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Nonlinear dynamics of the topological helicity wave in a frustrated skyrmion string
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A skyrmion in a frustrated magnetic system has the helicity degree of freedom. A skyrmion string is formed
in a frustrated layered system, which is well described by the XY model owing to the exchange coupling
between adjacent layers. We consider a system where the interlayer exchange couplings are alternating, where
the dimerized XY model is materialized, whose linear limit is the Su-Schrieffer-Heeger model. We argue that it
is a nonlinear topological system. We study the quench dynamics of the helicity wave under the initial condition
that the helicity of the skyrmion in the bottommost layer is rotated. It yields a good signal to detect whether the
system is topological or trivial. Our results show that the helicity dynamics of the skyrmion string have a rich
physics in the modulated exchange-coupled system.
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I. INTRODUCTION

Both topological solitons and topological phases have been
intensively studied in condensed-matter physics. The former
examples are domain walls, vortices, and skyrmions, where
topological numbers are defined in the coordinate space. The
latter examples are topological insulators and superconduc-
tors, where topological numbers are defined in the momentum
space. They are entirely different concepts and so far studied
in different contexts.

Magnetic skyrmions stabilized by the Dzyaloshinskii-
Moriya interaction (DMI) have been studied mainly in
ferromagnets [1–4]. On the other hand, skyrmions in frus-
trated magnetic systems without the DMI are intriguing
objects because they have the helicity degree of freedom when
the magnetic dipole-dipole interaction (DDI) is weak [5–9].
The presence of the DDI leads to the Bloch-type helicity in
a frustrated skyrmion [9,10]. Recently, skyrmion strings have
been attracting much attention [11–13]; they are materialized
in layered magnets or thick magnetic bulks.

In this work, we investigate the helicity dynamics of
a skyrmion string in a layered frustrated magnetic system
without the DMI, where we make the interlayer couplings
alternating. An effective model is described by the XY model
with dimerization. It is an intrinsically nonlinear system.
The linearized limit of the dimerized XY model is the Su-
Schrieffer-Heeger (SSH) model [14,15], which is the simplest
example of topological insulators. Hence, we expect the helic-
ity dynamics of a skyrmion string to share the rich topological
physics with topological insulators.

To analyze the nonlinear dynamics of the helicity wave
along a skyrmion string, we employ the quench dynamics,
where only the helicity at the bottommost magnetic layer
is rotated at the initial time. The nonlinearity is controlled
by the rotation angle. When the rotation angle is small, the
system is approximated by a linear model and reduced to a
kind of dynamical SSH model. We find that the distinction
between the topological and trivial phases remains even in
the nonlinear regime. A finite standing wave is excited in the
topological phase but not in the trivial phase.

This paper is composed as follows. In Sec. II, we review
the helicity degrees of freedom of skyrmions in frustrated
magnetic systems. In Sec. III, we study the dynamics of
the helicity wave based on the linearized theory. In Sec. IV,
we analyze the nonlinear helicity dynamics and find that
the topological and trivial phases are well signatured by the
propagation of the helicity dynamics. In Sec. V, we study
the effect of disorders and show that the helicity dynamics is
robust against disorders. Section VI is devoted to discussion
and conclusions.

II. HELICITY DYNAMICS IN A FRUSTRATED
SKYRMION STRING

A rigid nanoscale skyrmion is a centrosymmetric swirling
spin texture, whose collective coordinates are the skyrmion
center and the helicity η (0 � η < 2π ). The spin texture lo-
cated at the coordinate center is parametrized as

m(r) = (sin θ cos φ, sin θ sin φ, cos θ ), (1)
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FIG. 1. (a) Schematic of a Bloch-type skyrmion. (b) Schematic
of a Néel-type skyrmion. (c) Illustration of a layered frustrated mag-
net. The alternating thicknesses of spacers are assumed to materialize
alternating interlayer exchange couplings. A heavy-metal layer is
underneath the layered frustrated magnet, in which a vertical spin
current could be generated to drive the helicity dynamics of the
skyrmion in the bottommost magnetic layer. (d) Illustration of a 3D
Bloch-type skyrmion string.

with

φ = Qϕ + η + π/2, (2)

where ϕ is the azimuthal angle (0 � ϕ < 2π ) satisfying

x = r cos ϕ, y = r sin ϕ, (3)

with r =
√

x2 + y2, and

Q ≡ − 1

4π

∫
m(r) · [∂xm(r) × ∂ym(r)]d2r (4)

is the topological number counting how many times m(r)
wraps S2 as the coordinate (x, y) spans the whole planar
space. We note that there is a difference from the conventional
definition in Eq. (2) by the angle π/2 because we expand the
helicity around the Bloch state in order to derive the linear
theory, where the Bloch state is the ground state.

