
PHYSICAL REVIEW B 106, 054425 (2022)

Bistability in dissipatively coupled cavity magnonics
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Dissipative coupling of resonators arising from their cooperative dampings to a common reservoir induces
intriguingly new physics such as energy level attraction. In this study, we report the nonlinear properties in a
dissipatively coupled cavity magnonic system. A magnetic material yttrium iron garnet is placed at the magnetic
field node of a Fabry-Perot-like microwave cavity such that the magnons and cavity photons are dissipatively
coupled. Under high power excitation, a nonlinear effect is observed in the transmission spectra, showing
bistable behaviors. The observed bistabilities are manifested as clockwise, counterclockwise, and butterfly-like
hysteresis loops with different frequency detuning. The experimental results are well explained as a Duffing
oscillator dissipatively coupled with a harmonic one and the required trigger condition for bistability could be
determined quantitatively by the coupled oscillator model. Our results demonstrate that the magnon damping
has been suppressed by the dissipative interaction, which thereby reduces the threshold for conventional magnon
Kerr bistability. This work sheds light on potential applications in developing low power nonlinearity devices,
enhanced anharmonicity sensors and for exploring the non-Hermitian physics of cavity magnonics in the
nonlinear regime.
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I. INTRODUCTION

Nonlinearities are ubiquitous phenomena in various
physics fields. For instance, Kerr nonlinearity and resonant
two-level nonlinearity [1], leading to anharmonicities, have
been widely investigated in the context of optics [2]. One
signature of nonlinear dynamics is bistability for a given input
exceeding a threshold power and manifests itself as a foldover
effect [3–7]. The effects of nonlinearity have technological
implications in sophisticated optical devices for controlling
light with light [8], novel memory devices based on magnetic
nonlinearity [9,10] or photonic nonlinearity [11–13], switches
with bistable metamaterial [14], as well as developed mechan-
ical devices for emergent applications like energy harvesting
[15,16].

Hybrid quantum systems, which have aroused tremendous
interest for application in quantum information processing
[17,18], have the potential to push the development of the
realm of nonlinearity. Among various hybrid subsystems,
cavity magnonics [19] appears to be an exceptional candi-
date (see, e.g., Refs. [20–35]), which utilizes ferrimagnetic
materials like yttrium iron garnet (YIG) to create collective
spin excitations. This cavity magnonics system has resulted
in a variety of semiclassical and quantum phenomena includ-
ing, cavity-magnon polaritons [36–38], magnon bistability
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[34,39,40], bidirectional microwave-optical conversion me-
diated by ferromagnetic magnons [41], magnon dark mode
[24], synchronization via spin-photon coupling [42], and non-
Hermitian exotic properties [30,43,44]. In light of the well
reported nonlinearities in uncoupled magnetic system during
last decades [4–6,45,46], recent work has attempted to utilize
the photon-magnon coupling freedom to tune the nonlinear-
ity. The magnon-polariton bistability has been successfully
observed in a coherent hybrid system [34] and the bistable
behavior could also be directly measured with the coupled
cavity being pumped [40]. However, in these reported works
the photon-magnon are typically coherently coupled, and their
coherent coupling enhances the damping of magnon states
[47]. Due to the cubic dependence of the threshold for nonlin-
earity on the effective damping of magnon [40], the coherent
coupling of cavity-magnon hybrid system therefore increases
the nonlinearity threshold which may impede the device ap-
plication of nonlinearity.

Coherent coupling originates from the direct spatial over-
lap between photon and magnon modes and forms hybrid
states with repulsed energy levels and attracted damping rates.
In contrast, a dissipative form of magnon-photon interaction
[48] requires no direct mode overlap and has been demon-
strated to cause level attraction and a damping repulsion effect
[49–51]. This dissipative coupling is indirect as it is medi-
ated through a shared reservoir, resulting in an imaginary
spin-photon coupling strength. Dissipatively coupled systems
have important applications such as nonreciprocal transport
[52], enhanced sensing [53], and non-Hermitian singulari-
ties [54,55]. So far, however, reported work with dissipative
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coupling have been focused on the linear regime and the
nonlinearity with dissipative coupling have not been experi-
mentally examined, except a theoretical prediction of a lower
threshold if the (imaginary) coupling strength is sufficiently
large in an anti-PT regime [56].

Inspired by this, we study a dissipatively coupled cavity-
magnon system where a YIG sphere is imbedded in a
Fabry-Perot-like cavity. The coupled system is directly
pumped through the cavity and the pumping power is suffi-
ciently high to create the nonlinear effect. We experimentally
demonstrate that, in the dissipatively coupled nonlinear sys-
tem, the threshold power for bistability is lower than the
corresponding bound in coherent scenario. This is due to the
suppression of magnon damping on-resonance induced by
dissipative coupling. In addition, such a dissipatively cou-
pled hybridized system results in different magnetic field and
power dependent bistable behaviors as the magnon frequency
is detuned for on and off cavity resonant frequency. By intro-
ducing the model based on a Duffing oscillator dissipatively
coupled with a harmonic oscillator, the experimental results
can be well explained. This method allows us to determine
the required experimental condition for triggering bistable
behavior in a dissipatively coupled system. Our work shows
that dissipative coupling in a hybrid system with a nonlinear
effect may be utilized to engineer a lower power threshold for
nonlinearity and enhanced anharmonicity sensors.

