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Controllable quantum phase transition in a double-cavity magnonic system
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We propose a theoretical model to study the quantum phase transition in a double-cavity magnonic system.
We find that the system exhibits a second-order phase transition from a parity-symmetric phase to a parity-
symmetry-broken phase or a first-order phase transition from a parity-symmetric phase to a bistable phase when
the driving strength of one cavity is above a critical value. We obtain the phase diagram, the critical point, and the
corresponding critical exponent to characterize the phase transition. We can identify different phase transitions
by the different behaviors of the mean magnon number and correlation fluctuation in the vicinity of the critical
point. In particular, we show that the phase transition in one cavity can be precisely and efficiently controlled by
adjusting the parameters of the other cavity, which suggests that we can easily observe the phase transition at
low driving strength in experiment. The effects of additional microwave pulses on the dynamical behavior of the
phase-transition observable and the experimental feasibility of our theoretical scheme are discussed as well.
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I. INTRODUCTION

Over the last few decades, the quantum phase transition
(QPT) has won extensive concern and has made remarkable
achievements in the aspects of theory and application [1–5].
Many research works are mainly carried out from the perspec-
tives of dynamical QPT [6–8], dynamics of QPT [9–11], and
steady-state QPT. The steady-state QPT can be divided into
ground-state phase transition [12–14] and excited-state phase
transition [15,16]. To investigate the QPT, many approaches
have been proposed [17–22] including Langevin, pseudospin,
extended coherent-state, tensor-entanglement renormalization
group, Chern-Simons fermionization, unitary time evolution,
and reduced density operator approaches. In addition, many
concepts have been adopted to characterize the QPT in
quantum information [23–30], such as fidelity, entanglement,
quantum Fisher information, entropy, and quantum discord,
which make the QPT easier to be observed in experiment
and better to be applied in practice. There have already been
a plethora of systems to study QPT [31–35]. Research on
QPT has made important progress in hybrid cavity magnonic
systems in recent years. In Ref. [36], the authors studied the
parity-symmetry-breaking QPT in a single-cavity magnonic
system which was driven by a parametric field. The parity-
symmetric phase (PSP), the parity-symmetry-broken phase
(PSBP), and the bistable phase (BP) were obtained in their
work.

Recently, considerable efforts have been made in the study
of the topics about cavity magnons both theoretically and
experimentally [37–42]. The cavity magnonic system attracts
much attention because it has many advantages and char-
acteristics. Strong controllability is an important aspect of
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this system, especially in frequency. There are a great num-
ber of novel physical phenomena occurring in the cavity
magnonic system, i.e., magnon Kerr effect [43,44], nonre-
ciprocity [45–48], cavity magnon polariton [49–51], and so
on. The researchers also show solicitude for the parity-time
symmetry [52,53] or anti-parity-time symmetry [54,55] of the
cavity magnonic system.

As mentioned previously, the QPT has been demonstrated
in a single-cavity magnonic system [36]. However, in this
system the phase transition occurs only at special positions,
which is inconvenient for experimental observation of the
phase transition. To make the research on phase transition
in cavity magnonic systems more perfect, in this paper we
propose a theoretical model in which an auxiliary cavity
is introduced. We mainly study the controllable QPT in a
double-cavity magnonic system which contains a main cavity
and an auxiliary cavity. There are three phases obtained in
our system, namely, PSP, PSBP, and BP. We find that the
system experiences a second-order phase transition from a
PSP to a PSBP or a first-order phase transition from a PSP
to a BP when the driving strength of one cavity is above
a critical value. We obtain a lower critical driving strength,
which provides a solid theoretical support for easily observing
the phase transition in experiment. Furthermore, we inves-
tigate the different behaviors of the mean magnon number
and correlation fluctuation in the vicinity of the critical point
and find that these behaviors can be used to identify different
phase transitions.

It should be noted that, when studying the QPT in our
double-cavity magnonic system, the roles played by the two
cavities are essentially equivalent due to the decoupling be-
tween them. However, this paper focuses on the control of
phase transition, which requires a distinction between the
functions of the two cavities. We use the main cavity to ob-
serve the QPT and use the auxiliary cavity to control the QPT.
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FIG. 1. Schematic of the double-cavity magnonic system, which
includes two microwave cavities (C1 and C2) and one yttrium iron
garnet sphere (M). ω1,2 and ωb are the frequencies of the cavity
modes and magnon mode, respectively. κ1,2 is the decay of the cavity
modes and γ is the damping of the magnon mode. G1,2 refers to the
driving amplitude for both cavities with frequency ω. g1,2 indicates
the coupling between the cavity mode and magnon mode.

We show that the QPT in the main cavity can be precisely
and efficiently controlled by adjusting the parameters of the
auxiliary cavity, which illustrates the superiority of our system
in experimental observation over the single-cavity magnonic
system [36]. Moreover, we believe that a different phase may
appear in our system when the two cavities interact with each
other, which will be studied in the future work. We hope the
scheme proposed in this paper can promote further experi-
mental research.