Typically, there are two types of skyrmions differentiated
by the helicity η. They are the Bloch-type skyrmion [Fig. 1(a)]
for η = 0 and π , and the Néel-type skyrmion [Fig. 1(b)] for
η = π/2 and 3π/2 in the present convention in Eq. (2), which
is different from the conventional definition by the presence
of the factor π/2. The helicity η is locked in a skyrmion
stabilized by the DMI in such a way that the Bloch-type
[3,4] (Néel-type [16–22]) structure is realized by the bulk
(interface-induced) DMI.

We first discuss a magnetic skyrmion in a frustrated mono-
layer, where the DMI is absent. The skyrmion energy depends
on the helicity η in the presence of the magnetic DDI as [9]

HDDI = −V cos 2η, (5)

where V is the magnitude of the potential satisfying V > 0.
Hence, it weakly favors the Bloch-type order (η = 0 and π ).
In order to justify the precise shape of the energy given by
Eq. (5), we calculated the DDI energy of a static skyrmion
with a fixed helicity in a frustrated monolayer system without
the DMI [9], where the total skyrmion energy include the fer-
romagnetic nearest-neighbor, antiferromagnetic next-nearest-
neighbor, antiferromagnetic next-next-nearest-neighbor, DDI,

-0.5 0.0 0.5 1.0 1.5
1.090×10-20

1.095×10-20

1.100×10-20

1.105×10-20

1.110×10-20

1.115×10-20

DDI energy
Fit of DDI Energy

D
D

Ie
ne

rg
y

(J
)

(π)

= 1.5π = 1.6π = 1.7π = 1.8π = 0.4π= 0.3π= 0.2π= 0.1π= 0.0π= 1.9π

= 1.4π= 1.3π= 1.2π= 1.1π= 1.0π= 0.9π= 0.8π= 0.7π= 0.6π= 0.5π

(a)

(b)

FIG. 2. (a) Simulated dipole-dipole energy of a static frustrated
skyrmion as a function of the helicity η. The skyrmion energy is
calculated by assuming a fixed skyrmion profile with a given he-
licity. The magnetic parameters are as follows: the nearest-neighbor
exchange J1 = 30 meV, next-nearest-neighbor exchange J2 = −0.8
(in units of J1 = 1), next-next-nearest-neighbor exchange J3 = −0.6,
and perpendicular magnetic anisotropy constant K = 0.01. The sim-
ulated model is a square-lattice sample of 31 × 31 spins with the
lattice constant of 0.4 nm. More modeling details are given in
Ref. [9]. Note that we do not apply an external magnetic field to sta-
bilize the frustrated skyrmion since our system has the perpendicular
magnetic anisotropy. (b) Snapshots showing the frustrated skyrmions
with different η. The out-of-plane spin component is color coded:
red is into the plane, blue is out of the plane, white is in-plane. The
in-plane spin directions are indicated by arrows.

and perpendicular magnetic anisotropy interaction energies.
The results are shown in Fig. 2. It can be seen that the
skyrmion energy is well described by a cosine function, i.e.,
Eq. (5). We also note that the metastability phase diagram of
an isolated frustrated skyrmion was reported in Ref. [9], where
the minimum required value of the next-next-nearest-neighbor
exchange interaction for stabilizing a skyrmion decreases
with increasing magnitude of the next-nearest-neighbor ex-
change interaction since both the next-nearest-neighbor and
next-next-nearest-neighbor exchange interactions are anti-
ferromagnetic exchange interactions that compete with the
ferromagnetic nearest-neighbor exchange interaction.

In the present work, we consider a layered structure of
frustrated skyrmions, where all magnetic layers are insulated
by spacers between them, as depicted in Fig. 1(c). We fo-
cus on a skyrmion string in Fig. 1(d), where the dynamical
degrees of freedom are given by the collective coordinates
of each skyrmion. They are the skyrmion center and the
helicity. However, it is possible to pin the center of mass
of a skyrmion by fabricating a sample with an appropriate
artificial pinning pattern. Indeed, this is the case in the case of
ferromagnets [23].
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The static skyrmion string given in Fig. 1(d) is simulated
based on a frustrated multilayer system [24], where we con-
sidered 20 exchange-coupled frustrated layers. The thickness
of each magnetic layer is 0.4 nm. The spacer thickness is al-
ternating (i.e., either 0.4 nm or 0.8 nm), as shown in Fig. 1(c).
The simulation parameters are the same as those used in Fig. 2
and more modeling details are given in Refs. [9,24].

