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Influence of finite-size effects on the Curie temperature of L10-FePt
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We employ an atomistic model using a nearest-neighbor Heisenberg Hamiltonian exchange to study compu-
tationally the dependence of the Curie temperature of L10-FePt on finite-size and surface effects in heat-assisted
magnetic recording (HAMR) media. We demonstrate the existence of a size threshold at 3.5 nm below which the
impact of finite-size effects starts to permeate into the center of the grains and contributes to the reduction of the
Curie temperature. We find a correlation between the Curie temperature and the percentage of atomistic bonds
lost on the surface as a function of grain size, which can be extended to apply to not only L10-FePt but also
generic magnetic systems of any crystal structure. In a recording medium, the inevitable grain size dispersion
leads to an irreducible contribution to the dispersion of the Curie temperature. Therefore, our paper gives insight
into finite-size effects, which have been predicted to be a serious limitation of HAMR.
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I. INTRODUCTION

Magnetic recording functions on the balance between three
main factors which form the well-known magnetic trilemma:
The task of optimizing the signal-to-noise (SNR) ratio, ther-
mal stability, and writability [1]. To improve areal density
while maintaining sufficient SNR, the grain volume in the
recording medium is reduced, leading potentially to a loss of
thermal stability. Hence, the requirement is to find a recording
layer material with high uniaxial anisotropy energy density K
to ensure that the thermal stability factor KV/kT � 60 with
V being the grain volume. However, using a high-anisotropy
material for the recording medium produces yet another issue:
That a high magnetic field from the writing transducer would
be required to switch the grain magnetization. In principle, a
fourth factor has to be taken into account: A probability of
back-switching of spins during the assisted-writing process
due to thermally induced transitions. Currently this acts as
a source of DC noise, however in terms of ultrahigh storage
densities involving heated dot recording this gives a potential
limit of magnetic recording density [2].

Recently, heat-assisted magnetic recording (HAMR) has
emerged as a solution to circumvent the problem presented
by the magnetic trilemma [3,4]. The HAMR writing head first
applies an intense, highly localized heat spot for a very short
time to a recording medium to heat it up to or beyond its Curie
temperature (TC), then writes the data inductively after which
cooling to ambient temperature restores the thermal stability.
Among many possible candidates for a HAMR recording
layer material, iron platinum in the L10 phase (L10-FePt) has
been regarded as an excellent choice [5]. L10-FePt has been
widely studied for application in HAMR in which L10-FePt
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can function either as a single layer or as part of a com-
posite multilayer recording medium [6–11]. FePt undergoes
a transition at around 300◦C from the bulk alloy A1 phase
with a disordered, randomly distributed face-centered-cubic
(fcc) crystal structure to a chemically ordered face-centered-
tetragonal (fct) crystal structure in the L10 phase [12]. In
the L10 phase, FePt is composed of alternating layers of 3d-
element Fe and 5d-element Pt atoms along the (001) direction
as sketched in Fig. 1. In the L10 phase the Fe spins polarize
the Pt spins the large spin-orbit coupling of which results in
the very high magnetic uniaxial anisotropy necessary for the
thermal stability of written information [5,13].

Simulations by Li and Zhu [14,15] have shown that the
dispersion of TC is a serious limitation for the ultimate storage
density achievable for HAMR. Consequently, a crucial aspect
for successful HAMR media is controlling the Curie tem-
perature dispersion of the recording medium. However, the
exact Curie temperature of L10-FePt has yet to be established;
rather, it has been reported to fall between 650 and 780 K
under various treatments and measurements [16]. Also, the
Curie temperature of L10-FePt has been shown to drop rapidly
with decreasing grain size [17–19]. Consequently, in a record-
ing medium using L10-FePt the grain size distribution which
always exists would inevitably lead to an irreducible disper-
sion of Curie temperature σTC which potentially limits the
recording density. Therefore, it poses an important question
to determine the precise dependence of the Curie temperature
distribution in L10-FePt grains on finite-size effects as well as
the governing mechanisms behind it.