II. THEORETICAL MODEL

We begin with a model considering the nonlinear Kerr
effect of the magnon excitation in a YIG sphere which dis-
sipatively interacts with the cavity photons. Here the cavity is
directly pumped. This dissipatively coupled nonlinear system
is characterized by a Hamiltonian [35,53] (the details shown
in Appendix and with reduced units h̄ ≡ 1):

Htot = ωca+a + ωmb+b + Kb+bb+b + i�(a+b + ab+)

+�d (a+e−iωt + aeiωt ), (1)

where a+ (a) and b+ (b) correspond to the creation (an-
nihilation) operators of the cavity photons at frequency ωc

and of the Kittel-mode magnons at ωm, respectively. Here
the Kerr effect of magnons term Kb+bb+b originates from
magnetocrystalline anisotropy in the YIG material [34], in
which K is the Kerr coefficient and is positive in our exper-
iment specifically (see the Appendix). The fourth term of the
above equation describes the interaction between the magnon
and the cavity photon. In contrast to coherent magnon-photon
coupling where the energy is conserved so that the coupling
strength is a real number, here the purely imaginary coupling
strength (i�) denotes the dissipative coupling. As shown in
Ref. [52], dissipative magnon-photon coupling stems from
indirect coupling mediated by traveling wave in an open cav-
ity system, where the outgoing boundary conditions result in
complex discrete eigenvalues that are described by an effec-
tive Hamiltonian that is non-Hermitian [54,57]. The last term
in the above equation describes that the cavity is pumped by
the oscillating microwave field, with an amplitude �d [58].

By adopting the Heisenberg-Langevin approach [59], the
dynamics of the coupled cavity photon-magnon hybrid non-
linear system can be described by the equations:

da

dt
= −i(ωc − iκ )a + �b − i�d , (2)

db

dt
= −i(ωm − iγ )b − i(Kbb+b + Kb+bb) + �a. (3)

Under the mean-field approximation [53], the higher-order ex-
pectations can be decoupled, so that the nonlinear term 〈b+bb〉
and 〈bb+b〉 can be simplified as |b|2b, then the dynamics of the
dissipatively coupled magnon-photon system follows as

da

dt
= −i(ωc − iκ )a + �b − i�d , (4)

db

dt
= −i(ωm + 2K|b|2 − iγ )b + �a, (5)

where κ = κi + κe is the total damping of the cavity mode,
with κi (κe) being the intrinsic (external) damping of the cavity
mode. γ is the damping rate of the Kittel mode. Suppose the
photon and magnon mode have time dependence of e−iωt , then
Eqs. (4) and (5) can be simplified as

(ω − ωc + iκ )a − i�b = �d , (6)

(ω − ωm − 2K|b|2 + iγ )b = i�a. (7)

Equation (6) can be expressed as a = (iΓ b + Ωd )/(ω − ωc +
iκ ). By substituting such an expression into Eq. (7), we get

|b|[γ m
′ − i(δωm

′ − 2K|b|2)] = Γ �d

δωc + iκ
. (8)

Here δωm
′ = δωm + ηδωc with δωm = ω − ωm, δωc = ω −

ωc denotes effective frequency shift, and

γ m
′ = γ − ηκ, (9)

denotes the effective damping of the magnon for the dissi-
pative coupling system, where the negative sign shows the
suppression effect of the magnon damping. We note that
for the coherent coupling, the sign is positive representing
the enhancement effect of the magnon damping [34,40]. The
coefficient η = �2/(δω2

c + κ2) stands for the transfer effi-
ciency of the excitation power P from the input port into
the magnon system, and η is dependent on the dissipative
coupling strength �, the frequency detuning δωc, and the total
damping κ of the cavity.

Taking the squared modulus of Eq. (8) and defining Δm ≡
2K|b|2, which is the shift of the magnon frequency [39], we
have

Δm
[
γ ′

m
2 + (δω′

m − Δm)2] = 2ηK�2
d . (10)

Equation (10) has a similar form to the uncoupled Duffing
oscillator [3], except that γ ′

m and δω′
m are the effective damp-

ing and frequency shift of the magnon, respectively, which
result from dissipative coupling with the cavity photon. The
right term of Eq. (10) denotes the effective drive field of the
magnon via dissipative interaction with the cavity photon as
the field directly pumps the cavity rather than the YIG sphere.
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A. Bistability and the transition point

Equation (10) describes an oscillator with cubic nonlinear-
ity, called the Duffing equation. As for this equation, there
are three real roots for a finite range of frequencies when �d

exceeds a specific value called the critical field �t . Among the
three roots, one is unstable and the other two are stable, called
bistability, which is a signature of the anharmonic oscillator.
We will focus on the two boundaries (hereafter termed as top
border and bottom border) between which bistability occurs.
As there are abrupt transitions between two stable states at
top and bottom borders, the transition points of bistability are
determined by the condition d�d/dΔm = 0, i.e.,

3Δ2
m − 4δω′

mΔm + δω′
m

2 + γ ′
m

2 = 0. (11)

According to the root discriminant of the quadratic equation,
when 4δω′

m
2 − 12γ ′

m
2 = 0, i.e.,

δω′
m = −

√
3γ ′

m, (12)

there is only one root of Eq. (11), which corresponds to the
critical condition of bistable behavior.

