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Spin nematic ordering in the spin-1 chain system
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We predict the instability of the quantum spin-1 chain material with respect to the spin nematic ordering. For
the spin subsystem the spin nematic order parameter is related to the onset of single-ion spin anisotropy. The
ordering is caused by the coupling to the elastic subsystem of the crystal or, for spin-1 ultracold bosons in a
one-dimensional optical lattice, by the interaction with a Bose-Einstein condensate. Our conclusions are based
on the exact integrability of the spin model and on numerical simulations for the nonintegrable cases. Our exact
results also describe the behavior of interacting gluons within the lattice toy Yang-Mills-like model, in which
spontaneous and field-induced symmetry breaking can be realized.
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I. INTRODUCTION

Among other “hot” topics the search for new states of
condensed matter, in particular, in interacting electron sys-
tems, attracts the attention of researchers. The nematic state,
similar to the ordered phases of molecules in liquid crystals
[1], is one of the most intriguing examples of such new states
of electron systems. Instead of, e.g., magnetic ordering, in
which the (dipolar) spin vector order parameter breaks the
time-reversal T symmetry, in nematic states a distinguished
orientation is developed, i.e., the order parameter is a director
there [2]. The preferred orientation implies the rotation O(3)
symmetry breaking. Such a nematic ordering was studied in
heavy-fermion systems [3], in rare-earth insulators [4], and in
some iron-based superconductors [5–9]. Usually, such a non-
conventional ordering is connected with electron correlations,
related to the exchange coupling together with weaker (mostly
relativistic) interactions.

For magnetic systems the spin nematic ordering was stud-
ied theoretically [10–12]. Often the emergence of the spin
nematic ordering is related to the geometrical frustration
of the spin lattice, which suppresses the standard magnetic
(spin-dipolar) ordering [13–15]. Spin nematicity is related
to the spin multipoles, e.g., to the nonzero components
of the expectation values of the second-rank spin traceless
quadrupolar tensor Qαβ = SαSβ + SβSα − [S(S + 1)/3]δαβ ,
where Sα (α = x, y, z) is the operator of the projection of
spin S. For spin S = 1/2 only intersite spin nematic ordering
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can exist [16–18], while for higher values of S the single-site
spin nematic ordering is possible. Despite many recent efforts
(see, e.g., Refs. [19–21]), the experimental proof of the spin
nematic ordering in magnets is still under question, because
the spin nematic order parameter is not coupled to the external
field directly. Also, while spin nematic ordering was studied
phenomenologically [10,11], the microscopic theory of that
phenomenon remains a challenge.

For S � 1 the spin nematic ordering was predicted for sys-
tems with the biquadratic spin-spin exchange interaction [22].
It is commonly believed that the biquadratic exchange is rather
small in real magnetic materials. However, in experiments on
ultracold atoms [23,24] and in a Ni-based magnetic material
[25–27] there is evidence that the biquadratic exchange is
present.

One-dimensional quantum systems are distinguished from
other systems because for many one-dimensional systems
exact quantum mechanical solutions are known [28]. Such
an integrability permits theoretically exact characteristics of
many-body quantum systems to be obtained. On the other
hand, features of the one-dimensional density of states yield
an enhancement of quantum and thermal fluctuations, which
results in the destruction of the long-range ordering for
quantum systems with gapless excitations for nonzero temper-
atures [29,30]. Instead, in the ground state, one-dimensional
quantum systems (as a rule, those that have gapped excita-
tions) manifest long-range ordering [31,32], with quantum
phase transitions between ordered and disordered phases [33].

The goal of our present work is to investigate a one-
dimensional quantum spin system coupled to the elastic
subsystem of a spin chain material. Using the exact integra-
bility of the spin subsystem and numerical simulations, we
show that there can exist phase transitions to the spin nematic
ordered phase, in which quadrupole spin ordering takes place.
We study how the external magnetic field can affect such a
spin nematic ordering. Using numerical methods, we consider
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the deviation from the exactly solvable model, studying that
way-more-realistic situation, and investigate whether the spin
nematic order persists for that case. The influence of nonzero
temperature on the phase transition to the spin nematic or-
dered phase is also studied. Finally, as a by-product, using the
exact solution, we consider the one-dimensional lattice model
of interacting gluons, which results can be used in high-energy
physics.

II. SPIN CHAIN MODEL

The Hamiltonian of the considered spin S = 1 chain model
is

H =
∑

n

[
JSn · Sn+1 + J ′(Sn · Sn+1)2

−HSz
n + D

(
O0

2

)
n

]
, (1)

where Sn is the operator of the spin S = 1 in the nth site of
the chain, J is the exchange parameter, J ′ is the parameter
of the biquadratic exchange coupling, H is the external mag-
netic field (we use the units in which the effective magneton
gμB = 1, with g being the effective g factor and μB being the
Bohr magneton), (O0

2)n = (Sz
n)2 − S(S + 1)/3 is the Stevens

operator [28], related to the component of the spin quadrupole
tensor, and D is the component of the (internal) field cou-
pled to that Stevens operator (the parameter of the single-ion
magnetic anisotropy). Generally speaking, for the isotropic
exchange one can use any direction of the field H ; using
unitary transformations, one can reduce the situation to that of
Eq. (1). (Notice that in what follows all numerical calculations
are carried out in dimensionless units, so that J = 1.)