The rest of the paper is organized as follows. In Sec. II,
we propose a model to describe a double-cavity magnonic
system, present the dynamical equations of expectation values
for the cavity mode and magnon mode, and obtain the steady-
state solutions for the mean magnon number. In Sec. III, we
demonstrate the controllability of QPT. In addition, we use
the mean magnon number and the mean correlated fluctuation
to characterize the controllable QPT. The discussions and
conclusions are presented in Sec. IV.

II. MODEL

We propose a double-cavity magnonic model including
two cavity modes and one magnon mode as illustrated in
Fig. 1 and the Hamiltonian is (h̄ = 1)

H =
∑
j=1,2

[
ω ja

†
j a j + g j (a jb

† + a†
j b) + Gj

2
(a ja je

iωt

+ H.c.)
]

+ ωbb†b + K

2
b†b†bb, (1)

where a†
j (a j ) is the creation (annihilation) operator for cavity

mode j with frequency ω j . The cavity C j is driven by a
monochromatic field with amplitude Gj and frequency ω.
b (b†) is the annihilation (creation) operator of the magnon
mode with frequency ωb. K denotes the Kerr coefficient. g j

indicates the coupling between the magnon mode b and the
cavity mode j. For more details about model (1) please see
Appendix A.

In a rotating frame with U = e−iω(
∑

j=1,2a†
j a j+b†b)t/2, the

Hamiltonian (1) can be rewritten as

H =
∑
j=1,2

[
� ja

†
j a j + g j (a jb

† + a†
j b) + Gj

2
(a ja j + H.c.)

]

+ �bb†b + K

2
b†b†bb, (2)

where � j = ω j − ω/2 is the frequency detuning between the
cavity mode j and the driving field. �b = ωb − ω/2 is the
frequency detuning between the magnon mode and the driving
field.

By introducing dissipation into the Hamiltonian (2)
[56–58], we can give the dynamical equations as follows:

da j

dt
= −iPja j − iG ja

†
j − ig jb + √

2κ ja
in
j , (3)

db

dt
= −iQb − ig1a1 − ig2a2 − iKb†bb +

√
2γ bin, (4)

where Pj = � j − iκ j and Q = �b − iγ with κ j being the
decay of cavity mode j and γ being the damping of magnon
mode. ain

j and bin are the noise operators for the cavity mode j
and magnon mode, respectively. For convenience, we rewrite
Eqs. (3) and (4) in a more compact form

da j

dt
= −i[a j, H ′] + √

2κ ja
in
j , (5)

db

dt
= −i[b, H ′] +

√
2γ bin, (6)

with the new Hamiltonian being

H ′ =
∑
j=1,2

[
Pja

†
j a j + g j (a jb

† + a†
j b) + Gj

2
(a ja j + H.c.)

]

+ Qb†b + K

2
b†b†bb. (7)

According to Refs. [36,59], the parity operator for our
double-cavity magnonic system can be defined by � =
eiπ (

∑
j=1,2a†

j a j+b†b). It is easy to validate that the non-Hermitian
Hamiltonian H ′ commutes with the parity operator �. This
implies that the parity determined by the excitation num-
ber (i.e.,

∑
j=1,2a†

j a j + b†b) is preserved in the double-cavity
magnonic system. In general, the excitation number can be
any natural number. When it takes the numbers 0, 2, 4, . . . or
1, 3, 5, . . . , we say that the system is parity symmetric. When
it takes some continuous values like 0, 1, 2, 3, . . . , we call that
the parity symmetry of the system is broken.

To study the steady-state properties of the system, we ex-
press the operator as the sum of the expectation value and
its fluctuation, i.e., aj = 〈a j〉 + δa j and b = 〈b〉 + δb. With
the help of these expansions, we can obtain the dynamical
equations for the expectation values:

d〈aj〉
dt

= − iPj〈a j〉 − iG j〈a†
j〉 − ig j〈b〉, (8)

d〈b〉
dt

= − i(Q + U1)〈b〉 − ig1〈a1〉 − ig2〈a2〉, (9)

where U1 = K〈b†〉〈b〉. In Eqs. (8) and (9) we have assumed
that the expectation values of both the noise and fluctuation
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operators are zero. The dynamical equations for the fluctua-
tion operators and the mean correlated fluctuations are given
in Appendix B.

Based on Eqs. (8) and (9) and using the approximation
〈b†b〉 ≈ 〈b†〉〈b〉, we can find three solutions for the mean
magnon number, which are

〈b†b〉0 = 0, 〈b†b〉± = −� ±
√

−	2 + (ξ1G1 + ξ2G2)2

K
,

(10)
where � = �b − (ξ1�1 + ξ2�2), 	 = γ + ξ1κ1 + ξ2κ2, and
ξ j = g2

j/(�2
j − G2

j + κ2
j ). Now we analyze the stability of the

solutions 〈b†b〉0,±. The dynamical equations for the fluctua-
tion operators are

dδr
dt

= O · δr + δrin, (11)

where δr = (δa1, δa2, δb, δa†
1, δa†

2, δb†)T and δrin =
(
√

2κ1ain
1 ,

√
2κ2ain

2 ,
√

2γ bin,
√

2κ1ain†
1 ,

√
2κ2ain†

2 ,
√

2γ bin†)T .
The matrix O is

O =

⎛
⎜⎜⎜⎜⎜⎝

−iP1 0 −ig1 −iG1 0 0
0 −iP2 −ig2 0 −iG2 0

−ig1−ig2−i(Q + 2U1) 0 0 −iU2

iG1 0 0 iP∗
1 0 ig1

0 iG2 0 0 iP∗
2 ig2

0 0 iU ∗
2 ig1 ig2 i(Q∗ + 2U1)

⎞
⎟⎟⎟⎟⎟⎠

,

(12)
where U2 = K〈b〉2.

