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Theory of inertial spin dynamics in anisotropic ferromagnets
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Recent experimental observation of inertial spin dynamics calls upon holistic reevaluation of the theoretical
framework of magnetic resonance in ferromagnets. Here, we derive the secular equation of an inertial spin system
in analogy to the ubiquitous Smit-Beljers formalism. We find that the frequency of precessional ferromagnetic
resonances is decreased as compared to the noninertial case. We also find that the frequency of nutational
resonances is generally increased due to the presence of magnetic anisotropy and applied magnetic field. We
obtain exact solutions of the secular equation and approximations that employ the terminology of noninertial
theory and thus allow for convenient estimates of the inertial effects.
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I. INTRODUCTION

Inertial effects of spin dynamics have mostly been ne-
glected in the analysis of experimental spin resonance and
spin transport results, since they mainly manifest themselves
at hardly accessible terahertz frequencies in ferromagnets.
With recent advances in spectroscopic techniques [1,2], this
fundamental phenomenon has been observed in permal-
loy, cobalt, and cobalt-iron-boron ferromagnetic films [3,4].
Inertial spin dynamics offers novel avenues for ultrahigh-
frequency spintronic applications using well-established fer-
romagnetic materials and is thus becoming a prominent field
of research.

The mathematical concept of inertia of magnetization was
introduced in the context of magnetoelastic coupling in ferro-
magnets by Suhl [5]. It was followed by an extension of the
breathing Fermi surface model which demonstrated the emer-
gence of a damping contribution linked to inertia [6,7]. It was
noticed that the Landau-Lifshitz-Gilbert equation, which de-
scribes magnetization motion in analogy with a spinning top,
required an inertial tensor of a rigid body. A revision [8] of this
analogy within a macroscopic Lagrangian approach suggested
that inertia originates from generalization of gyromagnetic
ratio—the magnetic moment is noncollinear to the angu-
lar momentum. The Landau-Lifshitz-Gilbert equation was
extended by including the second-order time derivative of
magnetization, which now resembles Newton’s equation of
motion for a massive point particle.
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This inertial Landau-Lifshitz-Gilbert (ILLG) equa-
tion reads

∂t M = −|γ |μ0M × Heff + α

M0
M × ∂t M

+ η

M0
M × ∂tt M, (1)

where γ = gμB/h̄ is the gyromagnetic ratio, μB is the Bohr
magneton, g is the g factor, μ0 is the permeability of free
space, M is the magnetization with the magnitude M0, Heff

is the effective magnetic field, α is the Gilbert damping,
and η is the inertial parameter. The inertial parameter has
been discussed to be correlated to the Gilbert damping within
the breathing Fermi surface model [6,7] and torque-torque
correlation model [9], whereas inertia has been considered
independent of damping within the classical Lagrangian
approach [8]. The ILLG equation was derived within the
framework of mesoscopic nonequilibrium thermodynamics
[10] and the Dirac-Kohn-Sham theory [11]. In an atomistic
method, exchange interaction, damping, and inertia were cal-
culated from first principles [12]. The microscopic origin of
inertia has been asserted in the relativistic spin-orbit coupling
[9,13,14].

Inertia leads mainly to nutation—a terahertz-frequency
motion of magnetization superimposed on the regular
gigahertz-frequency precession [15] (Fig. 1). Nutational res-
onances have been discussed in ferromagnets [16] and
antiferromagnets [17–20]. Moreover, traveling nutational spin
waves [21–23] have been proposed. Besides nutational mo-
tion, inertia has been found to result in a frequency shift of
the uniform magnetization precession [15,24] and spin waves
[22] at gigahertz frequencies. Previous studies of inertial spin
dynamics treated various ferromagnetic systems including
nanoparticles and nanostructures [25–27]; however, a general
approach based on ILLG for a ferromagnet with an arbitrary
magnetic anisotropy has not yet been proposed.
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FIG. 1. The magnetization M precesses around the effective
magnetic field and Heff due to the precessional torque (blue). The
inertial torque (red) causes the magnetization to undergo a concurrent
nutational motion. The total magnetization motion is subject to the
damping torque (green).

Here, we develop a holistic theoretical framework for a
ferromagnet with an arbitrary magnetic anisotropy energy
landscape in analogy to the Smit-Beljers (SB) approach. For
the last six decades [28], the Smit-Beljers formalism has been
an indispensable tool for routinely predicting and analyz-
ing macrospin ferromagnetic resonance and, with extensions,
spin-wave resonances. Now, our theoretical framework allows
for deriving the frequencies of the nutational and precessional
resonances of anisotropic ferromagnets in the presence of
inertia. We formulate the secular equation of inertial spin
dynamics, provide its exact and approximate solutions, and
discuss the interplay of inertia and magnetic anisotropy.