III. SU(3) SYMMETRIC SPIN-1 MODEL

The model described by Hamiltonian (1) is an exactly
solvable SU(3) symmetric one at J ′ = J (the Uimin-Lai-
Sutherland model [34–36]). For the SU(3) symmetric spin
model all components of the spin moment

∑
n Sx,y,z

n and the
Stevens operators

∑
n(Om

2 )n (m = 0,±1 ± 2) commute with
the exchange part of the Hamiltonian; hence they have the
same set of eigenfunctions. This is why it is convenient to
classify all the states of the SU(3) symmetric Hamiltonian
according to values of projections of the components of the
SU(3) fields. In general, one can use any component of the
SU(3) field in the SU(3) symmetric Hamiltonian; hence one
can use any kind of Stevens operator (Om

2 )n, which situation
can be transformed to the case (1) for J ′ = J by the unitary
transformation.

Within the Bethe ansatz solution the eigenvalues and eigen-
functions of the SU(3) symmetric model are described by two
sets of rapidities, una+nb

j=1 and v
na
m=1. Here, na,b,c with a, b, c =

±1, 0 are the numbers of states with each possible value of
the z projection of the site spin Sz

j , i.e., ±1, 0. Obviously, one
has n1 + n0 + n−1 = N , where N is the number of spins in the
chain. It is assumed that na � nb � nc. For periodic boundary
conditions the rapidities satisfy the following set of Bethe
ansatz equations (BAEs):

(−1)N X −N
1 (u j ) =

na∏
m=1

X1(u j − vm)

×
na+nb∏
q=1

X2(u j − uq),

j = 1, . . . , na + nb,

na∏
b=1

X2(vm − vb) =
na+n−b∏

q=1

X1(vm − uq),

m = 1, . . . , na, (2)

where Xn(y) = (2y + in)/(2y − in). Taking the logarithm of
the BAEs, one gets

N tan−1(u j ) −
na+nb∑
q=1

tan−1([u j − uq]/2)

+
na∑

m=1

tan−1(u j − vm) = πJj,

na∑
b=1

tan−1([vm − vb]/2) +
na+nb∑
q=1

tan−1(uq − vm)

= −π Im, (3)

where Jj and Im are integers or half-integers depending on the
values of na and na + nb. It was shown that

Jj+1 − Jj = 1, Im+1 − Im = 1. (4)

The eigenvalue of the SU(3) symmetric Hamiltonian satisfy-
ing the BAEs is

E = J

[
N −

na+nb∑
j=1

4

4u2
j + 1

]
− HMz + DQz, (5)

where Mz and Qz are the eigenvalues of the z projection of the
total spin of the system,

∑
n Sz

n and
∑

n(O0
2)n, respectively.

The momentum of the state is

P = 2π

(
na+nb∑

j=1

Jj +
na∑

m=1

Im

)
+ π (na + nb) mod2π. (6)

It was shown that in the ground state for the antiferromag-
netic case J > 0 in the thermodynamic limit N, na,b,c → ∞
with the ratios na,b,c/N fixed, the rapidities, which satisfy
the BAEs, are real [34]. The equations for the densities of
rapidities ρ(u) and σ (v) are

2πρ(u) = a1(u) −
∫ A

−A
dya2(u − y)ρ(y)

+
∫ B

−B
dza1(u − z)σ (z),

2πσ (v) =
∫ A

−A
dya1(v − y)ρ(y)

−
∫ B

−B
dza2(v − z)σ (z), (7)
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where a1(x) = 4/(1 + 4x2), a2 = 2/(1 + x2). The limits of
integration are determined from the condition

na

N
=

∫ B

−B
dyσ (y),

na + nb

N
=

∫ A

−A
dxρ(x). (8)

The energy is

E = N

[
J −

∫ A

−A
dxa1(x)ρ(x)

]
− HMz + DQz. (9)

There are six combinations, connecting na,b,c and n±1,0

(i.e., the connections of na,b,c with the values of Mz and Qz).
(1) For na = n−1 and nb = n0, we have nc =

n1 = N − (na + nb), so that Mz = N − (na + nb) − na

[i.e., (Mz/N ) = 1 − ∫ A
−A duρ(u) − ∫ B

−B dvσ (v)] and
Qz = N − (na + nb) + na − (2N/3) [i.e., (Qz/N ) =
(1/3) − ∫ A

−A duρ(u) + ∫ B
−B dvσ (v)]. This case is related

to the situation of large positive values of the magnetic
field H .

(2) For na = n−1 and nb = n1, we have nc = n0 =
N − (na + nb); hence Mz = (na + nb) − 2na, and Qz = (na +
nb) − (2N/3).

(3) For na = n0 and nb = n−1, we have nc = n1 =
N − (na + nb); hence Mz = N − 2(na + nb) + na, and Qz =
(N/3) − na.