By calculating the determinant |λI − O| = 0 with I being
the identity matrix, the eigenvalues (i.e., λ) of the matrix O
can be obtained. The stability of the solutions 〈b†b〉0,± is
determined by the values of Re[λ] [60]. When all the values of
Re[λ] are negative, the solution is stable. When one of these
values is positive, the solution is unstable. The analysis of
Re[λ] demonstrates that the solution 〈b†b〉− is unstable in the
whole parameter space, while the solutions 〈b†b〉0 and 〈b†b〉+
are stable in some parameter space. Subsequently, to study
the steady-state quantum phase transitions, we only need to
consider the solutions 〈b†b〉0 and 〈b†b〉+.

We use the mean magnon number (i.e., 〈b†b〉 � 0) as an
order parameter of the phase transition and the properties of
the system change fundamentally at a specific driving strength
of cavity C1. This driving strength is the critical point of the
phase transition and we denote it as G1 = Gp,q. The number
of the critical points depends on �b/�1. For convenience,
we introduce a parameter η (to be defined later) and then the
critical driving strength can be expressed as follows.

(i) For �b/�1 < η, there are two critical driving strengths,
which are

Gp = g2
1α1 − α2

2(α3 − γα1)

Gq = α4 − g2
1g2

2G2

α5
,

(13)

with η = {g2
1α1 + α2 + 2[g2

2(α6 − κ1G2) +
γ κ1α1]}/(2�2

1α1). For simplicity, we have used the
parameters α1 = �2

2 − G2
2 + κ2

2 , α2 = [g4
1α

2
1 + 4(α3 −

γα1)(α3β3 − α1β2)]1/2, α3 = g2
2(G2 − κ2), α4 = {α5[α5β3 +

2g2
1(g2

2α6 − α1β1) + g4
1α1] + g4

1g4
2G2

2}1/2, α5 = 2g2
2(γ κ2 −

�2�b) + (γ 2 + �2
b)α1 + g4

2, and α6 = �1�2 + κ1κ2,
where β1 = �1�b − γ κ1, β2 = γ�2

1 + κ1(γ κ1 + g2
1), and

β3 = �2
1 + κ2

1 .
When G1 < Gp, 〈b†b〉 = 〈b†b〉0. When Gp < G1 < Gq,

〈b†b〉 can be 〈b†b〉0 or 〈b†b〉+. When G1 > Gq, 〈b†b〉 =
〈b†b〉+. In the vicinity of the critical point Gq, we find that
the relation between 〈b†b〉 and |G1 − Gq| follows:

〈b†b〉 � |G1 − Gq|ν, (14)

where ν = 1 is the dynamical critical exponent of the phase
transition.

(ii) For �b/�1 = η, the two critical driving strengths be-
come equal, i.e., Gp = Gq.

(iii) For �b/�1 > η, the critical driving strength is Gq. In
this case, 〈b†b〉 = 〈b†b〉0 for G1 < Gq while 〈b†b〉 = 〈b†b〉+
for G1 > Gq.

The two critical points Gp,q and one critical exponent ν

obtained above give key information about the phase transi-
tions of the system. In the next section we will focus on the
characteristics and controllability of the QPT. To this end, we
regard the cavity C1 as a main cavity and denote the cavity
C2 as an auxiliary cavity. This distinction makes it clear that
the main cavity is used to observe the phase transitions and
the secondary cavity is used to control them. It should be
emphasized that both the driving of the cavity and the Kerr
nonlinearity for the magnon are important for the phase transi-
tions of the system. Here we only pay attention to the situation
with g1g2 	= 0 and Gj <

√
�2

j + κ2
j , because when g j = 0

and Gj >
√

�2
j + κ2

j the two cavities are unstable [36,56].
In the calculations, we set the parameter values of the main
cavity (except for G1/κ1) as �1/κ1 = 3, g1/κ1 = 2.4, and
γ /κ1 = 1. This choice ensures that the parameters are con-
sistent with those of the single-cavity magnonic system [36].

III. CONTROLLABLE QUANTUM PHASE TRANSITION

In this section, we explore the influence of the auxiliary
cavity on the phase transitions of the main cavity. First, we
present the phase diagrams of the main cavity for three sets of
parameters of the auxiliary cavity as shown in Figs. 2(a)–2(c).
In each phase diagram, there are three different phases, i.e.,
PSP, PSBP, and BP. The orange solid curve and the vertical
violet solid line correspond to the critical points G1 = Gq and
G1 = Gp, respectively. We can clearly see that the boundary
between PSP and PSBP is given by G1 = Gq when �b/�1 >

η. The boundary between PSP and BP is determined by
G1 = Gp when �b/�1 < η. When �b/�1 = η, we introduce
a new notation G to present the critical driving strength due to
the indistinguishable nature of Gp,q, i.e., G1 = Gp = Gq = G.
The values of the critical point G/κ1 in Figs. 2(a), 2(b), and
2(c) are 0.8031, 1.4612, and 2.0479, respectively. Obviously,
the value of G given in our system can be larger or smaller
than that (i.e., G/κ1 = 2.024) in the single-cavity magnonic
system [36]. The above results imply that the phase transitions
of the system are controllable. The controllability is reflected
in the fact that the critical point can be shifted flexibly, which
is beneficial for experimental observation.

