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Theory of ultrasound propagation in LuCo3 near the low-spin–high-spin crossover
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The possibility of experimental observation of the ultrasonic attenuation in the ferromagnet LuCo3 near
the low-spin-high-spin crossover is discussed. We show that ultrasound propagation gives rise to transitions
between states of the magnon band due to absorption of phonons, and this process is highly sensitive to the
value of magnetization. The high magnetic field, which governs the crossover, alters the ultrasound propagation
regime from off-resonant to resonant and we formulate a criterion of the change. Calculated temperature
and field dependences of the ultrasonic wave number and attenuation clearly demonstrate anomalies in these
characteristics in the vicinity of the crossover at intermediate temperatures far below the Curie temperature.
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I. INTRODUCTION

Magnetism of a large group of materials composed of 4 f
rare-earth (R) and 3d transition metal (T) ions, which are
known as intermetallic compounds, is related to two prin-
cipally different types of electrons. The 4 f electrons are
localized and provide a large magnetocrystalline anisotropy.
Being partly itinerant, the 3d electrons are a source of strong
exchange interactions due to their extended wave functions.
The combination of the 3d and 4 f electrons in intermetallic
compounds makes it possible to achieve good hard magnetic
properties favored in material design of permanent magnets
[1–3]. According to the general rule, the spin moments of the
ferromagnetic 3d elements T = Fe, Co, and Ni are aligned
antiparallel to the spin moments of a rare earth [4]. This
leads to ferrimagnetic order in the R-T compounds with the
heavy rare-earth elements, R = Gd–Yb, where the 4 f shell is
half-filled, or more. By contrast, the R-T compounds with the
light rare-earth elements, Pr–Sm, where the moment is mainly
orbital in character and directed opposite to the spin moment
according to Hund’s rule, exhibit ferromagnetism.

The R-T ferrimagnets are of special interest for studies in
high magnetic fields because they undergo field-induced mag-
netic phase transitions when the applied field starts to compete
with the exchange and anisotropy interaction [5–8]. Such
transitions reflect breaking of the initial antiparallel alignment
between the R and T moments due to spin reorientation of the
4 f and 3d magnetic moments. Early mean-field studies of this
magnetization process provide a wealth of useful information
on the strength of the R-T intersublattice exchange coupling
and magnetocrystalline anisotropy [9–11].

Being relatively uncommon, field-induced phase transi-
tions in ferromagnets do occur and require special attention.
One of them is LuCo3, in which lutetium bears no ordered
magnetic moment, was recently examined using magnetiza-
tion measurements in pulsed magnetic fields up to 58 T. [12]

A pronounced jump of magnetization was revealed just below
50 T for both easy and hard magnetization directions of the
applied field, which suggests that the transition is of exchange
origin. This conclusion has been supported by ab initio cal-
culations based on the density functional theory, which show
that the transition is due to a significant redistribution in the
majority and minority spin states in the Co 3d subsystem [12].

Besides the microscopic origin of the transition, another
important issue is a manifestation of this effect in differ-
ent physical processes, particularly, in a response of lattice
degrees of freedom. It is well recognized that relevant infor-
mation about magnetic phase transitions may be gained from
ultrasonic measurements because they can be fairly easily de-
tected by the experimental technique [13,14]. Commonly used
characteristics of propagation of ultrasonic waves are their
velocity and attenuation dependent on magnetic properties of
the solid. A variety of effective uses of ultrasonic methods
for study of magnetic phase transitions characterized by Curie
or Néel temperatures [15–18], first-order transition [19], and
spin reorientation transitions [20–28] were reported.

Despite the remarkable progress, there remain a need for
a theoretical analysis of details of ultrasound propagation
near the low-spin-high-spin transition observed in LuCo3. A
particular feature of the effect is that it happens in very high
magnetic fields far below the Curie temperature TC ≈ 376 K.
[12] Similar transitions from low-spin to high-spin states
have been observed in rare-earth intermetallic compounds
such as YCo3 [29], Y(Co1−xFex)3 [30], YCo5 and LaCo5

[31,32], which also occur at temperatures below TC as a func-
tion of magnetic field or pressure. In these circumstances,
theoretical approaches developed to study the anomaly in
sound wave attenuation and attendant frequency dispersion
at the critical point [33–37] become inefficient. Indeed, the
jump of magnetization in LuCo3 is not accompanied by a
change in symmetry, i.e., a situation of spin crossover arises at
which nature of spin fluctuations does not alter qualitatively.
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Another important aspect is linked to the ultrasound frequency
range (∼100 MHz), which is far below characteristic frequen-
cies of spin-wave excitations (∼1–10 THz) in the highly
anisotropic magnet, like LuCo3, shifted additionally upward
by the high magnetic field. This rules out the resonant mech-
anism of magnetoelastic coupling between acoustic and spin
waves [38,39].

However, these reasons do not preclude another way to
transfer energy from phonons to spin subsystem, when ul-
trasound propagation causes intraband transitions between
different one-magnon states. The energy difference between
these states εq+k − εq is determined both by the wave vector
k of the absorbed phonon and by the slope of the branch εq
of magnon excitations. The latter is greatly affected by the
magnetization, namely, the magnon branch is relatively flat in
the low-spin state and becomes steeper in the high-spin state.
In these circumstances, we show in this paper that no resonant
phonon absorption occurs below the crossover, since the ultra-
sound energy h̄ωe exceeds the difference εq+k − εq. However,
the transition to the high-spin state makes the process feasible
because of equalizing these two energies.