II. PRECESSIONAL AND NUTATIONAL RESONANCE
FREQUENCIES

The Smit-Beljers approach was initially developed via lin-
earizing the Landau-Lifshitz equation in spherical coordinates
and using small-angle approximation around the equilibrium
direction of magnetization [29,30]. Employing the periodic
solution ansatz, the ferromagnetic resonance (FMR) fre-
quency was derived as

ω2
SB = |γ |2(1 + α2)

M2
0 sin2θ0

(
∂θθ F∂φφF − (∂θφF )2), (2)

where θ0 is the equilibrium polar angle of magnetization.
The equation gives a closed-form relation between the FMR
frequency and magnetic anisotropy energy F and allows for
efficient and convenient numerical analysis of experimental
data [31].

In our approach, we similarly write the ILLG equation in
spherical coordinates which now contains first and second
derivatives of the angles. As detailed in Appendix A, the
relative magnitude of the terms in this resulting equation can
be analyzed by their prefactors expressed in the orders of
the Gilbert damping parameter α. Since the latter is typically
10−3–10−2, we omit higher-order terms and arrive at

∂ttθ = |γ |μ0Hθ

η
− α|γ |μ0Hϕ

η
+ ∂tϕ sin θ

η

+ (∂tϕ)2 sin θ cos θ,

∂ttϕ sin θ = |γ |μ0Hϕ

η
+ α|γ |μ0Hθ

η
− ∂tθ

η

− 2∂tϕ∂tθ cos θ. (3)

Using the small-angle approximation, we develop the
equations around the equilibrium direction of magnetization
which introduces second-order derivatives of the energy F .
The system of equations can be further linearized employing
a Jacobian matrix of the angles (Appendix A). Using the peri-
odic solution ansatz, we arrive at a fourth-order characteristic
polynomial constituting the secular equation of the inertial
spin system:[

ω2

|γ |2 − (1 + α2)

M2
0 sin2θ0

(
∂θθF∂φφF − (∂θφF )2

)]

− η2ω2

[
ω2

|γ |2 − 1

η|γ |M0

(
∂θθF + ∂ϕϕF

sin2θ0

)]

− iω
α

|γ |M0

(
∂θθF + ∂ϕϕF

sin2θ0

)
= 0. (4)

The first group of terms corresponds to Eq. (2). The sec-
ond group of terms introduces inertia of magnetization. The
third group of terms corresponds to the frequency-domain
linewidth of the ferromagnetic resonance


ωSB = |γ |α
M0

(
∂θθF + ∂ϕϕF

sin2θ0

)
(5)

as it does in the noninertial case [28,32]. The presented ap-
proach has the advantage to converge to the Smit-Beljers
secular equation when the inertial parameter vanishes and can
be written as(

ω2 − ω2
SB

) − η2ω2

(
ω2 − 1

ηα

ωSB

)
− iω
ωSB = 0. (6)

Equation (6) has two physical solutions: precessional reso-
nance ωp at lower frequency and nutational resonance ωn at
higher frequency. In Appendix B, we calculate the explicit
(exact but complex) solutions, shown in Fig. 2, as a bench-
mark for the consecutive approximations.

First, similarly to the original Smit-Beljers formalism, we
can omit the imaginary term in the secular Equation (6)—an
approximation that we mark with “a”—and derive an analyti-
cal form of the resonance frequencies:

ω(a)
p = (p −

√
p2 − q)1/2, (7)

ω(a)
n = (p +

√
p2 − q)1/2, (8)

where

p = 1

2η2
+ 
ωSB

2αη
, q = ω2

SB

η2
. (9)

The analytical form can be used conveniently to calculate the
resonance frequencies via ωSB and 
ωSB, thus adding just
a few extra steps compared to the Smit-Beljers formalism.
However, the analytical form is still too complex and the
effect of magnetic anisotropy on precessional and nutational
behavior is not immediately clear.