Furthermore, we show the dynamical behaviors of the
mean magnon number 〈b†b〉/(γ /K ) for different phases by
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FIG. 2. Left column: Phase diagram of the double-cavity
magnonic system. Right column: Dynamical behaviors of the
mean magnon number for three phases [the corresponding pa-
rameters have been marked in (b)]. (a) (κ2, �2, g2, G2)/κ1 =
(0.5, 2.6, 1.5, 2), (b) (κ2,�2, g2, G2)/κ1 = (0.6, 3.1, 1.8, 1.9), and
(c) (κ2,�2, g2, G2)/κ1 = (1.1, 3.5, 1.3, 0.8). (d) (�b/�1, G1/κ1) =
(0.2, 1.2) for PSP, (e) (�b/�1, G1/κ1) = (1.1, 1.9) for PSBP, and
(f) (�b/�1, G1/κ1) = (0.7, 2.1) for BP. The initial conditions for
the dashed lines in (d), (e), and (f) are (〈aj〉, 〈b〉)/

√
γ /K = (0.04 +

0.07i, 0.04 − 0.07i) while the initial conditions for the solid lines are
(〈aj〉, 〈b〉)/

√
γ /K = (1.8 + 1.5i, 1.8 − 1.5i).

Figs. 2(d)–2(f). Notice that we have rescaled 〈b†b〉 in terms of
γ /K which can be viewed as a system-size parameter (which
could be determined also by the parameters of the cavities)
according to Ref. [61]. The advantage of this choice is that we
can limit the mean magnon number to less than 10 to illustrate
the results clearly. The parameters for each phase have been
marked in Fig. 2(b). Figure 2(d) illustrates the dynamics of
the system for PSP. In this phase, we see that only the solution
〈b†b〉0 is stable. The excitation number is zero and thus the
system is parity symmetric. When the system is in PSBP as
shown in Fig. 2(e), it is found that only the solution 〈b†b〉+
is stable. The excitation number in this case takes the con-
tinuous value and thus the system is parity-symmetry broken.
However, when the system is in BP [see Fig. 2(f)], both the
solutions 〈b†b〉+ and 〈b†b〉0 are stable, which implies that in
this case the parity symmetry can be conserved or broken.

The results presented in Fig. 2 suggest that if we want
to identify the three phases by the dynamical behaviors, we
must track the dynamics of two different initial states which
correspond to two sets of different initial conditions (one set
is close to zero and the other set is far away from zero).
However, when we only track the dynamics of an initial state
near zero, PSB and BP cannot be distinguished since the
solution 〈b†b〉0 is stable for both phases. In this situation, to
distinguish the two phases and observe the phase transition
clearly, we need to add additional driving pulses to the sys-
tem. In principle, the driving pulse can be added to the main
cavity or the auxiliary cavity or both cavities because it does
not affect the results. The main intention of this paper is to
control the phase transition of the main cavity by adjusting
the parameters of the auxiliary cavity. Therefore, we only

FIG. 3. Dynamical behaviors of the mean magnon number
〈b†b〉/(γ /K ) for two phases: (a) BP with G1/κ1 = 2.1 and (b) PSP
with G1/κ1 = 0.7. Broken lines show the results with the addi-
tional pulse and solid lines give the results without the pulse field.
The initial conditions are (〈aj〉, 〈b〉) = (0, 0). Other parameters are
�b/�1 = 0.5, �0/κ1

√
γ /K = 2.2, and κ1τ = 9.

add the additional pulse to the auxiliary cavity. The shape
of the pulse is governed by the form of Rabi frequency, i.e.,
�(t ) = �(τ − t )�0 cos[πt/(2τ )], where �(τ − t ) indicates
the Heaviside function and �0 is the initial Rabi frequency
[36]. When the driving pulse is taken into account, we can
rewrite the dynamical equation (8) as

d〈a j〉
dt

= −iPj〈a j〉 − iG j〈a†
j〉 − ig j〈b〉 − i�(t )δ j,2, (15)

where δ j,2 denotes the delta function with j = 1 and 2. To
verify the effectiveness of the strategy proposed above, for
both phases PSP and BP, we evolve the system according to
Eqs. (15) and (9) from an initial state (〈a j〉, 〈b〉) = (0, 0). The
results about the dynamical behaviors of the mean magnon
number for BP and PSP are shown in Figs. 3(a) and 3(b),
respectively. For each phase, we demonstrate the results for
three sets of parameters of the auxiliary cavity. For the same
initial state, we see that the system eventually stabilizes to the
steady state 〈b†b〉+ for BP while the system finally stabilizes
to the steady state 〈b†b〉0 for PSP. The same initial state leads
to different final states, which makes it easy to distinguish the
two phases based on the different dynamical behaviors. For
comparison, we also show the results (see solid lines) without
additional pulse field in Fig. 3. In this case, we see that the
system eventually stabilizes to the unique steady state 〈b†b〉0

