shall therefore examine the
structure factor in the rotating frame so that the longitudi-
nal S̃zz(q, ω) and transverse components can be distinctly
identified. The longitudinal component for both distortions
is plotted in Figs. 5(c) and 5(f). With �′ = −1.5 meV, a
weak longitudinal component can be observed [Fig. 5(f)],

manifested in a flat mode with E ≈ 17 meV. The nature of
these amplitude modes will now be further investigated.

1. Intermultiplet spin-orbit excitons

Regardless of the nature of the distortion, longitudinal
transitions between the jeff = 1 and jeff = 2 multiplet are
permitted (Fig. 3). These modes generally occur at a higher
energy scale than the dispersive magnon excitations, since the
energy scale of these excitations are ∼λ as per the Landé
interval rule. These modes are particularly susceptible to de-
cay since there is often a large kinematically allowed decay
region. The longitudinal component in the rotating frame
is plotted in Fig. 6 for both of the distortion terms, with
� = −1.5 meV and �′ = −1.5 meV respectively. For each
of these distortions, a high energy spin-orbit exciton is seen at
E ≈ 28 meV.

2. Intramultiplet distortion modes

We now turn our attention to intramultiplet modes. In
Fig. 6(b) a second flat mode can be seen at E ≈ 17 meV,
originating from the intramultiplet transition, which gains in-
tensity under an asymmetrically distorted crystal field. This
mode is weak, in agreement with Fig. 3, which suggests that
the intensity of this amplitude mode is suppressed by the
molecular field. It should also be noted that this mode is
likely susceptible to decay owing to the fact that it lies at
an energy that is less than two times the magnitude of the
expected magnon bandwidth [25]. We now further explore the
nature of the asymmetric distortion. Fig. 7(a) shows the longi-
tudinal component of the structure factor for the asymmetric
distortion H′

dis, with �′ = −1.5 meV. A weak flat mode at
E ≈ 17 meV is visible. Upon increasing the magnitude of the
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FIG. 6. Spin-orbit exciton at E ≈ 28 meV for both types of dis-
tortion allowed by symmetry in RbFe2+Fe3+F6. (a) In the case where
Hdis = O0

2 , the spin-orbit exciton is the only amplitude fluctuation
that carries nonnegligible intensity. (b) The distortion ∼O2

2 exhibits
a further flat mode at around 17 meV.

distortion parameter to �′ = −10 meV, the flat mode gains
spectral weight and a very weak dispersive amplitude mode
at lower energy appears [Fig. 7(b)]. Finally, after reducing the
magnitude of J2 and hence |hMF |, the intensity of the intramul-
tiplet modes can be seen to increase in Fig. 7(c) (in agreement
with Fig. 3) and the flat intramultiplet mode hybridizes with
the lower dispersive mode.

V. DISCUSSION AND CONCLUDING REMARKS

We have presented an excitonic description of the spin
excitations in insulating RbFe2+Fe3+F6 applying a multi-
level formalism with Green’s functions. This approach differs
from semiclassical descriptions, which focus on transverse
perturbations of a spin of fixed magnitude. While such ap-
proaches incorporate local anisotropy through anisotropic and

antisymmetric terms, the Greens function approach applied
here explicitly incorporates single-ion physics and spin-orbit
coupling. Bringing in spin-orbit coupling (∝ l · S) is par-
ticularly important as the observable operator Ŝz no longer
commutes with the Hamiltonian [H, Ŝz] �= 0 and therefore
the expectation value 〈Ŝz〉 is no longer explicitly a conserved
quantity (implying d〈Ŝz〉

dt �= 0). This allows unusual types of
excitations such as amplitude fluctuations to become allowed
and observable with the dipolar selection rules of neutron
scattering and also optical techniques such as Raman. As
discussed above, such excitations are no longer forbidden
in RbFe2+Fe3+F6 owing to the presence of an orbitally de-
generate ground state of Fe2+ (as schematically illustrated
in Fig. 1).

One of the issues with experimentally observing ampli-
tude modes resulting from excitonic magnetic excitations is
that they typically occur at higher energies than the lower
energy transverse excitations. Typically, these modes then
decay and appear experimentally as an energy and momentum
broadened continuum of scattering, not a temporally sharp
underdamped excitation like a harmonic spin wave or a sharp
dispersionless crystal field excitation. Such a situation has
been analyzed theoretically and experimentally in the fourth-
row transition metal ion compound Ca2RuO4 [57,73]. In this
particular situation the amplitude mode was kinematically
allowed to decay into lower transverse modes resulting in
a continuum of scattering observable with the combination
of polarized neutrons and the mapping capabilities afforded
by modern neutron spectrometers. We note that given the
formalism presented here, and applied in Ref. [57], only cor-
responds to first-order mean-field theory, it does not capture
such decay process, which require higher order terms in the
Dyson expansion. This is beyond the scope and the goal of
the analysis presented here.