We thus implement another approximation—marked with
“b”—by expanding the analytical form into a Taylor se-
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FIG. 2. Frequency-field relation of ferromagnetic resonance and nutational resonances. Explicit solutions of Eq. (6) for the precessional
resonance (orange) show a redshift compared to the noninertial Smit-Beljers case (dashed blue). Explicit solutions of Eq. (6) for the nutational
resonance (red) show a blueshift compared to the zeroth-order approximation 1/η. (a) The calculation parameters for a thin film with cubic
magnetocrystalline anisotropy are g = 2.09, μ0M0 = 2.1 T, α = 0.002, η = 75 fs rad−1, Kcub1 = 4.9 × 104 J m−3, Refs. [3,4,33]. (b)–(d) The
following parameters for a thin film with uniaxial magnetocrystalline anisotropy have been used: g = 2.17, μ0M0 = 1.8 T, α = 0.10, η =
75 fs rad−1, Ku1 = 4.1 × 105 J m−3, Refs. [3,4,34].

ries (Appendix B) and neglecting higher-order terms in

ωSBη � 1:

ω(b)
p = ωSB

√
1 − η


ωSB

α
, (10)

ω(b)
n = 1

η
+ 
ωSB

2α
. (11)

Here, we immediately see a systematic redshift of the preces-
sional frequency as compared to the noninertial case of ωSB.
As shown in Fig. 1, the inertial torque vector has a notable
component that is antiparallel to the precessional torque, thus
effectively reducing the latter.

The nutational frequency ω(b)
n , on the other hand, shows

a substantial frequency increase (a blueshift) as compared
to an earlier estimation ωn ∼ 1/η for an isotropic ferromag-
net [3,4]. Another approximation, for instance employed in
Ref. [15], accounts for a frequency shift due to an applied
magnetic field

ω̄n =
√

1 + η|γ |μ0H0

η
= 1

η
+ |γ |μ0H0

2
+ . . . (12)

but neglects the effects of magnetic anisotropy. While the
nutational frequency obtained in our model converges to
the estimate ω̄n in the case of vanishing anisotropy, it
demonstrates that magnetic anisotropy (both, shape and mag-
netocrystalline) shifts the nutation resonance frequency as
compared with ω̄n, and must be accounted for according to
the characteristic polynomial [Eq. (6)] and its solutions.

III. EFFECT OF MAGNETIC ANISOTROPY ON INERTIAL
SPIN DYNAMICS

We calculate the effect of magnetic anisotropy on
precessional and nutational resonances for four concrete
examples of magnetic samples that have been and may likely
be used in an experiment probing inertial spin dynamics.

We consider single-crystal ferromagnetic thin films with
cubic magnetocrystalline anisotropy (iron) and uniaxial
magnetocrystalline anisotropy (hexagonal-close-packed
cobalt) with magnetic parameters obtained from experimental
data of Refs. [3,4]. The explicit (exact) solutions of the
characteristic polynomial of Eq. (6) are plotted in Fig. 2
for various configurations of applied magnetic field with
respect to the film surface and crystal symmetry axes. We
use free-energy density and equilibrium angles defined
in Appendices C and D. As shown in Fig. 2, the effect
of inertia is consistent in all calculated scenarios. The
precessional frequency experiences a redshift due to inertia
as compared to resonance frequency ωSB for the noninertial
Smit-Beljers case. Both aligned precessional modes (above
the saturation field) and nonaligned precessional modes
(below the saturation field in hard-axes configurations)
[31] experience a redshift which increases with increasing
precessional frequency. For the aligned modes, the redshift
thus becomes stronger with increasing magnetic field. For
nonaligned modes, on the other hand, decreasing magnetic
field can result in increasing redshift.

The nutational frequency experiences a blueshift due to
magnetic anisotropy and magnetic field. The blueshift typ-
ically increases with increasing magnetic field. However,
below the saturation field in hard-axes configurations, the
blueshift of the nutational frequency can become stronger
with decreasing magnetic field [see the red line in Figs. 2(a)–
2(c)]. The exact behavior is dominated by the 
ωSB term in
Eqs. (10) and (11). Both shifts can be substantial (reaching
up to 12% in the magnetic field of 10 T) for all calculated
scenarios.

While we use the explicit solutions of the secular equa-
tion in Fig. 2 to visualize the effects of magnetic anisotropy
in inertial spin systems, the observed frequency shifts are in
qualitative agreement with the approximations. To assess the
quantitative validity of our approximations “a” and “b,” we
compare them with the benchmark of the explicit solutions.
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We find that the analytical form “a” [Eqs. (7) and (8)] accrues
less than 0.5% error for aligned modes when compared to
the exact solution of Eq. (4); however, it should be stressed
that the characteristic polynomial Eq. (4) itself has been
derived for inertial parameters η � 1/
ωSB. The next-step
approximation by the Taylor series “b” [Eqs. (10) and (11)]
introduces an error less than 6% for aligned modes with η <

100 fs rad−1, while at higher values of the inertial parameter,
the Taylor series causes a substantial error of the frequencies.
While the approximation “b” in Eqs. (10) and (11) should
thus be treated with caution, for comparison, we calculate the
explicit forms of precessional and nutational frequencies for
aligned modes in the configurations displayed in Fig. 2:

(a) The out-of-plane cubic case:

ω(b)
p

2 = |γ |2(1 + α2)

(
−μ0M0 + μ0H0 + 2Kcub1

M

)2

×
[

1 − η|γ |
(

−2μ0M0 + 2μ0H0 + 4Kcub1

M

)]
,

(13)

ω(b)
n = 1

η
+ |γ |

(
−μ0M0 + μ0H0 + 2Kcub1

M0

)
. (14)

(b) The out-of-plane uniaxial case:

ω(b)
p

2 = (1 + α2)|γ |2
(

−μ0M0 + μ0H0 + 2Ku1

M0

)2

×
[

1 − η|γ |
(

−2μ0M0 + 2μ0H0 + 4Ku1

M0

)]
,

(15)

ω(b)
n = 1

η
+ |γ |

(
−μ0M0 + μ0H0 + 2Ku1

M0

)
. (16)

(c) The in-plane perpendicular uniaxial case:

ω(b)
p

2 = (1 + α2)|γ |2(μ0M0 + μ0H0)

(
μ0H0 − 2Ku1

M0

)

×
[

1 − η|γ |
(

μ0M0 + 2μ0H0 − 2Ku1

M0

)]
, (17)

ω(b)
n = 1

η
+ |γ |

(μ0M0

2
+ μ0H0 − Ku1

M0

)
. (18)

(d) The in-plane parallel uniaxial case:

ω(b)
p

2 = (1 + α2)|γ |2
(

μ0H0 + 2Ku1

M0

)

×
(

μ0M0 + μ0H0 + 2Ku1

M0

)

×
[

1 − η|γ |
(

μ0M0 + 2μ0H0 + 4Ku1

M0

)]
, (19)

ω(b)
n = 1

η
+ |γ |

(
μ0M0

2
+ μ0H0 + 2Ku1

M0

)
. (20)

It is a common practice to analyze experimentally deter-
mined dependencies of ferromagnetic resonance frequency
on applied magnetic field for evaluating magnetic parameters
such as magnetic anisotropy and g factor [31,35–40]. Our

work demonstrates that such evaluation needs to be adjusted
by taking into account the inertial redshift. In particular, mea-
surements at higher fields/frequencies have been considered
to result in more accurate determination of magnetic param-
eters [41–45]. Our model, however, shows that especially at
high magnetic fields, inertial redshift is strong and needs to be
taken into account.

It should be noted that in the framework of the extended
breathing Fermi surface model [6,7], the inertial term with
negative sign was derived. Such negative inertial term would
formally result in a blueshift of the precessional frequencies.
However, since the origin of inertia is still under discussion,
we consider here only the effects of the positive inertial term
suggested in Ref. [8].

IV. SUMMARY

In summary, we derived the secular equation for an inertial
spin system with an arbitrary magnetic anisotropy energy in
analogy with the Smit-Beljers approach. We find that ferro-
magnetic resonance experiences a substantial redshift due to
the inertia, while nutational resonance experiences a blueshift
due to magnetic anisotropy and field. For an accurate evalu-
ation of magnetic parameters from magnetic resonance mea-
surements, inertia needs to be taken into account. Our model
[Eq. (6)] allows for convenient calculation of precessional
and nutational resonances of an inertial spin system using
parameters (ωSB and 
ω) obtained from noninertial models.
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APPENDIX A: SMIT-BELJERS APPROACH
WITH INERTIA

First, we transform the ILLG equation into a spherical
coordinate system and find equilibrium angles of magnetiza-
tion. Second, we linearize the system of equations describing
magnetization dynamics at the equilibrium point. Finally, we
derive the eigenfrequencies corresponding to the resonances.

In a spherical coordinate system one writes M =
M0er, Heff = Hrer + Hθeθ + Hϕeϕ, where the magnitude of
the magnetization vector persists over time. Using

∂t M = M0(∂tθeθ + sin θ∂tϕeϕ ),

∂tt M = M0{[−(∂tθ )2 − (∂tϕ)2sin2θ ]er

+ [∂ttθ − (∂tϕ)2 sin θ cos θ ]eθ

+ [∂ttϕ sin θ + 2∂tϕ∂tθ cos θ]eϕ}, (A1)

one transforms the ILLG equation into

∂ttθ = |γ |μ0Hθ

η
− α∂tθ

η
+ ∂tϕ sin θ

η

+ (∂tϕ)2 sin θ cos θ,
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∂ttϕ sin θ = |γ |μ0Hϕ

η
− α∂tϕ sin θ

η
− ∂tθ

η

− 2∂tϕ∂tθ cos θ. (A2)