for both phases and thus the two phases are indistinguishable.
We have explored the three phases of the system and their

dynamical characteristics above. In the following part, we
will study the influence of the parameters of the auxiliary
cavity on the critical point of the phase transition of the
main cavity, which is very important for the experimental
observation of the phase transition. We focus on the critical
case where �b/�1 = η. In this case the critical point of the
phase transitions is given by the critical driving strength G
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FIG. 4. Contour plot of the critical driving strength G/κ1

shown in different parameter planes. The parameter planes are
spanned by (a) (�2/�1, G2/κ1) with (κ2, g2)/κ1 = (0.9, 1.8),
(b) (g2/g1, �2/�1) with (κ2, G2)/κ1 = (0.9, 1.6), (c) (g2/g1, G2/κ1)
with (κ2, �2)/κ1 = (0.9, 4), (d) (κ2/κ1,�2/�1) with (g2, G2)/κ1 =
(1.8, 1.6), (e) (κ2/κ1, g2/g1) with (�2, G2)/κ1 = (4, 1.6), and (f)
(κ2/κ1, G2/κ1) with (�2, g2)/κ1 = (4, 1.8), respectively. White lines
mark the critical value obtained in the single-cavity magnonic
system [36].

as defined before. For simplicity, in our calculations we scale
the parameters of the auxiliary cavity by the corresponding
parameters of the main cavity, i.e., κ2/κ1, g2/g1, �2/�1,
and G2/κ1. Considering that the auxiliary cavity has four
parameters that can be adjusted, for convenience we combine
these parameters into six groups and then see the change of
the critical driving strength in the plane spanned by each
group of parameters. Figure 4 shows the contour plot of the
critical point G/κ1 in six parameter planes. Different colors
indicate different values of the critical driving strength G/κ1.
For comparison, we mark the critical driving strength obtained
in the single-cavity magnonic system [36] by white lines. We
find that except for Fig. 4(b), the white lines are located in
the middle of the parameter planes, which implies that the
value of G/κ1 in these figures can be either greater than or less
than the critical driving strength obtained in the single-cavity
magnonic system [36]. In some parameter regions, we see that
a slight change in the parameters can leads to a great change of
G/κ1. These results indicate that the critical point of the phase
transformation of the main cavity can be flexibly adjusted by
introducing the auxiliary cavity. In particular, the adjustments

FIG. 5. Critical driving strength G/κ1 as a function of the param-
eters (a) �2/�1 with (κ2, g2, G2)/κ1 = (0.9, 1.6, 1.9), (b) g2/g1 with
(κ2, �2, G2)/κ1 = (0.9, 4, 1.8), (c) G2/κ1 with (κ2, �2, g2)/κ1 =
(0.9, 4, 1.6), and (d) κ2/κ1 with (�2, g2, G2)/κ1 = (4, 1.4, 1.9), re-
spectively. Magenta points mark the critical driving strength given by
the single-cavity magnonic model [36].

of some parameters of the auxiliary cavity can significantly
reduce the critical driving intensity (see dark blue regions),
which is beneficial for experimental observations.

In Fig. 5, we further show the dependence of the phase
transition point of the main cavity on the single parameter
of the auxiliary cavity. It can be seen that the critical driving
strength of the phase transition decreases obviously with the
decrease of both the detuning and dissipation of the auxiliary
cavity [see Figs. 5(a) and 5(d)]. As the coupling between the
auxiliary cavity and the magnon or the driving of the auxiliary
cavity increases, we also see that the critical driving strength
of the main cavity decreases rapidly or even decreases by an
order of magnitude [see Fig. 5(b) or 5(c)]. These findings indi-
cate that the strategy of introducing auxiliary cavity can make
it easier to observe the QPT of the system experimentally.
In other words, the phase transition of the system is highly
controllable. To determine the order of phase transitions, we
study the behavior of the order parameter: Mean magnon
number 〈b†b〉 especially its behavior near the critical point
based on both analytical and numerical methods. Here we
consider three cases in which �b/�1 < η, �b/�1 = η, and
�b/�1 > η. The corresponding results are demonstrated by
Figs. 6(a), 6(b), and 6(c). For each case, we obtain the results
for three sets of auxiliary-cavity parameters. In Fig. 6(a),
�b/�1 < η, the critical driving strength is G1 = Gp. The
region for G1 < Gp denotes PSP (the mean magnon number is
zero), the region for G1 > Gp denotes BP. Because in BP both
〈b†b〉0 and 〈b†b〉+ are stable, the steady-state mean magnon
number in this case is determined by the initial conditions.
When the initial condition is close to zero, the final mean
magnon number is zero, which is indistinguishable from PSP.
In this situation, as mentioned earlier (see Fig. 3), we must
add a pulse field to induce the system to the nonzero state to
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FIG. 6. Mean magnon number 〈b†b〉/(γ /K ) as a function of
the driving strength G1/κ1 for (a) �b/�1 = 0.5, (b) �b/�1 = η,
and (c) �b/�1 = 1.3. Lines present our analytical results given by
Eq. (10) while scatters show the numerical results obtained from
Eqs. (15) [or (8)] and (9). Vertical dashed lines mark the loca-
tions of the critical driving strength, in both (a) and (b) they are
(from left to right) 0.8031, 1.4612, and 2.0479, while in (c) they
are (from left to right) 0.8080, 1.4653, and 2.0704. The param-
eters (κ2, �2, g2, G2)/κ1 are (0.5,2.6,1.5,2), (0.6,3.1,1.8,1.9), and
(1.1,3.5,1.3,0.8) for the results denoted by magenta, blue, and dark
yellow colors, respectively. �0/κ1