III. HELICITY DEPENDENCE OF A SKYRMION

We note that Eq. (5) can be applied to all ferromagnetic
layers considering the fact that the helicity of skyrmions is
uniform in the thickness direction. Although the interlayer
exchange coupling strengths are alternating, the skyrmion
profile will be uniform in the thickness direction provided
that the interlayer coupling strengths are strong enough to
couple adjacent skyrmions [Fig. 1(d)]. Namely, our system is
a straight skyrmion string, where the magnetic DDI energy is

HDDI = −V
L∑

i=1

cos 2ηi, (6)

where i is the layer index. The interlayer coupling of the
helicity between adjacent layers is described by the XY model,

Hinter = −
L∑

i=1

Ji
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
, (7)

because Sz
i = 0. By inserting Eq. (1) into this equation with

θ = π/2, we obtain

Hinter = −
L∑

i=1

Ji cos (ηi − ηi+1). (8)

The kinetic term is given by [25]

Hkine = m
L∑

i=1

1

2

(
dηi

dt

)2

, (9)

where m is the effective mass of the helicity given by
m = J/v2 with v the velocity of the helicity wave along the
skyrmion string for V = 0.

The total Hamiltonian is given by

H = Hkine + Hinter + HDDI, (10)

from which the equations of motion are derived,

m
d2ηi

dt2
= −[Ji sin (ηi − ηi+1) + Ji−1 sin (ηi − ηi−1)]

− 2V
L∑
i

sin 2ηi. (11)

We may choose the alternating interlayer coupling,

Ji = J (1 + λ(−1)i ), (12)

or Ji = JA for even i and Ji = JB for odd i with

JA = J (1 + λ), JB = J (1 − λ), (13)

where |λ| < 1 and J > 0. The interlayer exchange coupling in
a magnetic multilayer system depends on the thickness of the
spacer due to the Ruderman-Kittel-Kasuya-Yosida (RKKY)

interaction mechanism [26–28]. Thus, the exchange coupling
can be controlled by modulating the thickness of the spacer
between adjacent magnetic layers. In this way, the skyrmion
string is made a dimerized system.

It is convenient to introduce a new variable n so that
i = 2n − 1, 2n with n = 1, 2, . . . , N/2. The equations of mo-
tion read

m
d2η2n−1

dt2
= JA sin (η2n − η2n−1)

+ JB sin (η2n−2 − η2n−1) − 2V sin 2η2n−1,

(14)

m
d2η2n

dt2
= JB sin (η2n+1 − η2n)

+ JA sin (η2n−1 − η2n) − 2V sin 2η2n. (15)

We analyze the system under the initial condition,

ηn(t ) = ξπδn,1,
dηi

dt

∣∣∣∣
t=0

at t = 0, (16)

where ξ is a parameter in the range 0 � ξ � 1. Namely, we
rotate the helicity of the bottommost layer initially, and in-
vestigate how a helicity wave propagates along the skyrmion
string as time evolves.

We note that the helicity of the skyrmion can be con-
trolled by applying the dampinglike spin-orbit torque [9].
The dampinglike spin-orbit torque is directly coupled to the
helicity dynamics of a frustrated skyrmion [6,9]. As shown
in Fig. 1, we assume that the layered frustrated magnet is
placed upon a heavy-metal substrate, which may be fabricated
experimentally in a bottom-up fashion. If we apply a charge
current in the heavy-metal substrate, a vertical spin current
will be generated and injected into the bottommost magnetic
layer due to the spin Hall effect, which only drives the rotation
of the skyrmion helicity in the bottommost magnetic layer.
In addition to the rotation of the helicity, the center of the
skyrmion also rotates [9]. However, as we have already stated,
the center-of-mass motion can be fixed by introducing the
pinning center as in the case of a ferromagnet [23].