(4) For na = n0 and nb = n1, we have nc = n−1 = N −
(na − nb); hence Mz = −N + 2(na + nb) − na, and Qz =
(N/3) − na.

(5) For na = n1 and nb = n−1, we have nc = n0 = N −
(na + nb); hence Mz = −(na + nb) + 2na, and Qz = (na +
nb) − (2N/3).

(6) For na = n1 and nb = n0, we have nc = n−1 = N −
(na + nb); hence Mz = −N + (na + nb) + na, and Qz = N −
(na + nb) + na − (2N/3). This case is related to the situation
of large negative values of the magnetic field H .

For the minimization of the energy at fixed values of D
and H one has to minimize (9) with respect to 0 � A, B < ∞
and (Mz )i, (Qz )i. Here, the index i = 1, 2, . . . , 6 enumerates
possible combinations, connecting na,b,c and n±1,0 for given
D and H .

Figure 1 shows the ground-state magnetic field behavior
of the magnetic moment per site mz = N−1Mz of the SU(3)
symmetric model for various values of D. The curves in Fig. 1
are the numerical solutions of Eqs. (7)–(9). We see that the
magnetic moment is the odd function of H for all values
of D, as it must be. There is no spontaneous magnetization
for any value of D. Depending on the strength of the field
D (positive D describes the easy-plane situation, while neg-
ative D describes the easy-axis case), different behaviors of
the magnetic moment persist. One can see several critical
values of the field related to the lines of ground-state phase
transitions [37–39] between the so-called SU(3) symmetric
phase, SU(2) symmetric phases [39], spin-polarized phases,
and large-D phases. For example, for D = 0 there are only
two critical points, dividing the SU(3) symmetric phase (small
values of H) with gapless excitations and the SU(2) symmetric
phase (intermediate values of H with gapless excitations; for

FIG. 1. The ground-state dependence of magnetic moment per
site mz = N−1Mz on magnetic field H of the SU(3) symmetric spin-1
chain for various values of the field D. (Recall that J = J ′ = 1.)

that case the states with Sz
n = −1 projection are absent) and

dividing the SU(2) symmetric phase and the spin-polarized
phase (high values of H in which only states with Sz

n = 1 with
gapped excitations are present). Such a behavior persists for
small enough values of positive D (the easy-plane case), while
for large positive D the phase in which Sz

n = ±1 states are ab-
sent with gapped excitations is also present. For the easy-axis
case (negative D) there is a quantum phase transition between
the SU(3) symmetric case and the spin-polarized case.

Figure 2 manifests the ground-state D dependence of the
expectation value of the Stevens operator per site qz = N−1Qz

of the SU(3) symmetric spin model for various values of the
magnetic field H . That expectation value satisfies the relation
Qz(H ) = Qz(−H ). As in Fig. 1, Fig. 2 shows several critical
values of D related to the lines of ground-state quantum phase
transitions [39]. For example, for H = 0 the quantum phase
transitions exist between the SU(3) symmetric phase and

FIG. 2. The field D ground-state behavior of the Stevens operator
qz = Qz/N per site of the SU(3) symmetric spin-1 chain for various
values of the magnetic field H .
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FIG. 3. The ground-state value of the Stevens operator per site
qz = Qz/N for various values of D of the SU(3) symmetric spin-1
chain as a function of the magnetic field H .

the phases with maximal and minimal values of qz, namely,
qz = 1/3 and qz = −2/3 with gapped excitations. The solu-
tion of Eqs. (7)–(9) shows that this transition takes place at
D = 4, which coincides with the critical value of D obtained
in Ref. [39]. For intermediate values of the magnetic field H ,
the quantum phase transition between the SU(3) symmetric
phase and the SU(2) symmetric phase can also be seen. Notice
that for D = 0 we have qz = 0 in the absence of the magnetic
field H , as it must be; the use of (Sz

n)2 instead of the Stevens
operator erroneously produces a nonzero spontaneous value
of the quadrupole moment.

In Fig. 3 we show the expectation value of the Stevens
operator qz as a function of the applied magnetic field H for
several values of the field D. First, it is seen that qz(H ) =
qz(−H ), i.e., the expectation value of the Stevens operator
is the even function of the magnetic field for all values of
D. For positive D (the easy-plane magnetic anisotropy) one
can clearly see the nonmonotonic dependence. For example,
for D = 0 at H � J the value of qz becomes smaller with the
growth of H , while for H � J it grows till H = 4J (the quan-
tum phase transition to the spin-polarized phase), and then
for H � 4J we obtain qz = 1/3. Similar behavior persists for
small positive values of D. For large positive D the expectation
value is qz = −2/3 for small values of H ; then, at interme-
diate values of H , qz grows with the increase in H till the
critical value, above which qz = 1/3. For the easy-axis case
(negative values of D) the expectation value of the Stevens
operator is constant, qz = 1/3, for any value of the magnetic
field H .