We also demonstrate that the probability of the process
is proportional to the thermal population of magnon states.
Therefore, ultrasound propagation through the specimen is
unaffected at low temperatures since excitation of spin waves
is strongly suppressed by the anisotropy and the external mag-
netic field. In contrast, the resonance phonon absorption may
occur with high probability at intermediate temperatures that
causes a large increase of the ultrasound attenuation together
with a drastic variation of the ultrasound wave number (or
velocity) near the crossover point.

Our analysis of ultrasonic attenuation uses the formalism
suggested by Kwok [40] which allows for linear response of
lattice vibrations to an external force by means of the diagram-
matic phonon Green’s function technique [41]. The latter has
proved to be an effective tool for tackling problems regarding
the magnon-phonon coupling in magnetic materials [42–44].
The interaction of the ultrasound waves with magnetic ions of
LuCo3 is treated within the exchange strain mechanism of
spin-phonon coupling [45]. With this approach, a criterion
of a change of the ultrasound propagation regime from off-
resonant to resonant can be explicitly formulated.

The paper is organized as follows: In Sec. II we de-
scribe the model of spin and lattice excitations relevant for
LuCo3 and specify the mechanism of spin-phonon coupling.
In Sec. III basic equations of ultrasound propagation in media
are deduced with the aid of the retarded phonon Green’s func-
tions. In Sec. IV this approach is adopted in order to realize
ultrasound absorption measurements in LuCo3 for experimen-
tal verification. The predicted magnetic field and temperature
dependences of the ultrasound attenuation coefficient and the
ultrasound wave number are discussed in Sec. V. The conclu-
sions are given in Sec. VI.

II. MODEL

The two-component intermetallic compound LuCo3 has
a trigonal crystal structure of PuNi3 type (space group
R3̄m) with the lattice parameters a = b = 4.956 Å and c =
24.126 Å (see Fig. 1). The translation vectors of the trig-

(a) (b)

FIG. 1. Crystal structure of LuCo3 (a) and the coarse-grained
trigonal lattice with the sites (red balls) corresponding to the effective
spin moment of the entire unit cell of LuCo3 (b).

onal (hexagonal) Bravais lattice are a1 = (a, 0, 0), a2 =
(−a/2,

√
3a/2, 0) and a3 = (0, 0, c). Throughout the present

study we assume that these lattice parameters remain un-
changed, i.e., any possibility of structural transitions [46]
(including those associated with the external magnetic field)
is excluded.

Ultrasonic measurements are directly related to excitation
of acoustic phonon modes in solids when neighboring atoms
oscillate almost perfectly in phase in the long-wave limit.
Due to ferromagnetic alignment of the magnetic moments of
individual ions in LuCo3, it is plausible to assume that these
acoustic modes will be coupled to the total magnetic moment
of the elementary cell since the internal structure of the unit
cell is irrelevant from the viewpoint of these vibrations. For
this reason LuCo3 can be pictured as a collection of pointlike
atoms which form the trigonal Bravais-type lattice and each
of the atoms has a mass and a magnetic moment of the entire
unit cell of LuCo3.

The effective spin per unit cell S = 9MS/gSμB, where
g factor (gS = 2), μB is the Bohr magneton, and MS is
the saturation magnetization. The factor 9 appears because
each unit cell contains this number of the formula units.
LuCo3 displays an uniaxial magnetic anisotropy and the
spontaneous magnetic moment along the easy [001] axis is
MS = 1.77 μB/f.u. [12], which corresponds to S ≈ 7.97. It
is clear that the magnitude of the effective spin follows ex-
actly the field dependence of the saturation magnetization (see
Supplemental Material [47]).

Then, the magnon excitation spectrum can be derived from
the effective model of Heisenberg ferromagnet on the trigonal
Bravais-type lattice [see Fig. 1(b)] with the Hamiltonian

Hm = −
∑
i, j

Ji jSiS j − D
∑

i

(Sz
i )2 + gSμBμ0H

∑
i

Sz
i , (1)

where the spin operators Si are located at the sites Ri of
the lattice and related with the coarse-grained magnetization
M(r) = gSμB

∑
i Siδ(r − Ri ). The first term describes fer-

romagnetic nearest-neighbor exchange coupling. The second
term corresponds to single-ion easy-axis anisotropy, where the
crystallographic c axis is the easy direction of magnetization.
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The last term arises due to the external magnetic field μ0H
applied along this direction (z axis). In our model treatment,
we assume that only the effective spin S varies with the exter-
nal magnetic field H in accordance with the magnetization
data, while the Hamiltonian parameters, Ji j and D, remain
unaffected by H .

Ferromagnetic exchange interaction between the nearest-
neighbor sites in the basal ab-plane will be denoted as J (a),
and the notion J (c) will be used for similar interaction be-
tween magnetic moments along the c-axis. Apparently, J (a)
is larger than J (c) since c > a, but no precise values are
available, so the ratio J (a)/J (c) = 5.0 is chosen in our nu-
merical calculations to reduce the number of independent
parameters. The value J (a) is treated as a fitting parameter
of the theory, but an order of the magnitude may be estimated
from the Curie temperature TC ≈ 376 K [12]. Given J (a) ∼
3kBTC/2ZS(S + 1), where Z = 6 is the number of the nearest
neighbors in the ab plane, one gets J (a)/kB ∼ 1.0 K.