When 4δω′
m

2 − 12γ ′
m

2
> 0, there are two real roots which

correspond to the top border and bottom border of the bista-
bility. By adopting the approximation

√
3γ ′

m � δω′
m to solve

Eq. (11), then the top border satisfies

δωm = 3
3

√
ηKS2P

2
− ηδωc (top), (13)

and the bottom border satisfies

δωm = 2ηKS2P

(γ − ηκ )2 − ηδωc (bottom), (14)

where �d = S
√

P, with S describing the conversion effi-
ciency from input power P to the field �d driving the cavity
resonance mode. The magnitude of S depends on the fre-
quency, phenomenologically introduced external loss of the
cavity field, and the loss in the cable which connects the
device. Based on Eqs. (13) and (14), we can come to conclu-
sions that both the top border and bottom border have input
power dependence, with the top border satisfying δωm ∝ P1/3

compared with bottom border satisfying δωm ∝ P. These de-
pendencies are different from those of coherently coupled
anharmonic oscillators [40], where the top border has δωm ∝
P dependence and the bottom border δωm ∝ P1/3 dependence.
The difference arises from that the magnon shifts to higher
frequencies with negative Kerr coefficient K while that of our
work shifts to lower frequencies with positive Kerr coefficient.
In fact, the two cases can be unified where the border with a
large frequency shift has a P dependence and the border with
a small frequency shift has a P1/3 dependence.

The above discussion is based on tuning the magnetic field
to obtain bistability, called field bistability, and its transition
point has power dependence. On the other hand, we can ad-
just input power to obtain bistability, called power bistability,
and its transition point has magnetic field dependence. Ac-
cording to Eqs. (13) and (14), we can get borders of power
bistability by regarding magnetic field H as an independent

variable,

P = 2(δωm + ηδωc)3

27ηKS2
(top), (15)

P = (δωm + ηδωc)(γ − ηκ2)

2ηKS2
(bottom). (16)

As the magnon resonance detuning δωm = γ0δH with defini-
tion δH = H − Hr (Hr is the resonant magnetic field and γ0

is gyromagnetic ratio), the top and bottom border of power
bistability have respective |δH |3 and |δH | dependence when
up-sweeping and down-sweeping power as shown in Eqs. (15)
and (16), respectively.

B. Critical condition of bistability

When Eq. (11) has only one real solution, the bistability
vanishes because the two transition points collapse to one
point. The critical driving field of the cavity corresponds to the
threshold beyond which the bistability appears. Thus, by sub-
stituting the critical condition of bistability shown in Eq. (12)
and the only solution Δm = 2/3δωm into Eq. (10), the critical
field �t (critical power Pt ) of field bistability is obtained:

�2
t = 4

√
3

9K

γ ′3
m

η
, (17a)

Pt = 4
√

3

9KS2

γ ′3
m

η
. (17b)

These equations imply that the threshold has cubic depen-
dence on the effective damping of magnon γ ′

m, which is
similar to that of coherently coupled nonlinear system [40].
The threshold of nonlinearity for the hybrid system have
similar dependence with that of uncoupled ferrimagnetic reso-
nance which has cubic dependence on the damping of magnon
(see Table I). Next, we compare the threshold value for the
dissipatively coupled system with that of the coherently cou-
pled system. For this purpose, the threshold for a generic
two-mode system involving both coherent and dissipative
coupling is generated by substituting γ ′

m = γ + ηκ with η =
(g + i�)2/(δω2

c + κ2) into Eqs. (17a) and (17b) where g is the
coherent coupling strength. Supposing scenarios � = 0 and
g = 0, we will get the threshold for coherently coupled and
dissipatively coupled systems, respectively. By comparing the
thresholds in relation to the nature of coupling (setting δωc =
0), we have [56]

(�t
d )

2

(�t
c)2 = Pt

d

Pt
c = g2

�2

∣∣∣∣1 − �2/κγ

1 + g2/κγ

∣∣∣∣
3

, (18)

where we have assumed that the two kinds of coupling
systems have the same damping coefficient and �t

d (Pd
t ),

�t
c (Pc

t ) denote the critical field (power) of bistability for
dissipative and coherent coupling respectively.

Notably, the expression of Eq. (18) is always less than 1 for
nonzero � and g, revealing a consistently lower threshold in
the dissipatively coupled system than that in the coherently
coupled system [56]. In order to make a fair comparison,
we assume identical magnitudes of coupling strength, i.e.,
�/2π = g/2π = 21 MHz. Then, by substituting the value of
γ /2π = 5.1 MHz and κ/2π = 126 MHz into Eq. (18), the
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TABLE I. Thresholds of the ferrimagnetic materials in the cou-
pled and uncoupled scenarios.

Sample Threshold Effective dampinga

YIG sphere [60] γ 2
0 h2

t = 8
√

3
9χ

γ 3 ∝ γ 3b γ = γ0�H c

Py film [6] γ 2
0 h2

t = 16
√

3
9γ0Ms

γ 3 ∝ γ 3 γ = γ0�H

YIG (Coh.)d [40] �2
t = 4

√
3

9Kη
γ ′3

m ∝ γ ′3
m γ ′

m = γ + ηκ

YIG (Dis.)e �2
t = 4

√
3

9Kη
γ ′3

m ∝ γ ′3
m γ ′

m = γ − ηκ

aEffective damping of magnon of each system.
bHere ht is the critical drive magnetic field and χ is related to
crystalline anisotropy [60].
c�H is the linewidth of the ferromagnetic resonance.
dYIG sphere is placed in a microwave cavity, and they interact
coherently.
eYIG sphere is placed in a microwave cavity, and they interact
dissipatively.

dissipative-coherent threshold ratio becomes a finite value of
0.0064, implying that the dissipative coupling may lead to
very low power threshold of the bistability. Such a low thresh-
old arises intrinsically from the suppression of the magnon
damping on-resonance [see Eq. (9)] and the cubic dependence
of the threshold on the effective magnon damping [indicated
by Eqs. (17a) and (17b)].