√
γ /K = 2.2 and κ1τ = 9 are

used in (a).

distinguish BP from PSP. We find that in the vicinity of the
critical point Gp, the mean magnon number has an obvious
jumping behavior, which implies that the system experiences
a first-order phase transition from PSP to BP. In Fig. 6(b),
�b/�1 = η, the critical driving strength is G1 = G. When
G1 < G, the system is in PSP (the mean magnon number is
zero). When G1 = G, the system is in three-phase coexistence.
When G1 > G, the system is in PSBP (the mean magnon
number is nonzero). In Fig. 6(c), �b/�1 > η, the critical driv-
ing strength is G1 = Gq. When G1 < Gq, the mean magnon
number is zero, which illustrates that the system is in PSP.
When G1 > Gq, the mean magnon number is nonzero, which
implies that the system is in PSBP. In the vicinity of G1 = Gq,
we see that the mean magnon number varies continuously,
which confirms that the system experiences a second-order
phase transition from PSP to PSBP.

Finally, we investigate the behavior of the mean correlated
fluctuation 〈δb†δb〉 which can be used to characterize the QPT
of the system. Similar to Fig. 6, Fig. 7 also shows the results
for three cases �b/�1 < η, �b/�1 = η, and �b/�1 > η. In
Fig. 7(a), �b/�1 < η, we see a catastrophic divergent behav-
ior of the mean correlated fluctuation in the vicinity of the
critical point G1 = Gp, which corresponds to the first-order
QPT from PSP to BP. However, in Fig. 7(c), �b/�1 > η, we

FIG. 7. Mean correlated fluctuation 〈δb†δb〉 as a function of the
driving strength G1/κ1 for (a) �b/�1 = 0.5, (b) �b/�1 = η, and
(c) �b/�1 = 1.3. Vertical dashed lines mark the locations of the
critical driving strength. All parameters are the same as in Fig. 6.

see an asymptotic divergent behavior of the mean correlated
fluctuation in the vicinity of the critical point G1 = Gq, which
corresponds to the second-order QPT from PSP to PSBP.
Figure 7(b) shows the critical case �b/�1 = η in which
G1 = G, the behavior of the mean correlated fluctuation in
this case is between the behaviors in Figs. 7(a) and 7(c). In
each case, similar behavior is shown for three different sets
of auxiliary-cavity parameters. All our results for the mean
correlated fluctuation are obtained by numerically calculating
the quantity X11 (for details please see Appendix B).

IV. DISCUSSIONS AND CONCLUSIONS

Compared with the single-cavity magnonic system [36],
our double-cavity magnonic system has some advantages.
First, the two types of quantum phase transitions obtained
in the single-cavity magnonic system have been exhibited in
our system. Moreover, with the introducing of the auxiliary
cavity, the quantum phase transitions of the system become
more controllable. Second, the double-cavity magnonic model
presented in this paper can be realized in experiment. Fur-
thermore, the phase transitions of our system are easier to
be observed experimentally due to their high controllability.
Now we analyze the experimental feasibility. According to
Ref. [62], κ1/2π = 2.04 MHz. The critical driving strengths
in Figs. 2(a), 2(b), and 2(c) (0.8031, 1.4612, and 2.0479) be-
come 1.6383, 2.9808, and 4.1777 MHz, which are in the range
0 < G1/2π < 6 MHz allowed by the experiment [36,63]. In
Figs. 3–7, the maximum critical driving strength is located
at (G/κ1 = 2.2897) [see Fig. 4(e)] 4.6710 MHz, which is
also in the range allowed by the experiment. In addition, the
parameters of the main cavity in our system are consistent
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with those in Ref. [36] and all our selected parameters can
be reached in experiment.

To summarize, we have studied the controllable quan-
tum phase transitions in a double-cavity magnonic system.
It is shown that the system experiences a second-order
phase transition from a parity-symmetric phase to a parity-
symmetry-broken phase and a first-order phase transition
from a parity-symmetric phase to a bistable phase when the
driving strength of one cavity is above a critical value. We
have obtained the phase diagram, the critical point, and the
corresponding critical exponent to characterize the phase tran-
sitions. It is found that the critical driving strength in our
system can be either greater than or less than that obtained in
a single-cavity magnonic system [36]. We have demonstrated
a wide adjustable range of the critical driving strength, which
provides a favorable theoretical support for experimental ob-
servation of the phase transitions. We have investigated the
behaviors of both mean magnon number and mean correlation
fluctuation with respect to the driving strength of the main
cavity, which can be used to verify the controllable phase
transitions. We expect our present work will be implemented
experimentally in the future.
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APPENDIX A: MODELING OF THE DOUBLE-CAVITY
MAGNONIC SYSTEM