According to experimental data [12], the uniaxial crystal
LuCo3, having n = 2/(

√
3a2c) ≈ 1.949 × 1027 elementary

cells per m3, possesses the effective anisotropy constant K1 ≈
1.571 × 106 J/m3 that immediately yields [48]

D = K1/(nS2) ≈ 1.269 × 10−23 J

for S = 7.97.
Because of the large spin quantum number, the spin

operators may be represented by boson operators via the
Holstein-Primakoff representation

S+
i =

√
2Sâ†

i (1 − â†
i âi/2S)

1
2 ≈

√
2S

[
â†

i − â†
i â†

i âi

4S

]
,

S−
i =

√
2S(1 − â†

i âi/2S)
1
2 âi ≈

√
2S

[
âi − â†

i âiâi

4S

]
, (2)

Sz
i = −S + â†

i âi,

where the square roots are expanded due to the large value of
the effective spin S.

Substituting these into Eq. (1) and introducing the Fourier
transform of the bose operators

âi = 1√
N

∑
q

eiqRi âq, (3)

the magnetic Hamiltonian takes the simple form

Hm = E0 +
∑

q

εqâ†
qâq, (4)

where the terms quatric in the boson operators are neglected,
since in our analysis no magnon-magnon interactions are ac-
counted for. Here E0 is the energy of the ferromagnetic ground
state, and the excitation energy is given by

εq = 2S[J̃ (0) − J̃ (q)] + D(2S − 1) + gSμBμ0H (5)

with

J̃ (0) = 2J (c) + 6J (a),

J̃ (q) = 2J (a)

[
cos(qxa) + 2 cos

(
1

2
qxa

)
cos

(√
3

2
qya

)]

+ 2J (c) cos(qzc). (6)

The energy contribution of lattice vibrations is given by

Hp =
∑

ks

h̄ωs(k)

(
b̂†

ksb̂ks + 1

2

)
, (7)

where b̂†
ks (b̂ks) are the creation (annihilation) operators, re-

spectively, of a phonon of the wave vector k and the branch
label s = 1, 2, 3, which increase (reduce) the energy by the
amount h̄ωs(k).

The atomic displacements ui = ri − Ri of the i-th unit cell
position ri from the equilibrium position Ri are expressed in
terms of these creation and annihilation operators as

uα
i =

√
h̄

2mN

∑
ks

eα (ks)√
ωs(k)

eikRi (b̂ks + b̂†
−ks), (8)

where α = x, y, z and eα (ks) is the polarization vector. The
effective unit cell mass appearing in Eq. (8)

m =
√

3

2
ρa2c = 5.296 × 10−24 kg,

where the mass density ρ = 10.32 g/cm3 (see Ref. [12]). N is
the number of the unit cells.

To describe interaction of strain waves with magnetic ions
we use the Waller mechanism [13], when the strain wave mod-
ulates the distance between two magnetic ions, thus changing
the exchange interaction

−
∑

i j

[J (Ri j + ui − u j ) − J (Ri j )]SiS j, (9)

where Ri j = Ri − R j is the equilibrium distance between two
magnetic ions. We note, that the alternative mechanism of
the strain-single-ion coupling results from strain derivative
of the crystal fields, or concomitant anisotropy energy in
magnetically ordered media [49,50]. However, this approach
is suitable for systems where d electrons in partially filled
shells occupy well-localized ioniclike states, whereas partly
itinerant d electrons in the metallic LuCo3 participate in
conduction [51].

By expanding Eq. (9) in the displacements ui, the spin-
lattice interaction may be presented as [45,52]

Hmp = −
∑
i,δ

(
1

δ

dJ

dδ

)
([ui+δ − ui] δ)(Si+δ Si ), (10)

where δ is the distance between the nearest neighbors. Trans-
forming, by means of Eqs. (2) and (8), this expression in
terms of the creation and annihilation operators, one obtains
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the exchange-mediated magnon-phonon interaction

Hmp = 2iS

√
h̄

2mN

∑
ks

∑
q

M(ks; q)√
ωs(k)

Â(ks)â†
k+qâq, (11)

with Â(ks) = b̂ks + b̂†
−ks and the amplitude

M(ks; q) =
∑

δ

(
1

δ

dJ

dδ

)
(e(ks) δ)(k δ)[1 − eiqδ], (12)

where due account has been taken of the fact that the lattice
possesses inversion symmetry. Note that the derivation of the
magnon-phonon interaction (11) was based on the assumption
that the ultrasonic wave frequency is usually of the order
of 100 MHz. This means that the sound wave wavelength
must be much larger δ, which is of the order of the lattice
constant.

As J (a) is assumed to be notably larger than J (c), the
strength of magnon-phonon coupling for ultrasonic propaga-
tion in the ab plane will be larger than for propagation along
the c axis. This is readily seen from Eq. (12). For clarity, lattice
vibrations propagating along the crystallographic direction
[100] are chosen in the subsequent treatment.