Here, we introduce the first approximation, i.e., we replace the
second terms in both equations (A2) to obtain the system (A5)
as follows. Based on the ILLG equation, we write

α∂tϕ sin θ

η
= −α|γ |μ0Hθ

η
+ α2∂tθ

η

− α(∂tϕ)2 sin θ cos θ + α∂ttθ,

α∂tθ

η
= α|γ |μ0Hϕ

η
− α2∂tϕ sin θ

η

− 2α∂tϕ∂tθ cos θ − α∂ttϕ sin θ (A3)

and substitute these equations in (A2) instead of the corre-
sponding second terms. We obtain

∂ttθ = |γ |μ0Hθ

η
− α|γ |μ0Hϕ

η
+ ∂tϕ sin θ

η
(1 + α2)

+ (∂tϕ)2 sin θ cos θ + 2α∂tϕ∂tθ cos θ

+α∂ttϕ sin θ,

∂ttϕ sin θ = |γ |μ0Hϕ

η
+ α|γ |μ0Hθ

η
− ∂tθ

η
(1 + α2)

− 2∂tϕ∂tθ cos θ + α(∂tϕ)2 sin θ cos θ

−α∂ttθ. (A4)

The last two terms in both equations are negligible, since they
are multiplied by α < 1, while 
ωSBη � 1. The α2 terms are
much less than 1, hence the ILLG equation is converted to

∂ttθ = |γ |μ0Hθ

η
− α|γ |μ0Hϕ

η
+ ∂tϕ sin θ

η

+ (∂tϕ)2 sin θ cos θ,

∂ttϕ sin θ = |γ |μ0Hϕ

η
+ α|γ |μ0Hθ

η
− ∂tθ

η

− 2∂tϕ∂tθ cos θ. (A5)

This transformation is commonly adopted and was performed
in Ref. [32]. The advantage of the first approximation is that
the final result, which is to be shown below, converges to the
SB equation for η = 0. Note that the effective magnetic field
Heff = −μ−1

0 ∂MF in the spherical coordinate system is given
by

Hθ = − 1

μ0M0
∂θF, Hϕ = − 1

μ0M0 sin θ
∂ϕF. (A6)

In order to find the eigenfrequencies from the nonlinear
system of equations (A5), it is necessary to linearize it and to
determine the equilibrium orientation of magnetization. The
equilibrium given by the angles θ0 and ϕ0 is found from the
extremum conditions

∂θF = 0, ∂ϕF = 0 (A7)

limited by the conditions for the minimum, namely, the deter-
minant of a Hessian matrix has to be positive:

∂θθF∂ϕϕF − ∂θϕF∂ϕθF > 0 (A8)

and one of the second derivative has to be positive as well:

∂θθ F > 0. (A9)

In the excited state, magnetization is deflected from the equi-
librium orientation by the effective magnetic field changes
over time. Here, we introduce the second approximation,
which corresponds to the standard SB approach (the deflection
from equilibrium is considered to be small):


θ (t ) = θ (t ) − θ0, 
ϕ(t ) = ϕ(t ) − ϕ0, (A10)

and it is sufficient to limit the expansion of free energy to the
linear terms

∂θF = ∂θθF
θ + ∂θϕF
ϕ, ∂ϕF = ∂θϕF
θ + ∂ϕϕF
ϕ,

(A11)
where the second derivatives are evaluated at the equilibrium.
Using the small-angle approximation, one obtains from ex-
pressions (A5)–(A11)

∂tt
θ =
(

− |γ |
ηM0

∂θθF + α|γ |
ηM0 sin θ0

∂θϕF

)

θ

+
(

− |γ |
ηM0

∂θϕF + α|γ |
ηM0 sin θ0

∂ϕϕF

)

ϕ

+ ∂t
ϕ sin θ0

η
+ (∂t
ϕ)2 sin θ0 cos θ0,

∂tt
ϕ sin θ0 =
(

− |γ |
ηM0 sin θ0

∂θϕF − α|γ |
ηM0

∂θθF

)

θ

+
(

− |γ |
ηM0 sin θ0

∂ϕϕF − α|γ |
ηM0

∂θϕF

)

ϕ

− ∂t
θ

η
− 2∂t
ϕ∂t
θ cos θ0. (A12)

In order to linearize this system of equations, the following
notations are introduced:

a41 = − |γ |∂θϕF

ηM0sin2θ0
− α|γ |∂θθF

ηM0 sin θ0
, a42 = − 1

η sin θ0
,

a43 = − |γ |∂ϕϕF

ηM0sin2θ0
− α|γ |∂θϕF

ηM0 sin θ0
, ν4 = −2 cot θ0,

a21 = α|γ |∂θϕF

ηM0 sin θ0
− |γ |∂θθF

ηM0
, a23 = α|γ |∂ϕϕF

ηM0 sin θ0
− |γ |∂θϕF

ηM0
,

a24 = sin θ0

η
, ν2 = sin θ0 cos θ0, x1 = 
θ, x2 = ∂t
θ,

x3 = 
ϕ, x4 = ∂t
ϕ. (A13)

Employing (A13), we rewrite the system (A12) as

∂t x1 = x2, ∂t x2 = a21x1 + a23x3 + a24x4 + ν2x2
4,

∂t x3 = x4, ∂t x4 = a41x1 + a42x2 + a43x3 + ν4x2x4.