On the other hand, we can obtain the requirement to ob-
serve the power bistability. The only one root of Eq. (11)
described by Eq. (12) corresponds to the critical magnetic
field to generate power bistability. Combining the relation
δωm = γ0δH and Eq. (12), the critical magnetic field is given
by

δH = 1

γ0
[−ηδωc −

√
3(γ − ηκ )]. (19)

Compared with the critical magnetic field condition H −
Hr = √

3γ /γ0 of uncoupled magnetic systems [6], the extra
term of the magnetic field shift −√

3ηκ/γ0 in Eq. (19) results
from the effective damping of the magnon resonance near
ω = ωc [23]. The factor −ηδωc/γ0 represents the additional
resonance shift of the magnon which arises from the interac-
tion between magnon and cavity.

C. Transmission spectra with bistability

The bistability can be detected experimentally via mi-
crowave transmission spectra of the cavity. In this section,
we show the magnon frequency shift Δm (due to the Kerr
nonlinearity) is observed in the transmission spectra of the
cavity. By considering that the cavity mode couples with the
input energy from the port, the dynamic equation Eq. (4) can
be rewritten as

da

dt
= −i(ωc − iκ )a + �b + √

κecin, (20)

where cin is the input field. From Eq. (7), the amplitude of the
cavity field can be derived

b = i�a

ω − ωm − Δm + iγ
. (21)

According to the input-output theory [59], the relation of
input-output field can be described as

cout − cin = −√
κea, (22)

where cout is the output field. Combining Eqs. (20), (21),
and (22), with the definition of transmission coefficient S21 =
cout/cin, we can obtain the transmission coefficient

S21 = 1 + κe

i(ω − ωc) − κ − �2/[i(ω − ωm − Δm) − γ ]
.

(23)
The transmission of nonlinear dissipatively coupled system
in Eq. (23) can be reduced to that of two coupled linear
oscillators if we perform the transformation ωm + Δm → ωm.
Here Δm is the nonlinear magnon resonance frequency shift
which is the solution of the Duffing equation as shown in
Eq. (10). The nonlinear effect can be observed through cavity
transmission due to the interaction between the cavity photon
and magnon.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. The hybridized cavity-magnon mode in the linear range

The experimental setup is sketched in Fig. 1(a). A polished
YIG sphere with 1 mm diameter is placed at the magnetic field
node of a Fabry-Perot-like cavity where the traveling wave
dominates [48] such that the excited magnon and the cavity
photon are dissipatively coupled, and thereby the coherent
coupling strength induced by spatial-overlap of resonant mode
is neglected here. The cavity is an assembled apparatus with a
circular waveguide connecting to coaxial-rectangular adapters
[37,40]. The cavity is pumped by a microwave generator, and
the transmission is detected by a signal analyzer. The embed-
ded YIG sphere is placed in a static magnetic field H produced
by tunable electromagnets at room temperature, which is not
depicted in Fig. 1(a).

We first conduct the experiment under linear conditions,
using a vector network analyzer to measure the transmission
of the cavity with input power below the threshold to cre-
ate the nonlinear effect, so that the Kerr nonlinear effect is
negligible. Our cavity resonance is at ωc/2π = 12.8888 GHz.
The resonance frequency of Kittel-mode in our experiments
follows the dispersion ωm = γ0(Hr + HA), where γ0/2π =
29.86μ0 GHz/T is the gyromagnetic ratio, μ0HA = −6.1 mT
is the anisotropy field, and Hr is the biased static magnetic
field at resonance. When the frequency of the Kittel mode is
tuned in resonance with the cavity microwave photons, the
standard level attraction of the hybridized modes, which is
the signature of dissipative coupling, was measured and is
shown in Fig. 1(b). On the left side of this level attraction,
an additional mode split caused by the high-order spin wave
is not of immediate interest for the discussion of dissipatively
coupled nonlinear bistable effect. The dispersion of the hy-
bridized cavity mode and magnon mode is shown in Fig. 1(c),
where points A and E correspond to far off-resonance con-
dition with |ω − ωc| 
 2�, point C indicates on-resonance
condition with |ω − ωc| = 0, and points B and D indicate
an intermediate frequency condition with |ω − ωc| ∼ 2�. The
dissipative coupling strength can be determined by the sepa-
rated gap at ωm = ωc in Fig. 1(d), i.e., �/2π = 21 MHz. As
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FIG. 1. (a) Illustration of the experimental setup, where a YIG
sphere is imbedded in an assembly cavity. Here the YIG is at the
node of microwave magnetic field. The cavity is pumped by the
microwave generator and the transmission is measured by signal
analyzer. (b) Transmission coefficient mapping of the hybridized
cavity-magnon system, with level attraction implying dissipative
coupling. The white (green) dashed line indicates the vertical (hor-
izontal) cut at the coupling point with ωm = ωc. (c) Dispersion
relation of hybridized cavity and magnon mode, where points A
and E indicate off-resonance with |ω − ωc| 
 2�, point C indicates
on-resonance with |ω − ωc| = 0, and points B and D indicate in-
termediate frequencies with |ω − ωc| ∼ 2�. (d) The fixed magnetic
field cut of transmission mapping at the coupling condition ωm = ωc

indicated by white dashed line in (b), with blue symbols for the
experimental data and green solid curve for calculated result. And
the orange curve denotes the transmission spectra for the bare cavity,
with the orange arrow indicating the dip of the transmission spectra
which approaches zero.