It should be noted that nonmonotonic dependencies of
qz(D) and qz(H ) (see Figs. 2 and 3) are explained by the
phase transitions which take place in the system under con-
sideration. This result is in full agreement with the phase
diagram obtained in Ref. [39]. So, for example, breaks in
dependencies qz(H ) at D > −2 correspond to the transitions
from the U -spin (or V -spin) phase (the notations of Ref. [39])
to the SU(3) phase (see Fig. 1 of Ref. [39]).

FIG. 4. The ground-state magnetic field behavior of the magnetic
moment per site mz = Mz/N for D = 0: Comparison of exact results
and numerical simulations (the exact diagonalization method and the
quantum Monte Carlo method).

IV. OTHER VALUES OF THE BIQUADRATIC
EXCHANGE COUPLING

To go beyond the integrable SU(3) symmetric spin-1
model, we have performed numerical calculations for the
systems with different values of the biquadratic exchange
interaction J ′ �= J .

To check the correctness of the numerical procedures used,
in Fig. 4 a comparison of the exact results and the results of
numerical calculations (the exact diagonalization (see, e.g.,
Ref. [40]) and the quantum Monte Carlo (QMC) calculations
(see, e.g., Refs. [41–43])) is shown. One can see that the
results of numerical calculations agree very well with the
exact ones.

Using the QMC method, we have calculated the expecta-
tion values of the magnetic moment (Fig. 5) and the Stevens
operator (Figs. 6 and 7) for various values of the biquadratic
exchange coupling J ′. All the QMC simulations were carried

FIG. 5. The low-temperature dependence of the magnetic mo-
ment per site mz on magnetic field H for several spin-1 chain models
with various values of J ′ � 0 for D = 0.
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FIG. 6. The low-temperature dependence of the expectation
value of the Stevens operator per site qz on magnetic field H for
several spin-1 chain models with various values of J ′ � 0 for D = 0.

out for the chain of N = 500 spins at temperature T = 0.02.
From Fig. 5 we see that for small values of the magnetic field
H the gapped Haldane phase exists [44] for J ′ �= J . Notice
also the absence of the quantum phase transition between the
SU(3) symmetric and the SU(2) symmetric phases for nonin-
tegrable cases. Figure 6 manifests that the qualitative behavior
of qz as a function of the magnetic field at D = 0 persists
for J ′ � J (again, for small H the Haldane gap is seen, and
there is no critical value of the magnetic field of the quantum
phase transitions between two gapless regimes). However, it
is clear that the behavior of the magnetic moment and the
expectation value of the Stevens operator for the nonintegrable
cases is reminiscent of their behavior for the integrable SU(3)
symmetric situation. From Fig. 7 we see that for small nega-
tive values of the biquadratic exchange the situation is similar
to the case of J ′ � 0. However, for larger values of J ′ the
expectation value qz grows monotonically with the increase
in H until the critical value of H , above which qz = 1/3. It
is important to point out (see Figs. 6 and 7) that the external

FIG. 7. The low-temperature dependence of the expectation
value of the Stevens operator per site qz on magnetic field H for
several spin-1 chain models with various values of J ′ � 0 for D = 0.

FIG. 8. The magnetic field behavior of the expectation value of
the Stevens operator per site qz at D = 0 for the SU(3) symmetric
(J ′ = J) spin-1 chain for several values of the temperature T .

magnetic field H can cause the nonzero value of the Stevens
operator (the spin nematic ordering) in the ground state for
D = 0 for all values of the biquadratic exchange interaction.

Figures 8 and 9 show the QMC results for the magnetic
field and temperature behavior of the expectation value of
the Stevens operator per site qz for the SU(3) symmetric case
(J ′ = J). QMC results for the magnetic field behavior of qz in
the realistic case of J ′ = 0, in which only standard Heisenberg
exchange is present, are shown in Fig. 10, and the results for
the negative biquadratic coupling (J ′ = −J/2) are presented
in Fig. 11. We see that the magnetic field dependencies for
those cases are very similar (except for the low-temperature
features of the Haldane phase and the absence of the transition
between gapless phases). The low-temperature behavior of
the SU(3) symmetric system agrees well with the ground-
state behavior shown in Fig. 4. Notice that the use of the
string hypothesis [45,46] within the Bethe ansatz for the inte-
grable case J ′ = J yields similar results. The low-temperature
behavior of the free energy of the integrable model for gapless

FIG. 9. The temperature dependence of the expectation value of
the Stevens operator per site qz at D = 0 for the SU(3) symmetric
(J ′ = J) spin-1 chain for several values of the magnetic field H .
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FIG. 10. The magnetic field behavior of the expectation value of
the Stevens operator per site qz at D = 0 for the pure Heisenberg case
(J ′ = 0) of the spin-1 chain for several values of the temperature T .

phases is proportional to T 2 and inversely proportional to
the Fermi velocity of the (gapless) elementary excitation. We
emphasize (see Figs. 8–11) that the nonzero expectation value
of the Stevens operator (the spin nematic ordering) for D = 0,
caused by the external magnetic field, survives at nonzero
temperatures for all values of the biquadratic exchange cou-
pling.