(A14)

At the fixed point x∗ = (x∗
1, x∗

2, x∗
3, x∗

4 ) the dynamics of the
nonlinear system (A14) are qualitatively similar to the dy-
namics of a linear system (A15) associated with the Jacobian
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matrix J (x∗) [46], i.e.,⎛
⎜⎝

∂t x1

∂t x2

∂t x3

∂t x4

⎞
⎟⎠ =

⎛
⎝∂x1 f1(x∗) . . . ∂x4 f1(x∗)

...
. . .

...

∂x1 f4(x∗) . . . ∂x4 f4(x∗)

⎞
⎠

⎛
⎜⎝

x1

x2

x3

x4

⎞
⎟⎠,

(A15)

where the right-hand sides of Eqs. (A14) are denoted as fi.
The fixed point is determined by equating the derivatives of
the nonlinear system (A14) to zero, which gives the following
equations:

x2 = 0, a21x1 + a23x3 = 0, x4 = 0, a41x1 + a43x3 = 0,

(A16)

with the solution x∗
1 = x∗

2 = x∗
3 = x∗

4 = 0. The Jacobian ma-
trix of Eqs. (A14) is

J =

⎡
⎢⎣

0 1 0 0
a21 0 a23 a24 + 2ν2x4

0 0 0 1
a41 a42 + ν4x4 a43 ν4x2

⎤
⎥⎦ (A17)

and at the point x∗
1 = x∗

2 = x∗
3 = x∗

4 = 0 it provides the linear
system of equations

∂t x1 = x2, ∂t x2 = a21x1 + a23x3 + a24x4, ∂t x3 = x4,

∂t x4 = a41x1 + a42x2 + a43x3. (A18)

This third approximation goes beyond the SB approach and
it is the linearization of the system (A14). The eigenvalues of
these equations give resonance frequencies, which are calcu-
lated from the characteristic polynomial

ω4 + (a21 + a24a42 + a43)ω2 − i(a24a41 + a23a42)ω

− a23a41 + a21a43 = 0. (A19)

Restoring the original variable notations, one finds the
equation describing eigenfrequencies of a ferromagnet with
inertia [

ω2

|γ |2 − (1 + α2)

M2
0 sin2θ0

(
∂θθF∂φφF − (∂θφF )2

)]

− η2ω2

[
ω2

|γ |2 − 1

η|γ |M0

(
∂θθ F + ∂ϕϕF

sin2θ0

)]

− iω
α

|γ |M0

(
∂θθF + ∂ϕϕF

sin2θ0

)
= 0. (A20)

Note that this equation can be converted to a SB formula (2)
if the inertial parameter vanishes.

APPENDIX B: EXACT AND APPROXIMATE
EXPRESSIONS OF RESONANCE FREQUENCIES

The quartic equation (A20) results in two pairs of roots.
The first pair is precessional frequency modified by inertia;
one root of the pair is positive, the second is negative. The
same applies to the other pair corresponding to the nutational
frequency. Here we consider only positive roots. Let us use
the Ferrari’s solution for this quartic equation to write exact

expressions of resonance frequencies, and introduce the nota-
tions:

Ar = M2
0η2, Cr = −M2

0 − M0η|γ |
(

∂θθF + ∂ϕϕF

sin2θ0

)
,

Dr = iM0α|γ |
(

∂θθF + ∂ϕϕF

sin2θ0

)
,

Er = |γ |2(1 + α2)

sin2θ0
(∂θθF∂φφF − (∂θφF )2),

ar = Cr

Ar
, br = Dr

Ar
, cr = Er

Ar
. (B1)

In the Ferrari’s method, one determines a root of the nested
depressed cubic equation. In our case, the root is written

yr = −5ar

6
+ Ur + Vr, (B2)

where

Ur = 3

√√√√−
√

P3
r

27
+ Q2

r

4
− Qr

2
, Vr = − Pr

3Ur
,

Pr = − a2
r

12
− cr, Qr = 1

3 arcr − a3
r

108
− b2

r

8
. (B3)