seen from Fig. 1(d), the fitting agrees well with the experi-
mental results. The intrinsic and extrinsic linewidth of cavity
mode κi/2π = 2.58 MHz, κe/2π = 126 MHz are obtained by
fitting the transmission coefficient spectra when |ωc − ωm| 

2� where the coupling effect is negligible. Thus, the quality
factor of the cavity is 50. The intrinsic and extrinsic dampings
of the magnon are 1.6 and 3.5 MHz, respectively. Hence, the
total damping of magnon is γ /2π = 5.1 MHz.

B. Field foldover hysteresis loop

In this section, nonlinear effects in our coupled cavity-
magnon system for on- and far off-resonance frequencies
are measured by sweeping the magnetic field. Here high
microwave powers provided by a microwave generator are
used to drive the large angle precession of the magnon, while
the transmission signal is measured by a signal analyzer, as
depicted in Fig. 1(a).

We start our measurements in the linear range by set-
ting the output power of the microwave generator to
be 0.1 mW. The transmission was measured at an on-
resonance frequency ω/2π = 12.8888 GHz indicated by
point C in Fig. 1(c), and off-resonance frequencies ω/2π =
12.6000 GHz, 13.5000 GHz indicated by points A and E in

FIG. 2. |S21|2 versus H with (a) P = 0.1 mW and (b) P = 200
mW at off-resonant frequency ω/2π = 12.6000 GHz. |S21|2 ver-
sus H with (c) P = 0.1 mW and (d) P = 200 mW at on-resonant
frequency ω/2π = 12.8888 GHz. |S21|2 versus H with (e) P =
0.1 mW and (f) P = 200 mW at off-resonant frequency ω/2π =
13.5000 GHz. Blue (orange) circle symbols are experimental data
by up-sweeping (down-sweeping) static magnetic field H . The solid
curves are calculated. Dashed green lines with arrows indicate the
transition process of bistability and dashed green lines without ar-
rows indicate the unstable state.

Fig. 1(c), when we perform up-sweeping and down-sweeping
magnetic field, as shown in Figs. 2(a), 2(c), and 2(e), re-
spectively. At conditions ω/2π = 12.6000 GHz and ω/2π =
13.5000 GHz, where the magnon mode is dominant, the spec-
tra show a minimum transmission at the resonance condition
H = Hr because of strong absorption due to the magnon
excitation as shown in Figs. 2(a) and 2(e). In contrast, the
spectrum shows a maximum transmission at condition ω = ωc

as shown in Fig. 2(c). Since the extrinsic damping of the
cavity is quite large (up to 126 MHz), the overall quality
factor of the bare cavity is low (Q = 50). Due to the trade-off
between the quality factor of the cavity and the resonance
intensity of the isolated cavity mode [61], the bare cavity
mode reaches a high resonance intensity as the cavity has low
quality factor here. The high resonance intensity has signa-
ture that the energy is strongly absorbed by the cavity, and
thereby the bare cavity transmission approaches zero when
ω = ωc as indicated by orange arrow in Fig. 1(d). Such a low
resonant transmission will produce a flat background when
sweeping the static magnetic field with a fixed microwave
frequency up to the resonant cavity frequency, i.e., ω = ωc

as shown in Fig. 2(c). When the cavity mode dissipatively
couples to a YIG magnon mode at ωm = ωc, the hybrid system
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TABLE II. Direction of hysteresis.

Peak Dip

K > 0 Counterclockwise Clockwise
K < 0 Clockwise Counterclockwise

will result in a maximum transmission signal at H = Hr [see
Fig. 2(c)]. Otherwise, there are only flat transmission spectra
approaching zero in Fig. 2(c), which indicates the resonant
cavity transmission when sweeping the static magnetic field.
As seen by the green dashed cut-line in Fig. 1(b), we can also
conclude that the transmission peak arises from the interaction
between the cavity and magnon mode.

In order to study the nonlinear effect, we increase power
above the threshold. By up- and down-sweeping the mag-
netic field, we observe that two abrupt jumps of transmission
spectra occur at different static magnetic field biases H , corre-
sponding to abrupt transitions between these two stable states.
In the range of the transition, a hysteresis loop is clearly
seen in the up- and down-sweeping traces of transmission
spectra shown in Figs. 2(b), 2(d), and 2(f). This behavior
can be explained by Eq. (10), which predicts the behavior
of bistability and transitions between the two stable states
when the power is above the threshold. The hysteresis loop
becomes more evident with the increasing power, because the
transition points will depart from each other as microwave
power increases, as shown in Figs. 4(a)–4(e).

The bistability of off- and on-resonance have distinctly
different behaviors in our magnon-cavity system. When
the system is off-resonance, i.e., |ω − ωc| 
 2�, the field
hysteresis loops [Figs. 2(b) and 2(f)] are clockwise when
considering the up- and down-sweeping direction of the static
magnetic field. In contrast, when the system is on-resonance,
i.e., at ω = ωc, the field hysteresis loop in Fig. 2(d) is counter-
clockwise. This behavior is quite different from the bistability
of coherently coupled magnon-photon system as measured in
Ref. [40]. The work in Ref. [40] demonstrated that when K <

0 there is clockwise hysteresis for on-resonance (with peak
background) and anticlockwise hysteresis for off-resonance
(with dip background).