III. EXCHANGE-MEDIATED MAGNON-PHONON
INTERACTION

The phonon Green function determined in the Matsubara
representation by D(ks, τ ) = −〈T̂τ Â(ks, τ )Â(−ks, 0)〉,
where T̂τ is the imaginary time ordering operator with
−β � τ � β, gives the frequency-dependent form for bare
phonons

D(0)(ks, iωn) = − 2ωs(k)

ω2
n + ω2

s (k)
. (13)

Here, ωn = 2πn/β and β = 1/kBT is the inverse temperature.
Similarly, the magnon Green function defined by

G(q, τ ) = −〈T̂τ âq(τ )â†
q(0)〉 yields the noninteracting magnon

Green function of Matsubara frequency

G (0)(q, iωn) = 1

iωn − εq
. (14)

The general expression for phonon Green function, on
account of the interaction with magnons, is determined by
Dyson equation and given in the form

D(ks, iωn) = D(0)(ks, iωn)

1 − D(0)(ks, iωn)
(ks, iωn)
. (15)

The basic process contributing to the phonon self-energy

 is given by the magnon loop as shown in Fig. 2:


(ks, iωn) = 2h̄S2

mN

∑
q

M(ks; q)M(−ks; k + q)

ωs(k)

× 1

β

∑
p

G (0)(q, iωp)G (0)(k + q, iωn + iωp).

(16)

ks ks 

k + q 

q 

FIG. 2. Feynman diagram giving rise to the phonon self-energy
in the lowest order. The solid lines represent phonon propagators
while the dotted lines represent magnon propagators.

Performing the summation over the Matsubara frequencies,
one gets eventually


(ks, iωn) = 2h̄S2

mN

∑
q

M(ks; q)M(−ks; k + q)

ωs(k)

× nB(εk+q) − nB(εq)

εq − εk+q + iωn
, (17)

where the symmetry of the phonon spectrum ωs(−k) = ωs(k)
under inversion is accounted for. Here, nB(ε) = (eβε − 1)−1 is
the Bose distribution function.

In ultrasonic attenuation experiments, the response of the
lattice to a forced vibration of atom displacements at one end
of the crystal is measured. The description of the task provided
by the linear response theory leads to the basic result (see the
Appendix)

〈uiα〉F (t ) = − h̄

2mN

∑
i′α′

∑
ks

eik(Ri−R′
i )

× eα (ks)eα′ (ks)

ωs(k)
Dret(ks, ωe)e−iωet Fi′α′ . (18)

Here, the force Fi′α′ of the frequency ωe generates sound
waves in a crystal acting on ions at the lateral crystal surface,
which are indexed by i′ (α, α′ = x, y, z).

The retarded phonon Green function at real frequencies
that is involved in Eq. (18) may be found from Eq. (15) via
the analytic continuation iωn → ω + i0+. This yields

Dret(ks, ωe) = 2ωs(k)

ω2
e − ω2

s (k) − 2ωs(k)
ret(ks, ωe)
(19)

with 
ret(ks, ωe) = 
′
ret(ks, ωe) + i
′′

ret(ks, ωe). The po-
sitions of the complex poles in the expression are
determined by

ω2
e = ω2

s (k) + 2ωs(k)
ret(ks, ωe). (20)

To obtain final results, it is customary to consider the wave
vector κr (ωe) describing the propagation of the sound wave at
frequency ωe and the ultrasonic attenuation coefficient αr (ωe)
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as the real and imaginary parts of the complex wave vector
kr = κr + iαr , respectively, where one need to consider those
poles for which κr 	 αr .

Then, the real part of Eq. (20) leads to the implicit
equation for κr (ωe)

ω2
e ≈ ω2

s (κr ) + 2ωs(κr )
′
ret(κrs, ωe), (21)

and the imaginary part gives the ultrasonic attenuation
coefficient

αr (ωe) ≈ −
′′
ret(κrs, ωe)/(∂ωs/∂k)k=κr . (22)

IV. ULTRASOUND PROPAGATION

In trigonal crystals, to which LuCo3 belongs to, the elastic
energy density reads

Ue = 1
2 c11

(
u2

xx + u2
yy

) + c12uxxuyy + 1
2 c33u2

zz

+ c13uzz(uxx + uyy) + 2c14uyz(uxx − uyy)

+ (c11 − c12)u2
xy

+ 4c14uxyuxz + 2c44
(
u2

xz + u2
yz

)
, (23)

where ci j are the elastic constants and the strain tensor is
introduced

ui j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (24)

The vibrations of an elastic medium of density ρ are gov-
erned by the equation of motion ρ∂2

t ui = ∂kσik with the stress
tensor derived from the relation

σik = 1
2 (1 + δik )∂Ue/∂uik . (25)

Writing out the equations of motion for the components ui

and substituting the periodic solution ui = uieikr−iωt into these
formulas, one obtains

ω2uα =
∑

β

Dαβ (k)uβ, (26)

where the dynamical matrix is

Dαβ (k) = 1

ρ

⎛
⎜⎜⎜⎜⎝

c11k2
x + 1

2 (c11 − c12)k2
y

1
2 (c11 + c12)kxky + 2c14kxkz (c13 + c44)kxkz + 2c14kxky

+2c14kykz + c44k2
z

1
2 (c11 + c12)kxky + 2c14kxkz c11k2

y + 1
2 (c11 − c12)k2

x c14(k2
x − k2

y ) + (c13 + c44)kykz

−2c14kykz + c44k2
z

(c13 + c44)kxkz + 2c14kxky c14(k2
x − k2

y ) + (c13 + c44)kykz c44(k2
x + k2

y ) + c33k2
z

⎞
⎟⎟⎟⎟⎠.