In this context, it is interesting, to apply this to the case
of RbFe2+Fe3+F6. As experimentally reported in Ref. [25],
the magnetic excitations consist of two components—a tem-
porally well-defined underdamped component and also a
component that is broadened in both energy and momentum.
Such a component may originate from quantum fluctuations
owing to noncommuting observables reported in low spin
chains, however it is not expected to be strong in large
spin components such as S = 2 of Fe2+ or S = 5

2 of Fe3+.
This leads us to suggest in this paper that it may origi-
nate from amplitude fluctuations allowed by the low local
symmetry of the Fe2+ ion and the presence of spin-orbit
coupling.

This paper illustrates that there are two components re-
quired for the presence of observable amplitude fluctuations
at accessible low energies in intermediate field third-row
transition metal ions. The first is spin-orbit coupling like
found here in Fe2+ or present in V3+ or Co2+, which al-
lows fluctuations in the order parameter amplitude 〈Ŝz〉 to
occur. The second key component is the presence of low
symmetry, permitting single-ion terms such as ∼O2

2, which
are not present in tetragonal, trigonal or hexagonal symmetry
[60]. A distortion of this form can enhance the intensity of
amplitude fluctuations, both in the form of spin-orbit exci-
tons (∼λ) and lower energy intramultiplet modes, which can
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FIG. 7. (a) Longitudinal component of the structure factor in the rotating frame for J2 = 1.4 meV and �′ = −1.5 meV. Both the high-
energy spin-orbit exciton and a flat weak intramultiplet mode are visible. (b) Amplitude fluctuations with J2 = 1.4 meV and �′ = −10 meV.
Upon increasing the magnitude of the distortion, the flat intramultiplet mode gains intensity. A very weak dispersive lower mode appears around
E ≈ 12 meV. (c) Upon decreasing the molecular mean field hMF by decreasing J2, the lower two modes hybridize and the intramultiplet mode
increases in intensity.

disperse. While tetragonal distortions can give rise to ampli-
tude fluctuations, these are typically present at higher energies
close to the single-ion energy scale of the spin-orbit transitions
(∼λ), which is ∼30 meV in third-row transition metal ions.
Such fluctuations are less relevant as it is much more difficult
to tune to such energy scales or stabilize them. Therefore, it is
suggested that amplitude modes in third row transition metal
ions are best sought in compounds with low local symmetry
and based on magnetic ions with an orbital degeneracy like
Fe2+, V3+, or Co2+.
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APPENDIX: DEFINITION OF EXCHANGE INTERACTION

Central to the calculation is the Fourier transform of the
exchange interaction, J (q) = ∑

i j J γ γ ′

i j
eiq·(riγ −r jγ ′ ). The ma-

trix elements can be calculated using Table III, the nonzero
elements are listed below:

[
J (q)

]
12

= J1
(
eiq·(r2−r1 ) + eiq·(r2−r1−[0,1,0])

)
[
J (q)

]
15

= J3eiq·(r5−r1−[0,1,0])

[
J (q)

]
16

= J4eiq·(r6−r1−[1,1,0])

[
J (q)

]
17

= J4eiq·(r7−r1−[0,0,1])

[
J (q)

]
18

= J3eiq·(r8−r1−[1,0,1])

[
J (q)

]
25

= J3eiq·(r5−r2 )

[
J (q)

]
26

= J4eiq·(r6−r2−[1,0,0])

[
J (q)

]
27

= J4eiq·(r7−r2−[0,0,1])

[
J (q)

]
28

= J3eiq·(r8−r2−[1,0,1])

[
J (q)

]
34

= J1
(
eiq·(r4−r3 ) + eiq·(r4−r3−[0,1,0])

)
[
J (q)

]
35

= J4eiq·(r5−r3−[0,1,0])

[
J (q)

]
36

= J3eiq·(r6−r3−[0,1,0])

[
J (q)

]
37

= J3eiq·(r7−r3 )

[
J (q)

]
38

= J4eiq·(r8−r3 )

[
J (q)

]
45

= J4eiq·(r5−r4 )

[
J (q)

]
46

= J3eiq·(r6−r4 )

[
J (q)

]
47

= J3eiq·(r7−r4 )

[
J (q)

]
48

= J4eiq·(r8−r4 )

[
J (q)

]
56

= J2
(
eiq·(r6−r5 ) + eiq·(r6−r5−[1,0,0])

)
[
J (q)

]
78

= J2
(
eiq·(r8−r7 ) + eiq·(r8−r7−[1,0,0])

)
.

The corresponding elements in the lower left triangle can be
found by reversing position vector labels, hence the matrix is
Hermitian.
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