The direction of hysteresis depends on the sign of K and
the background shape of the resonance. For any nonlinear
mode with a Lorentzian dip or peak resonance that is ex-
cited with high power, the trace of the transmission spectrum
will jump at the last transition point along the sweeping di-
rection because of the hysteresis phenomena. For instance,
suppose K > 0, the trace of the transmission spectrum with
peak background will jump at the right transition point from
a low to high amplitude by up-sweeping the magnetic field,
while it will jump at the left transition point from a high to
low amplitude by down-sweeping the magnetic field. Thus,
the hysteresis for K > 0 and peak background line shape
is counterclockwise. By the same approach, the direction of
hysteresis can be summarized in Table II, through which the
difference in the direction of hysteresis among our measure-
ment and the work of Refs. [34,40] is well explained.

When |ω − ωc| ∼ 2� indicated by points B and D shown
in Fig. 1(c), a different foldover hysteresis loop is seen at

FIG. 3. |S21|2 versus H with (a) P = 0.1 mW and (b) P = 200
mW at intermediate frequency ω/2π = 12.7688 GHz. |S21|2 versus
H with (c) P = 0.1 mW and (d) P = 200 mW at intermediate
frequency ω/2π = 12.9288 GHz. Blue (orange) circle symbols are
experimental data by up-sweeping (down-sweeping) the static mag-
netic field H . The solid curves are calculated. Dashed green lines
with arrow indicate the transition process of bistability and dashed
green lines without arrow indicate the unstable state.

intermediate frequencies above and below ωc. Generally the
line shape of transmission spectrum is symmetric when the
power is below the nonlinear threshold, for instance, a typical
Lorentzian peak characteristic at ω = ωc and a Lorentzian
dip |ω − ωc| 
 2�. However, the line shape of transmission
spectrum is asymmetric when the frequency is tuned to the
region among |ω − ωc| ∼ 2�, shown in Figs. 3(a) and 3(c)
with input power 0.1 mW. This asymmetric line shape, sim-
ilar to that in the coherent scenario [40], is due to Fano-like
resonance [62]. However, their polarities are opposite because
of different coupling mechanism. As microwave power is
increased to 200 mW, in contrast to the general hysteresis
loop on- and far off-resonance, a butterfly-like hysteresis loop
appears and the polarities of the butterfly-like hysteresis loop
are opposite when the microwave frequency is set at interme-
diate frequencies above and below ωc as shown in Figs. 3(b)
and 3(d). This difference of shape results from the transition
direction of bistability. For on- and off-resonance frequency,
the direction of two transitions are opposite, where one is
from the low to high transmission and another is from the
high to low transmission, while, for the intermediate fre-
quencies, the direction of two transitions are the identical,
i.e., both from high to low transmission or from low to high
transmission.

The effective dampings of the magnon are γ ′
m/2π =

4.50, 3.50, 0.10, 0.15, 5.10 MHz by fitting the transmission
spectra when P = 0.1 mW for different frequencies A–E,
respectively, which are plotted in Fig. 4(f). The fitted ef-
fective damping of the magnon reveals that the damping
of the magnon is suppressed on-resonance due to the dis-
sipative interaction between the cavity and the magnon,
which is consistent with the result of Ref. [47]. However,
this effective magnon damping behavior of the dissipatively
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FIG. 4. The jump position of field foldover hysteresis versus
P at cavity frequencies (a) ω/2π = 12.6000 GHz, (b) ω/2π =
12.7688 GHz, (c) ω/2π = 12.8888 GHz, (d) ω/2π = 12.9288 GHz,
and (e) ω/2π = 13.5000 GHz. Purple (blue) circle symbols are ex-
perimental results of forward (backward) H field sweeping. The
yellow and cyan solid curves are fitted using Eqs. (13) and (14) for
forward and backward sweeping, respectively. (f) The threshold and
effective magnon damping for coherent and dissipative coupling sys-
tem when off- and on-resonance (indicated by dark dashed line). The
threshold and the effective magnon damping for coherent coupling
is from Ref. [40]. For simplicity, we consider each threshold and the
effective magnon damping relative to those of off-resonance in each
system. Here we have utilized the relation �2

t /�
2
t (off) = Pt/Pt (off),

where �t (off) and Pt (off) are the critical driving field and power off-
resonance, respectively. The orange (blue) solid and dashed lines
are the relative threshold (the effective magnon damping) for the
dissipatively and coherently coupled system with left (right) axis,
respectively.

coupled system is distinctly different from that of the co-
herent scenario in which the effective magnon damping is
enhanced as seen in Fig. 4(f). Then, with the damping pa-
rameters of the cavity and magnon extracted from the linear
process and the solution of Eq. (10), we obtain the fitted pa-
rameter KS2 = 4.5 × 10−9, 6.2 × 10−8, 8.7 × 10−8, 9.9 ×
10−8, 7.0 × 10−9 GHz3/mW at cavity frequency ω/2π =
12.6000, 12.7688, 12.8888, 12.9688, 13.5000 GHz, respec-
tively. (Here K and S cannot be determined individually.) In
addition, the fitted transmission spectrum as a function of
magnetic field can reproduce the field-sweeping bistability
as shown with green line in Figs. 2 and 3. This agreement
verifies the validity of our generalized model which describes
dissipatively coupled Duffing oscillator and linear oscillator
in this quasi-one-dimensional cavity [37].