In this Appendix, we give the modeling process of the
double-cavity magnonic system in detail. The total Hamilto-
nian of this system reads as (h̄ = 1)

H =
∑

j=1,2
(Ha, j + Hint, j + Hd, j ) + Hb, (A1)

where Ha, j in Eq. (A1) is the Hamiltonian of the cavity mode
j, i.e.,

Ha, j = ω ja
†
j a j . (A2)

In our scheme, both cavities are driven by the external driv-
ing field, the corresponding Hamiltonian is given by [36,61]

Hd, j = Gj

2
(a ja j + H.c.)(e−iωt + eiωt ). (A3)

The Hamiltonian of the magnon mode can be written as
the following form which involved the Zeeman energy and
the magnetocrystalline anisotropic energy [43,51,64]

Hb = −
∫

Vb

M · B0dτ − μ0

2

∫
Vb

M · Handτ, (A4)

where M = (Mx, My, Mz ) is the magnetization of the yttrium
iron garnet (YIG) sphere, μ0 is the vacuum permeability,
B0 = B0ez is the magnetic field along the z direction, and Vb is
the volume of the YIG sphere. In the case where the magnetic
field B0 is aligned along the crystallographic axis [100] of the

YIG, the anisotropic field Han takes the form [65,66]

Han = −2KanMz

M2
ez, (A5)

where Kan is the first-order anisotropy constant.
Then the Hamiltonian (A4) can be expressed as

Hb = −B0MzVb + μ0KanM2
z Vb

M2
. (A6)

After introducing the macrospin operator S = MVb/γ ≡
(Sx, Sy, Sz ) [67] with γ as the gyromagnetic ration, Eq. (A6)
is rewritten as

Hb = −γ B0Sz + μ0Kanγ
2

M2Vb
S2

z . (A7)

One can obtain the magnon operator by using the Holstein-
Primakoff transformation [68]

S+ = (
√

2S − b†b)b, S− = b†(
√

2S − b†b), Sz = S − b†b,
(A8)

where S± ≡ Sx ± iSy are the raising and lowering operators of
the macrospin and S is the total spin. As a result, Eq. (A7) can
be further shown as follows:

Hb = ωbb†b + K

2
b†bb†b = ω′

bb†b + K

2
b†b†bb, (A9)

where ω′
b = ωb + K/2 with K = 2μ0Kanγ

2/(M2Vb) and ωb =
γ B0 − 2μ0Kanγ

2S/(M2Vb). Obviously, K is positive in this
case. Compared with ωb, K/2 is small and can be neglected,
i.e., ω′

b ≈ ωb. Then Eq. (A9) becomes

Hb = ωbb†b + K

2
b†b†bb. (A10)

The Hamiltonian pertaining to the cavity-macrospin inter-
action is given by [43,67]

Hint, j = gs, j (a j + a†
j )(S

− + S+), (A11)

where gs, j indicates the coupling between the cavity mode j
and the macrospin. Under the condition of low-lying excita-
tions, i.e., 〈b†b〉 � 2S, the S− and S+ in Eq. (A8) become
S− ≈ b†

√
2S and S+ ≈ b

√
2S, which results in

Hint, j =
√

2Sgs, j (a j + a†
j )(b + b†)

= g j (a j + a†
j )(b + b†), (A12)

where g j = √
2Sgs, j indicates the coupling between the cavity

mode j and the magnon mode.
Naturally, the Hamiltonian (A1) is obtained as

H =
∑
j=1,2

[
ω ja

†
j a j + g j (a j + a†

j )(b + b†) + Gj

2
(a ja j + H.c.)

× (e−iωt + eiωt )
]

+ ωbb†b + K

2
b†b†bb. (A13)

One can transform the Hamiltonian (A13) into the inter-
action picture via adopting the unitary transformation U ′ =
e−i(

∑
j=1,2ω j a

†
j a j+ωbb†b)t and g j (a j + a†

j )(b + b†) → g j (a jb† +
a†

j b), in which the fast-oscillating terms g ja
†
j b

†ei(ω j+ωb)t

and g ja jbe−i(ω j+ωb)t can be neglected. The coupling g j is
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sufficiently weak, i.e., g j � ω j, ωb. Similarly, the approx-
imation Gj

2 (a ja j + H.c.)(e−iωt + eiωt ) → Gj

2 (a ja jeiωt + H.c.)

is valid when the fast-oscillating terms Gj

2 a†
j a

†
j e

i(2ω j+ω)t and
Gj

2 a ja je−i(2ω j+ω)t can be neglected. The above uses the
well-known rotating-wave approximation [56]. Under the
rotating-wave approximation, the Hamiltonian (A13) be-
comes

H =
∑
j=1,2

[
ω ja

†
j a j + g j (a jb

† + a†
j b) + Gj

2
(a ja je

iωt

+ H.c.)
]

+ ωbb†b + K

2
b†b†bb. (A14)

This is exactly the model we have proposed and used to
study the controllable QPT.