In phases with gapped excitations (e.g., the spin-polarized
phases, the large-D phases, and the Haldane phases), corre-
lation functions decay exponentially as exp(−r�p/v), where
�p is the gap value and v is the velocity of the excitations
related to the correlation function. In the framework of the
conformal field theory it is possible to calculate the asymptotic
behavior of correlation functions of one-dimensional quan-
tum models in phases with gapless excitations [47]. Those
correlation functions decay as r−ηp , where the exponents ηp

for integrable models can be calculated from the finite-size
corrections [47]. For the considered model, two correlation

FIG. 11. The magnetic field behavior of the expectation value of
the Stevens operator per site qz at D = 0 for the case with negative bi-
quadratic exchange J ′ = −J/2 of the spin-1 chain for several values
of the temperature T .

FIG. 12. The ground-state behavior of the exponents of the cor-
relation functions of phases with gapless excitations as a function
of the magnetic moment per site mz for D = 0 and J ′ = −J/2, J/2:
results of the exact diagonalization of 16 spins.

functions are important, namely,〈
Sz

nSz
n+r

〉 ∝ r−ηz ,

〈(S+
n )2(S−

n+r )2〉 ∝ r−ηx , (10)

where S±
n = Sx

n ± iSy
n, and (S+

n )2(S−
n+r )2 is obviously re-

lated to the correlation function of the Stevens operators
(O0

2)n(O0
2)n+r . For nonintegrable models it is possible to cal-

culate the related exponents using the exact diagonalization of
finite chains [48].

Figure 12 manifests the behavior of related exponents ηz,x

as a function of the magnetic moment per site mz (related to
the applied magnetic field H). Exact results for the integrable
cases J = J ′ and J = −J ′ qualitatively agree with the behav-
ior presented in Fig. 12.

We see that for large mz the dipole spin-spin correlations
(with ηz) decay with distance more slowly than the quadrupole
ones, while for small mz the situation is the opposite.

V. INTERACTION WITH THE ELASTIC SUBSYSTEM

Now we are in a position to calculate how the spin nematic
ordering can appear in spin-1 chain materials. It is known that
the single-ion magnetic anisotropy is caused by two factors.
First, the crystalline electric field of nonmagnetic ions (lig-
ands) surrounding the magnetic ion affects the orbital moment
of the latter. Then the spin-orbit interaction taken in the lowest
approximation yields the single-ion magnetic anisotropy [28].

Consider the situation in which the field D is caused by
the related strain u of ligands of the elastic subsystem of
the spin chain crystal, D = au, where a is the spin-elastic
coupling parameter. The strain reduces the symmetry of the
crystal surrounding the spin-1 magnetic ions, e.g., from cubic
symmetry to tetragonal symmetry. Such a strain enlarges the
energy of the system as Cu2/2, where C is the related elas-
tic modulus [49]. (Here, we consider the elastic subsystem
classically and in the ground state, because the characteristic
elastic energy, the Debye temperature, is much stronger than
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FIG. 13. The derivatives of the spin and the elastic contributions
to the ground-state energy of the coupled spin-elastic subsystems for
the SU(3) symmetric case at H = 0 as a function of D.

the characteristic exchange coupling in spin chain materials.)
Then the total Hamiltonian can be written as H + Cu2/2,
in which D = au. For some values of the parameter D the
energy of the spin subsystem becomes smaller than that at
D = 0. Hence the nonzero strain produces the energy loss of
the elastic subsystem and, at the same time, the energy gain
in the spin subsystem of the crystal. The situation is similar to
the Jahn-Teller effect (however, for the spin subsystem): The
strain of the elastic subsystem, by reducing the symmetry, lifts
the degeneracy of the spin subsystem, because in the absence
of D the direction of the spin nematic order parameter is
arbitrary. Taking into account that qz = N−1∂E/∂D, we plot
in Fig. 13 the value of qz, calculated using the exact Bethe
ansatz solution, as a function of D at H = 0 together with the
lines −(C/a2)D (the derivative of the elastic contribution to
the energy with respect to D) for the SU(3) symmetric case.

We see that depending on the parameter α = C/a2, several
situations can be realized. For small values of the coupling
a or large values of the elastic modulus C the curve qz(D)
crosses the lines −αD only at D = 0 (red line). In that case the
system is in a situation in which the single-ion spin anisotropy
cannot be realized. On the other hand, starting from some crit-
ical value of α1 = 0.2357 (notice that D is measured in units
of J) the magnetic anisotropy appears: There is an intersection
of the curve qz(D) with the line −αD (green line) at negative
values of D.

Then we see that several intersections can exist for α < α1

(blue line), which is typical for first-order phase transitions. It
is clear that the magnetic anisotropy is related to the minimal
contribution of the spin subsystem. For α � α2 = 0.156 the
intersections exist also for positive values of D.