Using the notation ω2(ks) (s = 1, 2, 3) for the eigenvalues of
the dynamical matrix, the eigenvectors e(ks) are derived from∑

β

[Dαβ (k) − ω2(ks)δαβ]eβ (ks) = 0. (27)

When eigenvectors are normalized, the relationship∑
α

e∗
α (ks)eα (ks′) = δss′ (28)

follows from their orthogonality, and∑
s

e∗
α (ks)eβ (ks) = δαβ. (29)

from their completeness.
The polarization dependence of different sound wave

modes may be deduced from Eq. (27). For vibrations propa-
gating along the direction [100] and characterized by the wave
vector k = (k, 0, 0) there are the longitudinal wave with the
spectrum

ω1(k) =
√

c11

ρ
k (30)

with polarization e(k1) = (1, 0, 0), and two transverse
branches

ω2,3(k) = k√
2ρ

{
1

2
(c11 − c12) + c44

±
√[

1

2
(c11 − c12) − c44

]2

+ 4c2
14

} 1
2

, (31)

with the corresponding polarization vectors e(k2) =
(0, ε1, ε2), e(k3) = (0, ε2,−ε1). Here,

ε1,2 = 1√
2

[
1 ± 1√

1 + ζ 2

] 1
2

, (32)

where ζ = 4c14/(c11 − c12 − 2c44).
From now on, the question of ultrasound attenuation in

LuCo3 may be addressed. To be specific, we choose a crystal
with trigonal symmetry and a free surface being the yz plane
at x = 0. We start with the formula (18) for displacements
generated by an external force and assume that the outer
force is nonzero only when the cells i′ lie on the surface
plane and that it is identical in every cell. The analysis below
is greatly simplified if another assumption is made, namely,
the external force acts only along the x axis, α′ = x, and
generates acoustic vibrational modes of the given wave vector
k = (k, 0, 0). Then, it is not difficult to see that the transverse
acoustic modes can be eliminated and the expression for the
displacement of the cell located at the distance xi from the
surface plane takes the form

〈uix〉F (t ) ∝ − h̄Fx

mNx

∑
k

Dret(k1, ωe)

ω1(k)
eikxi−iωet . (33)

Here, the the summation goes over all k points inside the first
Brillouin zone (BZ), which lie on the x axis of the reciprocal
lattice, Nx is the number of these points. This sum is restricted
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to the range −4π/3a < k < 4π/3a bearing in mind that the
BZ of the trigonal system is specified by the primitive vec-
tors b1 = (2π/a){1, 1/

√
3, 0}, b2 = (2π/a){0, 2/

√
3, 0} and

b2 = (2π/c){0, 0, 1}.
Transforming the sum over k into an integral 1

Nx

∑
k . . . →

3a
8π

∫ 4π
3a

− 4π
3a

dk . . ., one finally gets

〈ux〉F ∝
∫ 4π

3a

− 4π
3a

dk
eikx−iωet

ω2
e − ω2

1(k) − 2ω1(k)
ret(k1, ωe)/h̄
, (34)

where all frequencies are taken in Hz units.
This integral can be performed by closing the contour

of integration in the upper half-plane, so the displacement
in the presence of a driving force behaves as 〈ux〉F (x) ∝∑

r Zr (ωe) exp[iκr (ωe)x − αr (ωe)x], where the sum runs over
the poles of the integrand. Here, κr (ωe) and αr (ωe) are the
real and imaginary parts of the poles, and Zr (ωe) are their
residues.

To calculate κr , one may use Eq. (21), in which the real part
of the self-energy is derived from Eq. (17) with k = (k, 0, 0)


′
ret(k1, ωe) = 2h̄S2Vcell

mω1(k)
−
∫

BZ

dq
(2π )3

× M(k1; q)M(−k1; kex + q)

× [nB(εkex+q) − nB(εq)]

εq − εkex+q + h̄ωe
, (35)

where −
∫

denotes the principal value and Vcell = √
3a2c/2 is

the volume of the elementary cell.
From Eq. (22), one may find αr with the aid of the imagi-

nary part of the self-energy


′′
ret(k1, ωe) = −2π h̄S2Vcell

mω1(k)

∫
BZ

dq
(2π )3

× M(k1; q)M(−k1; kex + q)[nB(εkex+q)

− nB(εq)]δ(εq − εkex+q + h̄ωe), (36)

where δ(. . .) is a Dirac delta function.

The amplitudes of magnon-phonon scattering are obtained
from Eq. (12)

M(k1; q) = kaJ ′(a)

[
3 − 2 cos(qxa)

− cos

(
qxa

2

)
cos

(√
3qya

2

)]
, (37)

and

M(−k1; kex + q) = −kaJ ′(a)

[
3 − 2 cos(qxa)

− cos

(
qxa

2

)
cos

(√
3qya

2

)]

− 2k2a2J ′(a)

[
sin(qxa) + 1

4
sin

(
qxa

2

)

× cos

(√
3qya

2

)]
. (38)

Here, the condition ka � 1 is taken into account in the last
expression.

V. NUMERICAL RESULTS

Ultrasound dispersion is defined by Eq. (21) and yields
the sound wave vector k with given frequency and mag-
netic moment. This expression includes the real part of the
self-energy given by Eq. (35), which relates k with parame-
ters of the magnetic subsystem, or more precisely, the field
dependence of k is governed by the field variation of the
magnetization.