In this paper, we present a computational investigation
of the impact of finite-size effects in L10-FePt grains using
a nearest-neighbor Heisenberg Hamiltonian atomistic spin
model in which short-range exchange interactions are as-
sumed to dominate. Although the exchange interactions in
FePt are long-ranged, Waters et al. [16] have shown that the
critical exponent of FePt conforms to the three-dimensional
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Heisenberg universality class. Our starting point is the con-
sideration of thermal fluctuations, which can modify TC and
even shift the ground state solutions to induce changes in
magnetic phases. To see this, one needs to look at how the free
energy changes as a function of system size. Generally, the
free energy will have a functional part reflecting the surface
effects due to reduced coordination number, but there will
be another term that will correspond to renormalization of
state energies resulting from fluctuations [20]. Which one
is more important will depend on the system and the size.
We hypothesize a correlation between the Curie temperature
distribution of L10-FePt and the percentage of atomistic bond
loss on the surface of the grains as a function of grain size,
which allows us to quantify the distinct surface and fluctua-
tion contributions to the finite-size effects. We find that our
hypothesized correlation could be extended to encompass the
role of crystal structures, which suggests it is not restricted
to L10-FePt specifically but universally applicable for any
generic magnetic system.

II. THEORIES

Here we describe the two main theories used in our calcu-
lation: The atomistic spin model and the mean-field model.

A. Atomistic spin model

Numerical simulations are first carried out using an atom-
istic spin model. The energy of a magnetic system is generally
described in terms of the Hamiltonian H as the sum of all
energy contributions. The three most important contributors
include the exchange interaction between pairs of local spins
Hexchange, the magnetic uniaxial anisotropy Hanisotropy, and the
externally applied magnetic field Hfield. The explicit forms of
these terms in the Hamiltonian are given as follows:

H = −1

2

∑
i, j

Ji j (ŝi · ŝ j ) − ku

∑
i

(ŝi · ê)2 −
∑

i

μi(ŝi · B),

(1)
where Ji j is the exchange energy strength between ŝi and ŝ j

– the unit vector of local spin at site i and j respectively; ku

is the uniaxial anisotropy constant having an easy direction
along ê, μi is the atomic spin moment, and B is the externally
applied magnetic field.

The Hamiltonian of L10-FePt in principle includes energy
contributions from both Fe and Pt components. However,
Mryasov et al. [13], using Density Functional Theory in
the constrained local-spin-density approximation, theoreti-
cally demonstrated that the Hamiltonian of L10-FePt could be
rewritten in terms of the Fe degree of freedom only. Using this
approach, the original fct-structured L10-FePt in Fig. 1 can be
represented as a simple cubic structured Fe-only system with
modified lattice properties – a new configuration henceforth
referred to as the modified sc-FePt. An implication imme-
diately follows that it would then be possible to extend the
scope of our paper to incorporate the role of different crystal
structures beyond the original fct L10-FePt.

FIG. 1. Crystal structures of FePt: Disordered A1-fcc bulk alloy
Fe0.5Pt0.5 at room temperature (left) and ordered L10-fct at HAMR
temperature (right).

B. Lattice site resolved mean-field model

Penny et al. [21] have shown that a mean-field ap-
proach is valuable for the investigation of finite-size effects,
including lattice types and particle shapes. To support the
interpretation of our atomistic model calculation, we use a
lattice site resolved mean-field model outlined as follows [22].
Consider the standard Heisenberg spin Hamiltonian including
an exchange term and an applied field B term. Note that in
mean-field treatment the anisotropy term can normally be
safely neglected because it has very weak effect on the Curie
temperature compared to the exchange. For convenience, we
use the same spin notation as [22]:

H = −1

2
J

∑
〈i j〉

ŝi · ŝ j − μ
∑

i

ŝi · B, (2)

where the individual terms represent the ferromagnetic ex-
change interaction energy and the Zeeman energy. The
symbol 〈·〉 in the first sum implies that only the nearest-
neighbor spin pairs are summed over. The spin variables are
unit vectors ŝi = μi/μ, i = 1, . . . , N , where μi is the mag-
netic moment associated with the spin i and μ = |μi| is its
magnitude.