Choosing the solution of the equation

qz(D) = −αD (11)

(see Fig. 13) corresponding to the energy minimum, we
find that for intermediate coupling the easy-axis magnetic
anisotropy (with D < 0 and qz = 1/3) is realized. For
example, for α = α1 there are two solutions: D = −1, cor-
responding to qz = 1/3 with the energy E/N ≈ −1.886 (in

FIG. 14. The derivatives of the spin and the elastic contributions
to the ground-state energy of the coupled spin-elastic subsystems
for the SU(3) symmetric case for a nonzero value of the external
magnetic field as a function of D.

units of J), and D = 0, corresponding to qz = 0 with the
energy E/N ≈ −1.703.

For smaller values of α, the easy-plane anisotropy appears
(with D > 0 and qz = −2/3). Actually, for α = α2 there are
three solutions: D = −1, corresponding to qz = 1/3 with the
energy E/N ≈ −2.219; D = 0, corresponding to qz = 0 with
the energy E/N ≈ −1.703; and D = 4, corresponding to qz =
−2/3 with the energy E/N ≈ −2.332.

In Fig. 14 we show how the external magnetic field affects
the spin nematic ordering caused by the interaction with the
elastic subsystem in the ground state. Notice that the mag-
netic field itself can cause the spin nematic ordering without
the coupling to the elastic subsystem; see above. The small
magnetic field decreases the value of α1; however, for H > J ,
it increases α1. For H � 4J the system is in the spin-polarized
phase, in which qz = 1/3.

A series of low-temperature dependencies qz(D), corre-
sponding to different values of J ′, are presented in Fig. 15.
These curves were obtained using the QMC method for sys-
tems with N = 500 spins, temperature T = 0.05, and J ′ =
0, J/3, J/2, J . As can be seen, the dependencies qz(D) for
J ′ �= J are qualitatively similar to the case of J ′ = J , and
hence the analysis of the solutions of Eq. (11) is similar to
that considered above for the SU(3) symmetric case.

As can be seen from Fig. 16, at low temperatures the de-
pendencies qz(D) are qualitatively similar to the case T = 0;
thus solutions with nonzero qz can exist, and we can use their
analysis, analogous to the case of T = 0. On the other hand,
with the increase in the temperature T the dependence qz(D)
tends to a linear (paramagnetic) one. This means that for a
fixed value of α there exists a critical temperature above which
Eq. (11) has the only solution at D = 0.

It is important to point out that an effect similar to the
effect of the strain of ligands can be realized for spin-1 bosons
interacting with a Bose-Einstein condensate (BEC) [50]. Our
theory can be applied to that situation too: In our notations,
u plays the role of the respective component of the BEC, and
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FIG. 15. The dependencies qz on D, corresponding to different
values of the parameter of the biquadratic exchange J ′, obtained
using the QMC method for systems with N = 500 spins, temperature
T = 0.05, and J ′ = 0, J/3, J/2, J .

as a result, the spin nematic ordering can take place. Such a
situation can be realized in a system of spin-1 ultracold bosons
situated in a one-dimensional optical lattice.

VI. HIGH-ENERGY PHYSICS APPLICATION

The exchange part of the SU(3) symmetric spin Hamil-
tonian can be written up to a constant as the permutation
operator of the Gell-Mann matrices λa=1···8

n [Tr(λaλb) = 2δab]
[51], so that the SU(3) symmetric Hamiltonian can be written
as

H =
∑

n

[
J

1

2

8∑
a=1

λa
nλ

a
n+1 − Hλ2

n + D√
3
λ8

n + 4J

3

]
. (12)

In fact, as in the spin-1 SU(3) symmetric chain, one can use
any component of the SU(3) field (i.e., any

∑
n λa

n) in (12),
which remains integrable; using the unitary transformation

FIG. 16. The dependencies qz on D, corresponding to different
values of temperature T , obtained using the QMC method for sys-
tems with N = 500 spins and J ′ = J .

one can reduce the situation to (12). The components of the
SU(3) fields (spin projections and Stevens operators) can be
presented via Gell-Mann matrices. Namely, λ7,5,2 are equal to
Sx,−Sy, Sz operators, respectively, of the spin-1 projections;
see, e.g., Ref. [50]. On the other hand, λ1,4,6,3,8 are equal to the
Stevens operators −O−2

2 /2,−O1
2/2,−O−1

2 /2,−O2
2/2,

√
3O0

2,
respectively [50]; sometimes other representations of the spin
projection and quadrupole component operators are used.
Notice that due to these relations, we see that λ7,5,2 in the
Hamiltonian (12) violate the time-reversal symmetry T , while
λ1,4,6,3,8 are related to the violation of the rotational symmetry
O(3). In quantum chromodynamics (QCD), each Gell-Mann
matrix is related to gluons [52], massless vector spin-1 gauge
bosons with negative intrinsic parity, no electric charge, and
no flavor, which participate in strong interactions, gluing
quarks in hadrons. Matrices λ1,2,4,5,6,7 describe color glu-
ons, g1 = (rb̄ + br̄)/

√
2, g2 = −i(rb̄ − br̄)/

√
2, g4 = (rḡ +

gr̄)/
√

2, g5 = −i(rḡ − gr̄)/
√

2, g6 = (bḡ + gb̄)/
√

2, g7 =
−i(bḡ − gb̄)/

√
2. Here, r, g, b, r̄, ḡ, b̄ stand for red, green, and

blue color and their anticolor counterparts. Matrices λ3,8 are
related to colorless gluons g3 = (rr̄ − bb̄)/