To trace the connection, the relation (21) can be recast in
the equivalent form

1

γ

(
ω2

e

k2
− v2

0

)
= I (η), (39)

where γ = [2aJ ′(a)]2/(mh̄ωe) is the effective constant of
spin-phonon interaction, and v0 = ω1(k)/k is the zeroth-order
ultrasound velocity. Below we consider γ as a fitting parame-
ter of the theory.

The integral

I (η) = −S2 Vcell

(2π )3
−
∫

BZ
dq

[nB(εkex+q) − nB(εq)]

1 − η
[

sin(qxa) + sin
( qxa

2

)
cos

(√
3qya
2

)]
{

3 − 2 cos(qxa) − cos

(
qxa

2

)
cos

(√
3qya

2

)}

×
{[

3 − 2 cos(qxa) − cos

(
qxa

2

)
cos

(√
3qya

2

)]
+ 2ka

[
sin(qxa) + 1

4
sin

(
qxa

2

)
cos

(√
3qya

2

)]}
(40)

with η = 4SJ (a)ka/h̄ωe depends on spin degrees of freedom.
The solution of Eq. (39) can be found graphically in the

vicinity of the low-spin–high-spin crossover as indicated in
Fig. 3. As seen from this plot, a propagating sound wave may
split into three channels in this range of the magnetic fields,
if the strength of the magnon-phonon coupling γ is strong
enough.

The same conclusion is drawn from the calculated curve
of the ultrasound wave vector k presented in Fig. 4. Appar-
ently, the curve varies continuously with the magnetic field,
however, the k(H ) dependence becomes three-valued in the
vicinity of the low-spin–high-spin crossover, when γ is in-
creased (see insets in Fig. 4). Given the frequency ωe, the
plot determines the inverse ultrasound velocity v as a function
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FIG. 3. Numerical evaluation of our result (39), where the
left/right-hand side is shown by black/red curves, respectively, at
(a) H = 47.67 T ; (b) H = 48.49 T ; (c) H = 48.86 T . The black solid
line corresponds to the strong magnon-phonon coupling (γ /π3 =
1.5 × 107 m2 s−2), while the dotted line does to the weak cou-
pling regime (γ /π 3 = 1.0 × 104 m2 s−2). The ultrasound frequency
ωe/2π = 2.6 × 107 Hz, and the velocity v0 = 3886 m/s (or k0 =
ωe/v0 = 42.039 × 103 m−1). The exchange coupling J (a)/kB =
0.625 K.

of H . Consequently, one may expect a smooth decrease of v

with increasing H below the crossover, followed by a sharp
growth in the transition region, then succeeded by a drop of
velocity to values less than they were at low H . It must be
emphasized that this behavior of ultrasound velocity is due
to dynamical magnon-phonon scattering process. However,
static coupling of strain deformations with electronic degrees
of freedom, which is highly sensible to the low-spin–high-spin
crossover, may result in a strong effect on elastic constants and
take precedence in sound velocity changes.

As the crossover field is reached, ultrasound attenuation
illustrated in Fig. 5 exhibits a sharp growth then suc-
ceeded by monotonic decreasing. Significantly, enhancement
of magnon-phonon coupling provides additional channels for
ultrasound propagation in the crossover region.

FIG. 4. Wave vector of the ultrasound mode propagating along
the [100] axis measured in k0 units as a function of the magnetic field
directed along the [001] axis. The cases of (a) strong γ /π3 = 8.00 ×
106 m2 s−2 and (b) weak γ /π 3 = 8.68 × 104 m2 s−2 magnon-phonon
interaction are shown. The k(H ) behavior near the low-spin-high-
spin crossover is zoomed in insets, where three branches are marked
by 1 (red solid), 2 (black dashed) and 3 (blue solid). The exchange
coupling J (a) = 0.6095 kB, the wave vector k0 = 42.039 × 103 m−1.

A drastic modification of the ultrasound propagation in the
ferromagnetic specimen in the increasing magnetic field is
directly linked to a change in the nature of magnon-phonon
scattering process due to the low-spin-high-spin transition.
This variation is stipulated by the field dependence of the
phonon self-energy, which may be traced with the aid of
Eqs. (17) and (40).

The key parameter is η, which determines whether

ret(k1, ωe) contains a singularity or not. This divergency
arises from the poles of the polarization bubble for which
εkex+q = εq + h̄ωe. From the expression (40) it is readily seen
that there is the threshold value

ηcrit = 32

(3 + √
33)

√
30 + 2

√
33

≈ 0.568, (41)

below which the off-resonant magnon-phonon interaction
results in the anharmonic correction to the sound phonon
dispersion relation [53] ω2

e = v2
0k2 + �k4, where the positive
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FIG. 5. Attenuation coefficient α with respect to the magnetic
field for the ultrasonic wave propagating along the [100] axis. The
regimes of the strong (a) γ /π 3 = 8.00 × 106 m2 s−2 and (b) the
weak γ /π 3 = 8.68 × 104 m2 s−2 magnon-phonon interaction are
presented. The other parameters are the same as in Fig. 4. (a) In-
set: attenuation becomes multivalued near the low-spin–high-spin
crossover with three branches: 1 (red solid), 2 (black dashed) and
3 (blue solid). (b) Inset: attenuation remains a smooth, single-valued
function in the crossover region.

parameter is introduced

� ≈ γ (4Sa)2

(
J (a)S

kBT

)
Vcell

(2π )3
−
∫

BZ
dq

sin2
( qxa

2

)
4 sinh2

( εq

2kBT

)
×

[
A1(q⊥)A2(q⊥)A3(q⊥) + J (a)S

h̄ωe
A2

1(q⊥)A2
3(q⊥)

]
(42)

with

A1(q⊥) = 3 − 2 cos(qxa) − cos

(
qxa

2

)
cos

(√
3qya

2

)
,

A2(q⊥) = cos

(
qxa

2

)
+ 1

8
cos

(√
3qya

2

)
,

A3(q⊥) = 2 cos

(
qxa

2

)
+ cos

(√
3qya

2

)
.