A conventional way to derive the mean-field approximation
is to express the spin variables in Eq. (2) as si = m̃i + δsi,
where m̃i and δsi are, respectively, the thermally averaged and
fluctuating parts of the spin variable si. Neglect the fluctua-
tions δsi beyond the first order and rewrite Eq. (2) as

HMF = 1

2
J

∑
〈i j〉

m̃i · m̃ j −
∑

i

ŝi ·
(

J
∑
j∈i

m̃ j + μB

)
, (3)

where the expression in the parentheses

μBe
i = J

∑
j∈i

m̃ j + μB (4)

is the effective field acting on the mean-field spin moment
m̃i due to its neighbors j and is derived as the variational
derivative with respect to m̃i. The notation j ∈ i means the
summation is carried out over all interacting neighbors j of
the spin i. The mean-field spin moment m̃i can be evaluated
from Eq. (3) using the canonical statistical mechanics:

m̃i = Trsi si exp (−βHMF)

Trsi exp (−βHMF)
. (5)

Note that since m̃ is no longer a unit vector, Eq. (3) no
longer conforms with the usual Heisenberg definition of the
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TABLE I. VAMPIRE MC parameters.

Grain size (nm) Equilibration step Total time step

1.0–1.5 5 × 107 2.5 × 108

2.0–2.5 107 108

3.0–5.5 106 107

� 6.0 105 106

exchange. However, if we transform to unit vectors by mul-
tiplying through by |m̃|2/|m̃|2 we are left with the prefactor
of the summation term in Eq. (3) as Jm̃2 which represents
the temperature dependence of the effective exchange in the
mean-field sense [23]. Considering that stable moment con-
figurations are aligned with their effective fields, i.e., m̃i ‖ B̃e

i ,
allows expressing m̃i as

m̃i = L
(
βμ

∣∣B̃e
i

∣∣) B̃e
i

|B̃e
i |

. (6)

Here L(x) = coth x − x−1 is the Langevin function, and β =
(kBT )−1 with kB being the Boltzmann constant and T the
temperature. Equations (4) and (6) represent a set of coupled
nonlinear algebraic equations which can be solved iteratively
in a straightforward way, as discussed elsewhere [22].

III. RESULTS AND DISCUSSION

We have investigated the temperature-dependent magnetic
properties of a material with the Curie temperature of FePt
as a function of the grain size. Our simulations are carried
out using the VAMPIRE atomistic simulation software package
[24,25]. In VAMPIRE simulations, a METROPOLIS Monte Carlo
(MC) integrator is used to compute the value of normalized
mean magnetization length M(T ) as a function of temper-
ature. The Curie temperature TC is computed from locating
the extrapolated peak of the mean longitudinal susceptibility
χ (T ) as function of temperature [26]. Simulations are re-
peated 20 times to compute statistical average and standard
deviation of the Curie temperature. For each repeat, a ran-
domly generated set of initial conditions is assigned so as
to imitate the slightly varying initial conditions in a typical
experiment. The grain size dependent MC parameters used in
VAMPIRE simulations are given in Table I. A factor of potential
importance has been predicted for grain sizes below 3 nm.
Gruner et al. [27] have shown using ab initio calculations that
the simple morphologies used here may give way to multiply
twinned structures including cases where the magnetization
in the core is lowered by shellwise ferrimagnetic spin ar-
rangements. However, the freestanding grains considered in
Ref. [27] differ from the grains used in HAMR media which
are grown on MgO to promote c-axis ordering perpendicular
to the plane. While morphological changes for small grain size
cannot be ruled out, further work is required to establish their
nature in sputtered media.