Thus, the exact precessional angular frequency modified by
inertia is given by

ωp =
√

ar + 2yr

2
− 1

2

√
−3ar − 2yr − 2br√

ar + 2yr
. (B4)

The exact nutational angular frequency can be written as

ωn =
√

ar + 2yr

2
+ 1

2

√
−3ar − 2yr − 2br√

ar + 2yr
. (B5)

Next, we write a few approximations allowing one to elu-
cidate the physics behind Eqs. (B4)–(B4). The approximation
“a” of resonance frequencies is derived by taking into account
the real part of the quartic equation (A20), which transforms
this equation into a biquadratic one. Thus, the approximation
“a” of precessional frequency reads

ω(a)
p = (p −

√
p2 − q)1/2. (B6)

The approximate nutational frequency is given by

ω(a)
n = (p +

√
p2 − q)1/2, (B7)

where

p = 1

2η2
+ 
ωSB

2αη
, q = ω2

SB

η2
. (B8)

This approximation introduces an additional error, which does
not exceed 0.5% for the aligned modes for the parameters
employed in the main part of the paper. We thus find that
the solution “a” can be considered sufficiently accurate in the
context of this work.

Expressions (B6) and (B7) can be further simplified
by employing Taylor series expansion and assumption that
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FIG. 3. The orientation of coordinate frames in the case of mag-
netic field applied in plane (a) and out of plane (b).


ωSBη � 1. The approximation “b” of precessional fre-
quency is

ω(b)
p = ωSB

√
1 − η


ωSB

α
. (B9)

From Eq. (B9), one can see that this expression of pre-
cessional frequency modified by inertia converges to the
conventional expression of FMR at η = 0. The approximation
“b” of the nutational frequency reads

ω(b)
n = 1

η
+ 
ωSB

2α
. (B10)

The series expansion leads to a further error of about 6% for
the parameters used for numerical calculations presented in
the main part of the paper.

APPENDIX C: FREE-ENERGY DENSITY

We consider two geometrical configurations are of interest
for the study of resonances in magnetic materials. In the first
configuration, a magnetic field rotates tangentially through the
plane of the film surface, the x0y plane [Fig. 3(a)]. In the sec-
ond configuration, the magnetic field goes from the tangential
direction to the normal direction in the x0y plane [Fig. 3(b)].
In the geometries selected here, the films are located differ-
ently relative to the axes, thus the aforementioned planes do
not coincide. Such choice of the axes allows one to avoid the
division by zero in the out-of-plane applied field configuration
[Fig. 3(b)]. Otherwise, if one directs the magnetic field along
the normal to the film in the configuration of axes shown in
Fig. 3(a), one obtains singularity (θ0 = 0) in Eqs. (4) and (2).
Note that an alternative approach was derived in the past by
Baselgia et al. [47].

In order to write expressions of the energy contributions,
let us define coordinate frames. In the general case, the axes
of magnetocrystalline anisotropy (cubic, uniaxial, etc.) may
not coincide with the demagnetization axes, therefore, one
needs to make a transition from one axis to another to cal-
culate the energy. We indicate angles of magnetization vector
as θ and ϕ respectively to Cartesian coordinate system xyz,
defining the demagnetizing energy. The polar and azimuthal
angles of the vector of the magnetic field are denoted by θH

and ϕH with respect to the same axes. The axes specifying
the energy of magnetocrystalline anisotropy are indicated by

FIG. 4. The sequence of z-y-z rotations to the α̃, β̃, and γ̃ angles,
respectively.

xayaza. For instance, we focus on uniaxial anisotropy in the
rotated coordinate system such that the c axis (za) is aligned
with the y axis. Thus, the free-energy density is given by

F = FZ + Fdm + Fa, (C1)

where FZ is the Zeeman energy density, Fdm is the demagne-
tizing energy density, and Fa is related to magnetocrystalline
anisotropy. Using representation of vectors in a spherical co-
ordinate system, one writes the Zeeman energy as

FZ = −μ0MH = −μ0M0H[sin θ sin θH cos (ϕ − ϕH)

+ cos θ cos θH] (C2)

and the demagnetizing energy as

Fdm = 1
2μ0M2

0

× [Nx sin2 θ cos2 ϕ + Ny sin2 θ sin2 ϕ + Nz cos2 θ ],

(C3)

where Nx, Ny, and Nz are demagnetizing factors. The mag-
netocrystalline anisotropy energy of a ferromagnet with cubic
symmetry is given by

Fcub = Kcub1

(
α2

1α
2
2 + α2

2α
2
3 + α2

1α
2
3

) + Kcub2α
2
1α

2
2α

2
3 + . . .