Above the threshold value, η = 4SJ (a)ka/h̄ωe > ηcrit,
the resonant mechanism becomes relevant, when scattered
magnons directly gain energy due to phonon energy losses.
For fixed values of ultrasound frequency ωe, the spin moment
S is the only parameter which can be effectively controlled by
the applied field, as long as the sound wave vector k is not

significantly changed. This explains the dramatic increase of
ultrasound attenuation as the field approaches the crossover
point.

The behavior of the wave vector k with increasing H is also
governed by the field dependence of the phonon self-energy.
When H is less than the crossover field it affects 
ret(k1, ωe)
mostly through the thermal population of magnon states. As a
consequence, contribution of the magnon-phonon interaction
to the phonon dispersion relation turns out to be appreciably
suppressed, which is manifested through the tendency k/k0 →
1 as the field increases. However, the situation is drastically
altered in the crossover region, when the phonon self-energy
depends crucially on the spin value, namely, 
ret(k1, ωe)
starts to grow linearly with S that leads to the noticeable dip in
the wave vector curve around the crossover point (see Fig. 3).

The attenuation coefficient determined from measurements
is defined as the weighted average of α(k, ω) distributed gen-
erally continuously over the allowed k vectors. The spectral
density function

B(ks, ω) = −2ImDret(ks, ω) (43)

provides the proper probability weighting between the mo-
mentum and the energy of phonons.

Given the ultrasound frequency ωe, the averaged attenua-
tion coefficient can be determined from

ᾱs(ωe) =
∫

dkB(ks, ωe)αs(k, ωe)∫
dkB(ks, ωe)

. (44)

In our case, the sound wave may propagate through the
specimen in a finite number of channels Nr specified by
Eqs. (21) and (22). The spectral density of the channel with
the wave vector κr and attenuation αr is found to be

B(κr, ωe) = 2

αr (ωe)[∂ω1/∂k]k=κr

≈ 2

αr (ωe)v0
. (45)

Then, the weighted average of attenuation is given by

ᾱ(ωe) =
∑

r B(κr, ωe)αr (ωe)∑
r B(κr, ωe)

≈ Nr∑
r[αr (ωe)]−1

. (46)

The function ᾱ(ωe) is plotted against the magnetic field in
Fig. 6. Note that it features finite jumps at 48.4 and 48.6 T, i.e.,
at the beginning and at the end of the ultrasound multichannel
regime. An experimental observation of these singularities
may give a direct detection of phonon energy absorption by
the spin system through several channels in the vicinity of the
low-spin–high-spin crossover.

The field dependences of k and ᾱ measured at various
temperatures are presented in Fig. 7. At low temperatures
excitation of magnons is dominated by their occupation
number, which can be neglected, and we are dealing with
nearly free propagation of phonons without scattering process.
When temperature is increased even further, this tendency
is counterbalanced by the rapid increase in magnetization
due to the low-spin–high-spin crossover. This makes the
magnon-phonon interaction effectively stronger and the in-
elastic magnon-phonon processes come into play, what is
manifested in the results for T = 80 K. At sufficiently high
temperature, an even more interesting situation occurs, when
magnetization reaches saturation at fields beyond the high-
est field achieved in the experiment (∼60 T) [12]. As seen

054417-8



THEORY OF ULTRASOUND PROPAGATION IN … PHYSICAL REVIEW B 106, 054417 (2022)

FIG. 6. The field dependence of the averaged ultrasound atten-
uation for the strong magnon-phonon coupling γ /π3 = 8.00 ×
106 m2 s−2 (the other parameters are the same as in Fig. 4). One can
clearly see discontinuous jumps (dotted lines) when the transitions
between single-channel and multi-channel regimes of phonon energy
absorption occurs.

in Fig. 7(a), the multichannel regime of the propagation of
phonons becomes extended over a broader field range, so there
is no chance for return to a single sound wave regime for
the fields in question. As a result, the shift of the peak in ᾱ

could be misinterpreted as a fall of ultrasound attenuation with
increasing T [see data in Fig. 7(b) for 180 K]. The averaging
procedure results in the effect like that of in a parallel resistor

FIG. 7. Field evolution of (a) the ultrasound wave vector and
(b) the averaged ultrasound attenuation at different temperatures:
T = 2 K (red line), T = 80 K (blue line), and T = 160 K (purple
line). The parameters are taken as in Fig. 6.

FIG. 8. The parameter of anharmonicity plotted against magnetic
field at different temperatures: T = 2 K (red line), T = 80 K (blue
line), and T = 160 K (purple line). The curves are calculated below
the point, where the multichannel regime appears. The parameters
are taken as in Fig. 6.

circuit, namely, the averaged attenuation of a sample is deter-
mined by a channel with the smallest attenuation.