In this paper, we construct parallelepiped FePt grains with
a nominal constant height (z) of 10 nm and square base of
variable size (x, y) in a nominal range from 1 to 10 nm in
0.5-nm increments. The unit cells of all configurations of
FePt, following Mryasov et al. [13], have dimensions of x0 =

FIG. 2. Determination of the exchange energy constant for grains
with different lattice structures. As expected there is a linear de-
pendence of the Curie temperature on the exchange strength. By
interpolation we determine the exchange energy to give a consistent
TC = 660 K for each lattice structure. The analytical finite-size cor-
rection factor εD which is calculated from the extracted gradient is
shown at the bottom for each case.

y0 = 2.72 Å and z0 = 3.85 Å. To avoid creating incomplete
unit cells on the grain surface, the grains are composed of
integer numbers of unit cells in each dimension, so the exact
xyz sizes of each grain are multipliers of x0 closest to their
corresponding nominal values. As previously mentioned,
three lattice structure configurations are simulated: A
modified-sc configuration representing the original fct L10-
FePt, and two “artificial” fcc and body-centered-cubic (bcc)
FePt configurations which for the purpose of comparison are
made to share the same magnetic attributes of the original
fct L10-FePt. The effects of crystal lattices are investigated
with the Curie temperature in each case first preset to a theo-
retically calculated critical temperature of 660 K [26] in the
largest grain of 10-nm base size. Although the referenced
value of TC at 660 K is slightly lower than commonly reported
experimental values, it does not affect qualitative behaviors
and analysis of results because in our investigation the Curie
temperature TC is linearly dependent on the exchange energy
strength Ji j [28] given by

Ji j = 3kBTC

εz
, (7)

where kB is the Boltzmann constant, z is the number of
nearest-neighbor interactions in a unit cell, and ε is the correc-
tion factor relating to the coordination-dependent spin wave
stiffness. Both z and ε are uniquely determined for each lattice
structure, and the values of ε for an infinite system – de-
noted ε∞ – can be found in previous literature [25,28]. Since
the exchange interaction in our simulations is set to involve
only nearest neighbors, the exchange interaction strength Ji j
between each pair of nearest neighbors can reasonably be
assumed to be similar. Therefore, Ji j can henceforth be sim-
plified to the exchange energy constant J . Note that Eq. (7)
can also be derived from the mean-field theory, as shown in
the Supplemental Material Sec. S1 [29]. Generally, the fact
that for a given structure the critical temperature TC varies lin-
early with the next-neighbor interaction J simply reflects the
elementary property that, for a fixed Hamiltonian and lattice
structure, the statistical-mechanical treatment always involves
T and J only in the combination (kBT )/J . This property
remains true for both mean-field calculation and numerical
simulation.
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TABLE II. Unit cell parameters for each simulated lattice structure of FePt.

Configuration z ε∞ [25,28] J (J/link) εD

modified-sc 6 0.719 (6.303 ± 0.004) × 10−21 0.717 ± 0.0004
fcc 12 0.790 (2.866 ± 0.002) × 10−21 0.797 ± 0.0006
bcc 8 0.766 (4.430 ± 0.002) × 10−21 0.770 ± 0.0001

For a specific lattice structure, J is determined computa-
tionally by interpolation to give a consistent TC = 660, K for
each lattice structure as shown in Fig. 2. The linear variation
of TC on J obtained in Fig. 2 validates Eq. (7). Following
Eq. (7), the gradient of each line is given by (εDz)/3kB where
εD is the numerical value of ε for a finite-size system. Table II
provides literature values of z and ε∞, as well as numerical
J and εD. As can be seen, the calculated values of finite-
size εD agree very well with infinite-size ε∞, which implies
that the interpolated value of exchange energy J obtained for
each lattice structure is sufficiently precise. Other parameters
representing magnetic properties of FePt which are shared
by all three simulated crystal lattice configurations include
the atomic spin moment μS and uniaxial anisotropy constant
ku, which are fixed at 3.23μB and 2.63 × 10−22 J/atom, re-
spectively [30]. The Curie temperature variation with grain
size TC (D) is described by the finite-size scaling law (FSSL)
[17,31]:

TC (D) = TC (bulk)(1 − x0D−1/ν ), (8)

where D is the characteristic grain size, ν is a critical expo-
nent, and x0 is a fitting parameter on the order of the lattice
spacing. Equation (8) is applied to determine x0 and ν as
well as the bulk Curie temperature TC(bulk). The percentage
Curie temperature decrease, �TC (D), can then be defined as
the percentage difference between the Curie temperature at
each grain size TC (D) and the bulk Curie temperature TC (bulk)
obtained from the FSSL fit:

�TC (D) = TC (bulk) − TC (D)

TC (bulk)
= x0D−1/ν . (9)

It is important to note that fits to the FSSL often give values
of ν which differ, in apparent contradiction to the nature of
ν as a universal exponent. As a result, ν−1 is often replaced

FIG. 3. The dependence of Curie temperature on grain size fits
well with the FSSL for all three simulated lattice structures. The TC

increases sharply at smallest grain sizes and converges to the bulk
value from around 4 nm.

by a so-called shift exponent λ which may or may not agree
with ν depending on the various system properties. Here we
will propose a possible mechanism for the deviation from the
critical exponent.

We proceed to an investigation of the finite-size depen-
dence of the Curie temperature using the atomistic model
outlined earlier. Figure 3 demonstrates that the dependence
of the Curie temperature on size TC (D) fits well to the FSSL
[31] given in Eq. (8), consistent with previous experimental
data [18]. Numerical values extracted from the FSSL for the
critical exponents x0 and ν as well as the bulk Curie temper-
ature TC(bulk) are given in Table III. We note that, although
the FSSL fits the data well for all grain sizes investigated,
the values found for ν do not agree with the expected value
of 0.7 for the Heisenberg model [18,32]. Let us consider
how the FSSL is obtained. It follows from the correlation
scaling relation ξ ∼ (1 − T/TC )−ν [33] which leads to the
scaling law, Eq. (9). Note that this scaling relation for ξ is
valid only for bulk systems, leading, in fitting to experimental
data, to the empirical replacement of the exponent ν, which
is universal, by the shift exponent λ which is nonuniversal
and may include corrections to scaling. Here we consider the
possibility that, for small grain sizes, the correlation length
becomes dependent on the characteristic size as a result of the
rescaling of system energies resulting from the fluctuations.

To provide further insight we have carried out a detailed
analysis of the layer-resolved magnetization profiles which
are obtained by averaging the spins in each layer. Examples
of the magnetization profile at 550 K in the x direction along
the grain depth are given in Fig. 4 for different grain sizes. It
has to be remarked that in principle any temperature below
TC can be chosen to yield similar qualitative behaviors. In
Fig. 4, M/Ms is the magnetization normalized to Ms the grain
saturated magnetization at 0 K. The Atomistic Layer Index
refers to lattice layers in the x direction of the grain base
along the entire grain height. In larger grains (9.0 nm) surface
disorder (low magnetization) causing the drop in magnetiza-
tion is seen to penetrate only a few layers inside the grain. In
contrast, in smaller grains where the total number of layers is
reduced to the 10–12 range, surface effects begin to dominate.
Our calculation shows that in smaller-sized grains the loss of
order causing the decrease of Curie temperature across surface

TABLE III. FSSL fitting parameters for each simulated configu-
ration of FePt.

Configuration TC(bulk) (K) x0 ν

modified-sc 674.2 ± 1.1 0.352 ± 0.002 0.783 ± 0.014
fcc 666.2 ± 0.7 0.260 ± 0.002 0.651 ± 0.013
bcc 668.3 ± 0.9 0.375 ± 0.003 0.656 ± 0.011

054421-4



INFLUENCE OF FINITE-SIZE EFFECTS ON THE CURIE … PHYSICAL REVIEW B 106, 054421 (2022)

FIG. 4. The layer-resolved magnetization profile for fcc lattice
grains of selected sizes at 550 K shows that in smaller grains (fewer
atomistic layers) the magnetization drop on the surface contributes
more to the overall loss of the grain magnetization. Note that the
Atomistic x-Layer Index refers to lattice layers in the x direction of
the grain base.

layers propagates into the center of the grain, an effect poten-
tially responsible for causing a larger overall drop in the Curie
temperature of the whole grain. Here we present results for the
fcc lattice; results for modified-sc and bcc lattices are shown
in Supplemental Material Sec. S2 [29], where in Fig. 1(b) it
is shown that there is a periodic behavior for the bcc lattice,
which is a physical effect arising from atoms having different
numbers of nearest neighbors. Interestingly this persists to
elevated temperatures in the bulk of the grain albeit somewhat
reduced at the grain boundaries, supporting the idea that the
disorder propagates inward from the surfaces.