√
2 and g8 = (rr̄ +

bb̄ − 2gḡ)/
√

6, which are antiparticles to themselves, i.e., they
are true neutral particles. The singlet color state is forbidden.
Gluons, which do not interact with quarks, are described by
the SU(3) symmetric Yang-Mills theory [53]

L = − 1
4 F a

μνF aμν, (13)

where the gauge invariant gluon field strength tensor is

F a
μν = ∂μAa

ν − ∂νAa
μ + gf abcAb

μAc
ν, (14)

with Aa
μ = AμT a (μ, ν are space-time variables, a, b, c =

1, . . . , 8) being the gluon fields related to the octet of gen-
erators of the SU(3) group T a = λa/2, where Tr(T aT b) =
(1/2)δa,b; g being the coupling strength constant (subject to
the renormalization); and f abc = −(i/4)Tr(λc[λa, λb]) being
the structure constants [T a, T b] = i f abcT c. From this view-
point the Hamiltonian (12) describes the one-dimensional
quantum lattice toy model of interacting gluons. For that
model we can use the results of previous sections with
the obvious redefinitions mz → N−1 ∑

n〈λ2
n〉 and qz →

N−1
√

3
∑

n〈λ8
n〉, with H and D playing the role of the re-

lated components of (1 + 1)-dimensional Yang-Mills fields.
Notice that from our results one can clearly see the difference
in the behaviors of gluons, in particular, in different effects
of the components of the Yang-Mills gluon fields on color
gluons g2,5,7, which components of the Yang-Mills field break
the time-reversal T symmetry, and other color and colorless
gluons, which components of the Yang-Mills field break the
rotational O(3) symmetry, and in the different asymptotic
behavior of correlation functions of such gluons. It is inter-
esting that the external Yang-Mills field, which violates the
time-reversal symmetry T , can cause the symmetry breaking
for color and colorless gluons, which are not coupled to that
field directly. The interaction of the spin subsystem with the
elastic one for this high-energy model can be considered as
the interaction of gluons with the Higgs-like field. Such a
Higgs-like field plays the role of the strain of the elastic sub-
system in the condensed matter model. The onset of the spin
nematic ordering in the spin chain material is analogous to the
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spontaneous symmetry breaking, e.g., for colorless interacting
gluons in the toy model.

VII. SUMMARY

In summary, we have studied the onset of spin nematic
ordering in the spin-1 chain material. The exact integrability
for the SU(3) symmetric case and numerical simulations for
various values of the biquadratic exchange interaction have
permitted us to show that the external magnetic field can
cause the spin nematic ordering in the ground state and at
nonzero temperatures. On the other hand, we have studied
the interaction of the spin subsystem with the elastic one. It
is shown that such a coupling can cause the spin nematic
ordering in the ground state and at low temperatures. The
effect of the external magnetic field on that ordering has also
been investigated. Our numerical results evidence that the
spin nematic ordering in quasi-one-dimensional spin systems
coupled with strains of the crystal lattice can take place for any

value of the biquadratic exchange interaction. Our results can
also be applied to the description of the onset of spin nematic
ordering for systems of spin-1 ultracold bosons situated in
one-dimensional optical traps, due to the coupling with a
BEC. As a by-product, we discuss the obtained exact results
in the framework of the SU(3) symmetric Yang-Mills-like toy
theory of interacting gluons. We show that the Yang-Mills
fields can cause symmetry breaking for gluons, which do
not interact with those fields directly. Also, the interaction of
gluons with the Higgs-like scalar field can cause spontaneous
symmetry breaking in the gluon subsystem.
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S. Krämer, M. Horvatić, R. K. Kremer, J. Wosnitza, and G.
L. J. A. Rikken, Phys. Rev. Lett. 118, 247201 (2017).

[21] M. Gen, T. Nomura, D. I. Gorbunov, S. Yasin, P. T. Cong, C.
Dong, Y. Kohama, E. L. Green, J. M. Law, M. S. Henriques,
J. Wosnitza, A. A. Zvyagin, V. O. Cheranovskii, R. K. Kremer,
and S. Zherlitsyn, Phys. Rev. Research 1, 033065 (2019).

[22] M. Blume and Y. Y. Hsieh, J. Appl. Phys. 40, 1249 (1969).
[23] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner,

A. P. Chikkatur, and W. Ketterle, Nature (London) 396, 345
(1998).

[24] E. Demler and F. Zhou, Phys. Rev. Lett. 88, 163001 (2002).
[25] S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C.

Broholm, H. Tsunetsugu, Y. Qui, and Y. Maeno, Science 309,
1697 (2005).

[26] H. Tsunetsugu and M. Arikawa, J. Phys. Soc. Jpn. 75, 083701
(2006).

[27] A. Läuchli, F. Mila, and K. Penc, Phys. Rev. Lett. 97, 087205
(2006).