= Kcub1cos2ϕasin2θa
[
cos2ϕa+

(
1 + sin2θa

)
sin2ϕa

]
+ Kcub2sin4θasin2ϕacos4ϕa + . . . , (C4)

where θa and ϕa are polar and azimuthal angles of the mag-
netization vector in the xayaza frame, and α1, α2, and α3 are
directional cosines with respect to the same frame. Finally, the
uniaxial anisotropy energy can be written as

Funi = Ku1sin2θa + Ku2sin4θa + Ku3sin6θa

+ Ku4sin6θa cos 6ϕa + . . . , (C5)

where constants of anisotropy are denoted with Ki.
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FIG. 5. Equilibrium angles of magnetization. (a)–(d) Polar angles. (e)–(h) Azimuthal angles.

The magnetization vector can be specified in two equiva-
lent ways:

M = M

⎡
⎣α1

α2

α3

⎤
⎦ = M

⎡
⎣sin θa cos ϕa

sin θa sin ϕa

cos θa

⎤
⎦, (C6)

therefore, one can write

θa = arccos α3, ϕa = arctan
α2

α1
. (C7)

On the other hand, one can match the vector components in
the xayaza frame with the xyz frame using the Euler rotation
matrix in the form⎡

⎣α1

α2

α3

⎤
⎦ = Eu(α̃, β̃, γ̃ )T

⎡
⎣sin θ cos ϕ

sin θ sin ϕ

cos θ

⎤
⎦, (C8)

Eu(α̃, β̃, γ̃ )

=
⎡
⎣cα̃cβ̃cγ̃ − sα̃sγ̃ −cγ̃ sα̃ − cα̃cβ̃sγ̃ cα̃sβ̃

cβ̃cγ̃ sα̃ + cα̃sγ̃ cα̃cγ̃ − cβ̃sα̃sγ̃ sα̃sβ̃

−cγ̃ sβ̃ sβ̃sγ̃ cβ̃

⎤
⎦,

(C9)

thereby one rotates the xyz axes to the xayaza axes. Note that
the coordinate system rotates, not the vector, therefore the
Euler matrix is transposed. Here we introduce the short nota-
tions for trigonometric functions cα̃ = cos α̃, sα̃ = sin α̃, and
so on. The given Euler rotation matrix describes a sequence
of rotations to the angles α̃, β̃, and γ̃ around the z, y, and
zlocal axes (Fig. 4). Thus, one can express directional cosines
α1, α2, and α3 through the predetermined rotation angles
α̃, β̃, and γ̃ and angles of magnetization θ and ϕ in the xyz
frame; then one can use formulas (C7) and the corresponding
expression of energy density to calculate anisotropy energy in
the xyz coordinate system.

For example, we focus on ferromagnets with uniaxial sym-
metry and cases shown in Fig. 3; then the consistency between

the magnetization angles in the xyz and xayaza frames is given
by

Eu

(π

2
,
π

2
, 0

)T
=

⎡
⎣ 0 0 −1

−1 0 0
0 1 0

⎤
⎦, (C10)

⎡
⎣α1

α2

α3

⎤
⎦ =

⎡
⎣− cos θ

− sin θ cos ϕ

sin θ sin ϕ

⎤
⎦, (C11)

θa = arccos(sin θ sin ϕ), ϕa = arctan(tan θ cos ϕ). (C12)

The energy density is defined as

F = −μ0M0H[sin θ sin θH cos(ϕ − ϕH ) + cos θ cos θH ]

+ Ku1(1 − sin2 θ sin2 ϕ) + Fdm, (C13)

where we neglect the high-order anisotropy terms. For the in-
plane configuration [Fig. 3(a)], one writes

Fdm = μ0M2
0

2
cos2θ, (C14)

whereas for the out-of-plane case shown in Fig. 3(b), the
demagnetizing energy is given by

Fdm = μ0M2
0

2
sin2θsin2ϕ. (C15)

The presented expressions of energy density allow one to
avoid the division by zero in the out-of-plane magnetization
configuration (θ0 = 0). One can calculate the second deriva-
tives of the energy density and substitute the results in Eq. (4)
to find the FMR frequency modified by inertia or the nutation
frequency.

APPENDIX D: EQUILIBRIUM ANGLES OF
MAGNETIZATION

Based on the presented approach, we find equilibrium an-
gles of magnetization for all the investigated configurations
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and the results are plotted in Fig. 5. Note that the angles for
the in-plane cases are calculated for the geometry shown in

Fig. 3(a), while the angles for out-of-plane cases are given in
other axes [Fig. 3(b)].
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