Finally, the field dependence of the anharmonicity param-
eter is given in Fig. 8. Apart from low temperatures, when
magnon excitations are suppressed, � initially demonstrates a
smooth decrease with increasing H , followed by a growth as
a threshold to the multichannel regime of ultrasound propaga-
tion is approached.

VI. CONCLUSIONS

In summary, we discuss the possibility of experimental
observation of the anomalous ultrasonic attenuation in the
ferromagnet LuCo3 near the low-spin–high-spin crossover
triggered by the external high magnetic field. This crossover
is not accompanied by the breaking of some symmetry and
the character of spin excitations is left unchanged. Moreover,
the completely different frequency ranges of the ultrasound
and spin waves, MHz rather than THz, exclude any hybridiza-
tion between them altogether. Despite the circumstances, we
argue that ultrasound propagation may cause transitions be-
tween states of the magnon band associated with absorption
of phonons. In our theory, we demonstrate that probability of
the process is particularly sensitive to the value of magnetiza-
tion, and as such, the external magnetic field acts as a switch
between the off-resonant and resonant modes of ultrasound
propagation.

Our analysis considers the experimental situation relevant
for LuCo3, which may result in enhanced ultrasonic atten-
uation and dramatic modification of the phonon dispersion
relation, when the excited acoustic wave propagates per-
pendicularly to the easy magnetization direction. To model
the magnetic part of interactions, LuCo3 is regarded as a
hard ferromagnetic material, where easy-axis anisotropy is
highly strong. Coupling between lattice vibrations and spin
moments is discussed in the framework of the exchange stric-
tion mechanism. The low-order perturbative treatment of the
magnon-phonon interaction based on the diagram technique
gives the self-energy corrections to the ultrasonic dispersion
relation and attenuation. The criterion for the threshold of
resonant phonon absorption, determined from a singularity
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of the self-energy, highlights clearly a decisive role of the
magnetization value.

Numerical solution of the equations specifying the field
and temperature dependences of the ultrasonic wave num-
ber and attenuation show no changes in these quantities at
low temperatures since magnetic fluctuations are drastically
suppressed. However, such modifications become visible with
increasing temperature and reflect different character of ultra-
sound propagation before and after the jump of magnetization.
For the low-spin state, the magnon-phonon interaction gives
rise to anharmonic corrections to the phonon dispersion re-
lation, a modest increase in the ultrasonic wave number (or,
equivalently, a decrease in velocity) and no attenuation. The
high-spin state is characterized by pronounced scattering pro-
cesses between magnons and phonons leading to a significant
nonzero attenuation and to a slight reduction of ultrasonic
velocity. We found that the most interesting effect occurs
within the crossover region, when three independent channels
of ultrasound propagation open in a certain magnetic field. A
real experiment, however, will probe ultrasonic characteristics
averaged over these channels with the aid of the phonon spec-
tral density function.

Thus, in our approach anomalies of ultrasound attenuation
and velocity variations arise from the interaction of acous-
tic phonons with thermally excited magnons that makes this
mechanism effective at intermediate temperatures. On the
other hand, ultrasound propagation may cause a rearrange-
ment of the density of the Co 3d states near the Fermi level,
which will be accompanied by noticeable fluctuations of a
magnitude of the spin moment like those involved to de-
scribe ultrasound absorption near magnetic phase transitions
[33]. Apparently, this mechanism will be relevant for the low
temperature regime. In addition, there is a possibility of a
structural phase transition triggered by the low-spin-high-spin
crossover due to magnetoelastic coupling. Such a transition
will have a deep impact on ultrasound velocity. Future exper-
imental verification based on the pulse-echo phase-sensitive
detection technique [13,18] is planned to get material insight
on the issue.
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APPENDIX: LINEAR RESPONSE

According to linear response theory the displacement of
the ith cell in the α direction caused by a weak external
perturbation with the Hamiltonian H1 reads as

〈uiα〉(t ) = − i

h̄

∫ t

−∞
dt ′〈[uiα (t ),H1(t ′)]〉0, (A1)

where the perturbation describes an external force Fiα (t ) cou-
pled linearly to the lattice displacements

H1(t ) = −
∑

iα

uiαFiα (t ). (A2)

Then

〈uiα〉F (t ) = i

h̄

∑
i′,α′

∫ ∞

−∞
dt ′θ (t − t ′)〈[uiα (t ), ui′α′ (t ′)]〉0Fi′α′ (t ′),

where θ (. . .) is the Heaviside step function.
Using expression (8) for the lattice displacements in terms

of the phonon creation and annihilation operators, one gets

〈uiα〉F (t ) = − h̄

2mN

∑
i′,α′

∑
ks

eik(Ri−Ri′ ) eα (ks)eα′ (ks)

ωs(k)

×
∫ ∞

−∞
dt ′Dret(ks, t − t ′)Fi′α′ (t ′), (A3)

on account of the inversion symmetry, which gives ωs(−k) =
ωs(k) and eα (−ks) = eα (ks). Here, the retarded Green func-
tion for phonons is defined through

Dret(ks, t − t ′) = − i

h̄
θ (t − t ′)〈[Âks(t ), Â−ks(t

′)]〉. (A4)

Introducing its temporal Fourier transform

Dret(ks, t − t ′) =
∫ ∞

−∞

dω

2π
e−iω(t−t ′ )Dret(ks, ω), (A5)

and assuming that a harmonic force Fi′α′ (t ) = Fi′α′e−iωet is
applied, Eq. (18) is recovered from Eq. (A3).
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