APPENDIX B: DYNAMICAL EQUATIONS OF THE MEAN
CORRELATED FLUCTUATIONS

The dynamics of the fluctuation operators are described by
the following equations:

dδa j

dt
= −iPjδa j − iG jδa†

j − ig jδb + √
2κ ja

in
j , (B1)

dδb

dt
= −i(Q + 2U1)δb − iU2δb† − ig1δa1 − ig2δa2

+
√

2γ bin. (B2)

Among them, the fluctuations’s high-order terms have been
omitted.

From the above equations, we can obtain the dynamical
equations of the mean correlated fluctuations

d〈δa†
jδa j〉

dt
= −2κ j〈δa†

jδa j〉 + iG j (〈δa jδa j〉 − 〈δa†
jδa†

j〉)

+ ig j (〈δa jδb†〉 − 〈δa†
jδb〉), (B3)

d〈δajδa j〉
dt

= −2iPj〈δa jδa j〉 − iG j (1 + 2〈δa†
jδa j〉)

− 2ig j〈δa jδb〉, (B4)

d〈δa1δa2〉
dt

= −i(P1 + P2)〈δa1δa2〉 − i(G2〈δa1δa†
2〉

+ G1〈δa†
1δa2〉) − i(g2〈δa1δb〉

+ g1〈δa2δb〉), (B5)

d〈δa jδb〉
dt

= −i(Pj + Q + 2U1)〈δa jδb〉

− i(U2〈δa jδb†〉 + Gj〈δa†
jδb〉)

− i(g1〈δa1δa j〉 + g2〈δa jδa2〉
+ g j〈δbδb〉), (B6)

d〈δa1δa†
2〉

dt
= −i(P1 − P∗

2 )〈δa1δa†
2〉

+ i(G2〈δa1δa2〉 − G1〈δa†
1δa†

2〉)

+ i(g2〈δa1δb†〉 − g1〈δa†
2δb〉), (B7)

d〈δa jδb†〉
dt

= −i(Pj − Q∗ − 2U1)〈δa jδb†〉

+ i(U ∗
2 〈δa jδb〉 − Gj〈δa†

jδb†〉)

+ i(g1〈δa†
1δa j〉 + g2〈δa†

2δa j〉
− g j〈δb†δb〉), (B8)

d〈δb†δb〉
dt

= −2γ 〈δb†δb〉 + i(U ∗
2 〈δbδb〉 − U2〈δb†δb†〉)

+ ig1(〈δa†
1δb〉 − 〈δa1δb†〉)

+ ig2(〈δa†
2δb〉 − 〈δa2δb†〉), (B9)

d〈δbδb〉
dt

= −2i(Q + 2U1)〈δbδb〉 − iU2(1 + 2〈δb†δb〉)

− 2i(g1〈δa1δb〉 + g2〈δa2δb〉). (B10)

For simplicity, we define X1 ≡ 〈δa†
1δa1〉, X2 ≡ 〈δa1δa1〉,

X3 ≡ 〈δa†
2δa2〉, X4 ≡ 〈δa2δa2〉, X5 ≡ 〈δa1δa2〉, X6 ≡

〈δa1δb〉, X7 ≡ 〈δa2δb〉, X8 ≡ 〈δa1δa†
2〉, X9 ≡ 〈δa1δb†〉,

X10 ≡ 〈δa2δb†〉, X11 ≡ 〈δb†δb〉, and X12 ≡ 〈δbδb〉. Then,
the dynamical equations of the mean correlated fluctuations
become

dX1

dt
= −2κ1X1 + iG1(X2 − X ∗

2 )

+ ig1(X9 − X ∗
9 ), (B11)

dX2

dt
= −2iP1X2 − iG1(1 + 2X1) − 2ig1X6, (B12)

dX3

dt
= −2κ2X3 + iG2(X4 − X ∗

4 )

+ ig2(X10 − X ∗
10), (B13)

dX4

dt
= −2iP2X4 − iG2(1 + 2X3) − 2ig2X7, (B14)

dX5

dt
= −i(P1 + P2)X5 − i(G2X8 + G1X ∗

8 )

− i(g2X6 + g1X7), (B15)

dX6

dt
= −i(P1 + Q + 2U1)X6 − i(U2X9 + G1X ∗

9 )

− i(g1X2 + g2X5 + g1X12), (B16)

dX7

dt
= −i(P2 + Q + 2U1)X7 − i(U2X10 + G2X ∗

10)

− i(g1X5 + g2X4 + g2X12), (B17)

dX8

dt
= −i(P1 − P∗

2 )X8 + i(G2X5 − G1X ∗
5 )

+ i(g2X9 − g1X ∗
10), (B18)

dX9

dt
= −i(P1 − Q∗ − 2U1)X9 + i(U ∗

2 X6 − G1X ∗
6 )

+ i(g1X1 + g2X8 − g1X11), (B19)

dX10

dt
= −i(P2 − Q∗ − 2U1)X10 + i(U ∗

2 X7 − G2X ∗
7 )

+ i(g1X ∗
8 + g2X3 − g2X11), (B20)
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dX11

dt
= −2γ X11 + i(U ∗

2 X12 − U2X ∗
12)

+ ig1(X ∗
9 − X9) + ig2(X ∗

10 − X10), (B21)

dX12

dt
= −2i(Q + 2U1)X12 − iU2(1 + 2X11)

− 2i(g1X6 + g2X7). (B22)
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