C. Power dependence of transition and threshold for
field foldover hysteresis loop

We have observed that the resonance gradually shifts
toward lower H when increasing the microwave power be-
cause the Kerr coefficient K is positive (see Appendix).
While this is different from the negative Kerr coefficient
system where the resonance gradually shifts toward high
H [40]. When the power is above the threshold, the bista-
bility appears, and its two transitions will shift depending
on the power. Figures 4(a)–4(e) show the jump positions
as a function of the microwave power at ω/2π = 12.6000,
12.7688, 12.8888, 12.9288, and 13.5000 GHz, respectively.
As predicted by Eqs. (13) and (14), the up-sweeping transi-
tion (purple symbols) follows a P1/3 dependence (solid line)
and the down-sweeping transition (blue symbols) follows
a linear P dependence (solid line) with fitted parame-
ters KS2 = 4.3 × 10−9, 5.8 × 10−8, 8.9 × 10−8, 8.7 × 10−8,
6.5 × 10−9 GHz3/mW, respectively. This KS2 magnitudes
determined by fitting the transition points with the power
dependence in Eq. (14) is comparable to that fitted by trans-
mission spectrum with Eq. (23). The agreement of KS2

magnitudes fitted by two different methods is gratifying in
view of the error.

The power dependencies are different from those of a co-
herently coupled nonlinear system, where the down-sweeping
jump follows a P1/3 dependence and the up-sweeping jump
follows a linear P dependence [40]. Because the positive Kerr
coeffcient corresponds with δωm < 0 and negative Kerr coef-
fcient corresponds with δωm > 0, these opposing frequency
shifts will lead to the reversed power dependence of two
transition points.

Figures 4(a)–4(e) record the up-sweeping and down-
sweeping transition point when increasing power for on- and
off-resonance frequencies A–E. We can extract the thresh-
old for each frequency and plot them in Fig. 4(f) for the
dissipatively [marked by orange arrows in Figs. 4(a)–4(e)]
and coherently (data from Ref. [40]) coupled systems with
coupling strength �/2π = 21 MHz, g/2π = 18 MHz, respec-
tively. The results in Fig. 4(f) reveal that the threshold of bista-
bility on-resonance is about 2/3 of those off-resonance in a
dissipatively coupled system. This bears stark disparities with
a coherently coupled system, where the threshold of the cavity
on-resonance is 2.5-fold of that of off-resonance in Ref. [40].
The results imply that the dissipative coupling indeed reduces
the threshold despite the fact that our coupled system deviates
from anti-PT conditions. In fact, the observed improvement of
lower threshold originates from the threshold’s cubic depen-
dence on effective magnon damping which remains valid in
the dissipative coupling case (see Table I) and the suppressed
magnon damping in our dissipative coupling condition [see
the extracted effective magnon damping in Fig. 4(f)].

D. Power foldover hysteresis loop and critical magnetic
field for power bistability

The hysteresis loops can also be observed by up-sweeping
and down-sweeping power at fixed ω and H as shown
in Figs. 5(a)–5(e), where we set the biasing magnetic
field δH to be −0.80, −1.04, −0.54, −0.64, −0.76 mT at
cavity frequency ω/2π = 12.6000, 2.7688, 12.8888, 12.9288,
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FIG. 5. The power foldover hysteresis with fixed static magnetic field at cavity frequencies (a) ω/2π = 12.6000 GHz, (b) ω/2π =
12.7688 GHz, (c) ω/2π = 12.8888 GHz, (d) ω/2π = 12.9288 GHz, and (e) ω/2π = 13.5000 GHz. The recorded power foldover hysteresis
transition points versus magnetic field detuning H − Hr at cavity frequencies (f) ω/2π = 12.6000 GHz, (g) ω/2π = 12.7688 GHz, (h)
ω/2π = 12.8888 GHz, (i) ω/2π = 12.9288 GHz, and (j) ω/2π = 13.5000 GHz.

13.5000 GHz, respectively. In contrast to the case of K < 0
with opposite direction for power and field hysteresis [40],
here for K > 0, they have identical direction at each frequency
A–E as shown in Figs. 2(b), 2(d), 2(f), 3(b), 3(d), and 5(a)–
5(e).

Figures 5(f)–5(j) show that the transition points of power
bistability have |δH |3 and |δH | dependence for up-sweeping
and down-sweeping power, respectively, which agree with
the theoretical prediction of Eqs. (15) and (16). As seen in
Figs. 5(f)–5(j), the two transition points depart from each
other, and the area of power hysteresis loops becomes larger
when the bias magnetic field is tuned to be away from Hr and
vice versa. At a critical magnetic field Hc, the power hystere-
sis loops disappear. This phenomenon can be explained by
Eq. (19), which implies the requirement of producing power
hysteresis loops is that the biasing magnetic field should be
below the critical magnetic field at each frequency A–E.