The results obtained from atomistic simulations are next
compared with calculations from the mean-field model de-

scribed in the theory. Note that here the magnetization M/Ms

is normalized to Ms(550 K) the magnetization of the cen-
tral bulk layer at 550 K. This is done for the purpose of
comparison since mean-field calculation usually yields dif-
ferent values of magnetization from those obtained from the
atomistic model, but the overall qualitative behaviors remain
similar. Two regimes of behavior for small and large grain size
can be seen in Fig. 5. Particularly, the larger grains retain order
in the central region, with increasing loss of order close to the
surface, whereas for the smaller grains the disorder essentially
penetrates the whole grain. The mean-field model gives good
qualitative agreement with the atomistic model calculations,
supporting the localization of the disorder close to the surface
of the grain. In the following we present a simple analysis de-
signed to characterize the penetration depth of the disordered
region.

The evolution of the cross-sectional magnetization profile
for fcc lattice grains at 550 K in Fig. 6 shows a decrease
of magnetization across the grain surface which appears to
be more pronounced in smaller grains, consistent with the
data shown in Fig. 4. Here the magnetization of each point
is averaged in the z direction. Results for modified-sc and
bcc lattices are given in the Supplemental Material Sec. S3
[29]. These patterns suggest that surface disorder might be an
important contribution to the rapid drop in TC at smaller sizes
as captured before by the FSSL: The hypothesis is that the
propagation of the surface disorder into the grain has an effect
on the correlation length such that ξ = ξ (D). This hypothesis
is consistent with the effects of a term corresponding to renor-
malization of state energies resulting from fluctuations [20]
thereby modifying the correlation length. However, in Fig. 4 it
is clear that the renormalization of the state energies decreases
with distance away from the surface.

FIG. 5. Comparison between atomistic and semianalytic mean-field calculation of layer-resolved magnetization at 550 K for grains of size
(a) 1.0, (b) 2.5, (c) 4.0, and (d) 6.5 nm. Note that the magnetization is normalized to Ms(550 K) the magnetization of the central bulk layer at
550 K. A good agreement is shown between two models, with a slight disparity occurring at the outermost surface layers of each grain.
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FIG. 6. Evolution of the cross-sectional magnetization profile for fcc lattice grains at 550 K of (a) 1.0, (b) 2.5, (c) 4.0, and (d) 7.0 nm in
size. Note that the magnetization of each point is averaged in the z direction. The grain magnetization can be seen to be decreasing across the
grain surface.

We now develop a simple analysis reflecting both con-
tributions. The starting point is to assume that the Curie
temperature reduction is entirely due to the loss of coordina-
tion at the surface. Thus �TC is assumed proportional to the
number of surface bonds broken. As a first approximation we
assume that the number of broken bonds nBB is proportional
to the surface area of the grains. Then it is straightforward
to show that the fractional increase in broken bonds �nBB

(relative to the number of bonds in the bulk) as a function
of diameter is given by

�nBB = B(h−1 + 2D−1), (10)

where h is the height of the grain and B is a constant depending
on the crystal structure and is determined by fitting to the
numerical calculation. Equation (10) gives a good fit to the
numerical results for all lattice structures studied, as shown
in the inset of Fig. 7(a). In terms of fitting to the values of
�TC , we find that the assumption of �TC ∝ �nBB with �nBB

following the expression in Eq. (10) is valid only for large
diameters, indicating that in this regime the decrease in TC

is essentially a surface effect. As we show later, for small
diameter the surface disorder propagates into the center of the

grain leading to a more rapid decrease of TC , albeit one which
is captured by the finite-size scaling law. We quantify this by
fitting to a modified function:

�TC = α exp(−D/Dp) + β�nBB, (11)

where α and β are fitting constants and Dp is a characteristic
distance for exponential decay associated with the propaga-
tion of the disorder into the center of the grain. As shown in
Fig. 7(a), Eq. (11) fits well to the numerical calculation for all
lattice structures. Values of the fitting constants are given in
Table IV.