[28] See, e.g., A. A. Zvyagin, Quantum Theory of One-Dimensional
Spin Systems (Cambridge Scientific, Cambridge, 2010).

[29] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[30] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
[31] E. Barouch and B. M. McCoy, Phys. Rev. A 3, 786 (1971).
[32] P. Pfeuty, Ann. Phys. (Amsterdam) 57, 79 (1970).
[33] S. Sachdev, Quantum Phase Transitions (Cambridge University

Press, Cambridge, 1999).
[34] G. V. Uimin, Pis’ma Zh. Eksp. Teor. Fiz. 12, 332 (1970) [JETP

Lett. 12, 225 (1970)].
[35] C. K. Lai, J. Math. Phys. 15, 1675 (1974).

054429-9

https://doi.org/10.1126/science.1197358
https://doi.org/10.1063/1.5010312
https://doi.org/10.1103/PhysRevB.81.184519
https://doi.org/10.1038/nphys2877
https://doi.org/10.1038/nature11178
https://doi.org/10.1126/science.1251853
https://doi.org/10.1088/1361-648X/aa9caa
https://doi.org/10.1103/PhysRevLett.66.100
https://doi.org/10.1103/PhysRevB.44.4693
https://doi.org/10.1063/1.4826079
https://doi.org/10.1209/0295-5075/92/37001
https://doi.org/10.1103/PhysRevLett.96.027213
https://doi.org/10.1103/PhysRevB.87.144417
https://doi.org/10.1103/PhysRevB.90.134401
https://doi.org/10.1103/PhysRevLett.118.247201
https://doi.org/10.1103/PhysRevResearch.1.033065
https://doi.org/10.1063/1.1657616
https://doi.org/10.1038/24567
https://doi.org/10.1103/PhysRevLett.88.163001
https://doi.org/10.1126/science.1114727
https://doi.org/10.1143/JPSJ.75.083701
https://doi.org/10.1103/PhysRevLett.97.087205
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRevA.3.786
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1063/1.1666522


A. A. ZVYAGIN AND V. V. SLAVIN PHYSICAL REVIEW B 106, 054429 (2022)

[36] B. Sutherland, Phys. Rev. B 12, 3795 (1975).
[37] J. B. Parkinson, J. Phys.: Condens. Matter 1, 6709 (1989).
[38] H. Kiwata, J. Phys.: Condens. Matter 7, 7991 (1995).
[39] A. Schmitt, K.-H. Mütter, and M. Karbach, J. Phys. A: Math.

Gen. 29, 3951 (1996).
[40] V. V. Slavin and A. A. Krivchikov, Low Temp. Phys. 40, 985

(2014).
[41] A. W. Sandvik, Phys. Rev. B 59, R14157(R) (1999).
[42] V. O. Cheranovskii, V. V. Slavin, E. V. Ezerskaya, A. L.

Tchougréff, and R. Dronskowski, Crystals 9, 251 (2019).
[43] V. O. Cheranovskii, V. V. Slavin, and D. J. Klein, Int. J.

Quantum Chem. 121, e26498 (2021).
[44] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[45] H. Johannesson, Phys. Lett. A 116, 133 (1986).
[46] L. Mezincescu, R. I. Nepomechie, P. K. Townsend, and A. M.

Tsvelik, Nucl. Phys. B 406, 681 (1993).

[47] See, e.g., A. A. Zvyagin, Finite Size Effects in Correlated Elec-
tron Models: Exact Results (Imperial College Press, London,
2005).

[48] T. Sakai, H. Nakano, R. Furuchi, and K. Okamoto, J. Phys.:
Conf. Ser. 2164, 012030 (2022).

[49] L. D. Landau and E. M. Lifshitz, Elasticity Theory (Pergamon,
Oxford, 1984).

[50] M. S. Bulakhov, A. S. Peletminskii, S. V. Peletminskii, and
Yu. V. Slyusarenko, J. Phys. A: Math. Theor. 54, 165001 (2021).

[51] M. Gell-Mann, The eightfold way: A theory of strong inter-
action symmetry, Technical Report No. CTSL-20 TID-12608
(California Institute of Technology, Pasadena, 1961), doi:
10.2172/4008239.

[52] M. Creutz, Quarks, Gluons, and Lattices (Cambridge University
Press, Cambridge, 1983).

[53] C.-N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

054429-10

https://doi.org/10.1103/PhysRevB.12.3795
https://doi.org/10.1088/0953-8984/1/37/017
https://doi.org/10.1088/0953-8984/7/41/008
https://doi.org/10.1088/0305-4470/29/14/019
https://doi.org/10.1063/1.4902186
https://doi.org/10.1103/PhysRevB.59.R14157
https://doi.org/10.3390/cryst9050251
https://doi.org/10.1002/qua.26498
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1016/0375-9601(86)90300-2
https://doi.org/10.1016/0550-3213(93)90006-B
https://doi.org/10.1088/1742-6596/2164/1/012030
https://doi.org/10.1088/1751-8121/abed16
https://doi.org/10.2172/4008239
https://doi.org/10.1103/PhysRev.96.191