IV. CONCLUSIONS

To summarize, we have observed both the field and power
bistability of the dissipatively coupled cavity-magnon system.
A theoretical model is studied in which a Duffing and linear
oscillator are dissipatively coupled to explain the bistable
behaviors. Such a dissipatively coupled hybridized system
results in distinctly different bistable behaviors, like butterfly-
like, clockwise, and counterclockwise hysteresis which are
visualized through transmission spectra. For the field bista-
bility, the transition points show P1/3 and P respective
dependence when up-sweeping and down-sweeping the mag-
netic field. Correspondingly, for the power bistability, the
transition points show |δH |3 and |δH | dependence when
up-sweeping and down-sweeping power, respectively. Mean-
while, the critical condition required for observing field and
power bistability is obtained. With the suppressed magnon
damping and therefore lowered threshold for bistability, our
system may lay the foundation for wide applications of very
low power nonlinearity devices. Indeed, when dissipative cou-
pling dominates between a cavity photon and magnon instead
of coherent coupling, it may bring interesting applications

such as low threshold nonlinearity being applicable for mag-
netic memory and logic gate, and so on, e.g., in Ref. [10].
Besides, benefiting from flexible tunability with, e.g., the
magnon frequency, the interaction strength between cavity
and magnon, the drive power, the bistability of the cavity
magnonics system may be potentially applied in emergent
applications like memories and switches.
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APPENDIX: HAMILTONIAN OF THE COUPLED HYBRID
SYSTEM

The cavity-magnon hybrid system shown in Fig. 1(a) in-
cludes a small YIG sphere with Kerr nonlinearity which is
dissipatively coupled to a Fabry-Perot-like cavity, and the
cavity is driven by a microwave field. The Hamiltonian of such
a system consists of four parts (setting h̄ ≡ 1):

Htot = Hc + Hm + HI + Hd , (A1)

here Hc = ωcα
+α corresponds to the bare Hamiltonian of the

cavity mode, with the creation (annihilation) operator α+ (α)
at frequency ωc.

In our experiment, we apply a uniform static magnetic field
H = Hez orientating along the z axis, and the YIG sphere has
volume Vm. The static magnetic field is used to align the mag-
netization and tune the frequency of the magnon mode. When
Zeeman energy and magnetocrystalline anisotropy energy are
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included, the Hamiltonian of the YIG sphere reads:

Hm = −μ0

∫
Vm

M · Hdτ − μ0

2

∫
Vm

M · Handτ, (A2)

where μ0 is the vacuum magnetic permeability, M =
(Mx, My, Mz ) is the macrospin magnetization of the YIG
sphere, and Han is the magnetocrystalline anisotropy field
in the YIG crystal. We have neglected the contribution of
demagnetization energy of the YIG sphere in Eq. (A2) as it
is a constant term [39,63].

For a uniformly magnetized YIG sphere, which is mag-
netized along z axis with its anisotropy field along z axis in
our experiment, the anisotropy field can be written as Han =
mMzez, where m is dependent on the dominant first-order
anisotropy constant and the saturation magnetization [64].
Since HA < 0 in our experiment, we can obtain that m < 0.
Thus, the Hamiltonian of Eq. (A2) turns out to be

Hm = −μ0HMzVm + 1
2μ0mM2

z Vm. (A3)

Since the relation between macrospin magnetization M and
macrospin operator S [34,39,65] is

M = −γ0S
Vm

= − γ0

Vm
(Sx, Sy, Sz ), (A4)

where γ0 is the gyromagnetic ratio. By inserting such relation
indicated by Eq. (A4) into Eq. (A3), we obtain

Hm = −μ0γ0HSz − μ0mγ 2
0 S2

z

2Vm
. (A5)

The first term of the above equation corresponds to Zeeman
energy. The macrospin operators and the magnon operators
are related via the Holstein-Primakoff transformation [66]

S+ = [√
(2S − b+b)

]
b, (A6)

S− = b+[√
(2S − b+b)

]
, (A7)

Sz = S − b+b, (A8)

where S is the total spin number of the YIG sphere, b+ (b) the
creation (annihilation) operator of the magnon at frequency
ωm, and S± ≡ Sx ± iSy are the raising and lowering operators
of the macrospin. Through inserting Eq. (A8) into Eq. (A5),
the Hamiltonian Hm can be written as

Hm = ωmb+b + Kb+bb+b, (A9)

here ωm = μ0γ0H + μ0γ
2
0 mS/Vm denotes the frequency of

the magnon mode and K = −μ0γ
2
0 m/(2Vm) the Kerr coeffi-

cient. Since m < 0 for our experiment, the Kerr coefficient K
is positive. Notably, the Kerr effect of magnons term Kb+bb+b
arises from magnetocrystalline anisotropy. The Hamiltonian
representing the interaction between the magnon and the cav-
ity mode is

HI = i�(b+ + b)(a+ + a), (A10)

where � denotes the dissipative coupling strength between the
magnon and the cavity mode. With the rotating-wave approx-
imation, we can neglect the fast oscillating terms [59], and the
cavity-magnon interaction Hamiltonian can be reduced as

HI = i�(b+a + ba+). (A11)

The interaction between the cavity photon and the drive field
can be expressed as [58]

Hd = �d (a+e−iωt + aeiωt ), (A12)

where �d is the amplitude of the driving field. Finally, we
have the total Hamiltonian of the nonlinear cavity magnonics
system where the cavity and magnon are dissipatively cou-
pled, and the cavity is directly pumped

Htot = ωca+a + ωmb+b + Kb+bb+b + i�(a+b + ab+)

+�d (a+e−iωt + aeiωt ). (A13)
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