TABLE IV. Correlation fitting parameters for each simulated lat-
tice structure of FePt.

Configuration α Dp (nm) β

modified-sc 54.4 ± 2.7 1.049 ± 0.046 0.779 ± 0.034
fcc 59.4 ± 4.3 0.846 ± 0.046 0.386 ± 0.031
bcc 83.1 ± 4.4 0.863 ± 0.035 0.368 ± 0.022
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FIG. 7. Correlation between the Curie temperature drop and
atomistic bond loss for each lattice structure. (a) �TC (D) following
from the FSSL fit and the inset showing the percentage bond loss.
(b) The surface-effects propagation term �Tcp showing a cutoff value
at D ≈ 3.5 nm for all three studied lattice structures.

We define a propagation term representing the propagation
of surface disorder into the grain as follows:

�TC p = �TC − β�nBB. (12)

Equation (12), along with the numerical calculation, is shown
in Fig. 7(b). It can be seen that, for diameter D � 3.5 nm, there
is an exponential increase in �TC as the diameter decreases.
Note that the cutoff value of 3.5 nm can be interpreted as
the penetration depth of surface magnetization loss into the
grain bulk. It is approximately four times Dp, which from
Eq. (11) corresponds to approximately 1.8% of Curie tem-
perature drop. Clearly the surface bonds lost drive the loss
of magnetic order and the reduction in TC . However, it is
important to note the role played by the renormalization of the
state energies arising from the fluctuations originating at the
surface. This gives rise to the progressive decrease of the loss
of magnetization when moving toward the center of the grain.
For small grain sizes D � 3.5 nm, the decrease in magnetic
order due to state energy renormalization cannot be stabilized
by a fully ordered central core. In this regime the state energy
renormalization becomes the dominant factor leading to a
rapid collapse of the magnetization and TC . Hovorka et al.
[18] have given an expression relating the dispersion of TC

directly to the dispersion of diameter. This suggests that for
decreasing grain sizes, such as expected for the evolution of
HAMR, any grain size variation would give an increasingly

large distribution of TC which could become a limiting factor
for the technology. On the other hand, numerous designs for
HAMR media involve coupling layers with high anisotropy
and low TC with layers of lower anisotropy and higher TC . It
is likely, from the analysis presented here, that for strongly
exchange coupled layers the surface disorder and hence re-
duction of the TC of the high anisotropy could be somewhat
mediated by the proximity effect of a higher TC layer.

IV. CONCLUSION

We have investigated finite-size effects in small grains.
Simulation data fit to the classic finite-size scaling law and
show a rapid decrease of TC at small sizes. We show that this
is due to the propagation of surface disorder resulting from
the loss of exchange coordination at the surface into the grain.
This effect becomes important at grain sizes smaller than 4 nm
and is supported by semianalytic mean-field calculation. Our
findings overall are consistent with the mean-field calcula-
tion and have been extended to incorporate different crystal
structures, which strongly suggests that if using a suitable
correlation factor the TC distribution of a generic material
can be correlated to the percentage of atomistic bond loss on
the surface as a universal parameter. The reduction of TC is
driven by surface magnetic disorder resulting from the loss
of exchange coordination at the surface. These fluctuations
cause a renormalization of state energies through which the
magnetic disorder propagates into the grain. A physically
reasonable expression is proposed which separates the two
processes, and defines a penetration depth for the propagation
of disorder into the grain. For small grain sizes less than
around 3–4 nm, the decrease in magnetic order due to state
energy renormalization cannot be stabilized by a fully ordered
central core. In this regime the state energy renormalization
becomes the dominant factor leading to a rapid collapse of the
magnetization and TC and a consequent increase of the disper-
sion of TC for small diameter. From the viewpoint of materials
design for nanoscale applications such as spintronics and par-
ticularly heat-assisted magnetic recording, finite-size effects
will become an increasingly important consideration with de-
creasing device size. Because of the strong surface effects on
the decrease of TC , the increased TC dispersion for small grains
could be somewhat mediated in designs coupling low TC hard
materials such as FePt with high TC materials which would
reduce the loss of magnetic order through the proximity effect.
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