IV. LINEAR THEORY

A. SSH model

We first investigate the system where the initial helicity
rotation ξπ is tiny, |ξ | � 1, which we call the linear regime.
Indeed, the equations of motion are linearized and given by

m
d2ηi

dt2
= −[Ji(ηi − ηi+1) + Ji−1(ηi − ηi−1)] − 4V ηi, (17)

since we may assume |ηi − ηi+1| � 1 and |ηi| � 1. They are
summarized as

m
d2ηi

dt2
=

∑
j

HLinear
i j η j, (18)

where

H linear
i j = HSSH

i j − (JA + JB + 4V )δi j, (19)
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FIG. 3. Illustration of a skyrmion string, where blue disks repre-
sent skyrmions, while red and green bonds represent the couplings JA

and JB. (a) The limit λ = −1, where the system is topological. (b) An
intermediate state |λ| < 1, where it is topological or trivial. (c) The
limit λ = 1, where it is trivial.

with

HSSH
i j = JA

L/2∑
p

(δi− j,1δi,2p + δ j−i,1δ j,2p)

+ JB

L/2∑
p

(δi− j,1δ j,2p + δ j−i,1δi,2p). (20)

This is the SSH model. It is expressed as

HSSH(k) =
(

0 JA + JBe−ik

JA + JBeik 0

)
, (21)

in the momentum space.
The SSH model (20) is illustrated in Fig. 3, where blue

disks stand for skyrmions located in the layer i, while red and
blue lines indicate the couplings JA and JB, respectively. There
are two special limits; that is, the system has two isolated
edges at i = 1 and L for λ = −1 as in Fig. 3(a), while all of
the states are dimerized for λ = 1 as in Fig. 3(c).

B. Topological number

The SSH Hamiltonian HSSH describes a topological insu-
lator. The topological number is the Zak phase defined in the
momentum space by

� = 1

2π

∫ 2π

0
A(k)dk, (22)

where A(k) = −i〈ψ (k)|∂k|ψ (k)〉 is the Berry connection with
ψ (k) the eigenfunction of HSSH(k). It is also the topological
number of the model H linear because the diagonal term in
Eq. (19) does not contribute to it. We obtain � = 1 for λ < 0
and � = 0 for λ > 0. Hence, the linear system is topological
for λ < 0 and trivial for λ > 0.

The topological structure of the SSH Hamiltonian HSSH

becomes manifest in terms of the energy spectrum in the
coordinate space as a function of λ. It is shown in Fig. 4(a),
where topological edge states are clearly observed at zero
energy as marked in red for −1 � λ < 0. There are two de-
generate eigenfunctions ψb and ψ t localized at the bottom
edge (n = 1) and the top edge (n = L) of the skyrmion string.
They correspond to the two isolated disks in Fig. 3(a).

We show |ψb|2 + |ψ t|2 in Fig. 4(b). It has sharp peaks
at the edges n = 1 and L for −1 � λ < 0, but none for
0 � λ < 1. The exception occurs at λ = 1, where there are
peaks at n = 1, 2, L − 1, and L. They correspond to the two
dimers at the edges in Fig. 3(c), which we discuss later;
see Sec. V A. The eigenfunction  ≡ |ψb|2 + |ψ t|2 is plot-
ted in Fig. 4(c), demonstrating the topological and trivial
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FIG. 4. (a) The energy spectrum of the SSH model as a function
of λ. Topological edge states are marked in red, while the bulk states
are marked in cyan. The vertical axis is energy in units of J . (b) The
spatial profile of the edge states |ψb|2 + |ψ t|2 as a function of λ.
(c) |ψb|2 + |ψ t|2 as a function of λ. Red disk at λ = 1 shows the
peak amplitude owing to the dimer state. We have used a finite chain
with length L = 50.

phases,  = 2 at λ = −1, and it decreases monotonically
and becomes  = 0 for 0 < λ < 1. Furthermore, it suddenly
becomes  = 1 at λ = 1 owing to the formation of the dimer
state.

C. Helicity wave

We consider the homogeneous system with λ = 0, where
the equations of motion are simply given by

m
d2ηi

dt2
= J

∑
i

[ηi+1 + ηi−1 − 2ηi] − 4V ηi. (23)

The continuum limit reads

m
d2η

dt2
= J

∂2η

∂x2
− 4V η, (24)

which is the wave equation. By inserting the linear wave
ansatz

η = exp [i(kx − ωt )] (25)

into Eq. (24), we obtain the dispersion of the helicity wave as

ω =
√

Jk2 + 4V

m
, (26)

which is gapped for nonzero V .

V. NONLINEAR THEORY

We proceed to analyze the system where the initial helicity
rotation ξπ is not tiny, which we call the nonlinear regime.

A. Dimer system

We have noticed the emergence of an isolated point at
λ = 1 in the energy spectrum of the linear theory as in
Fig. 4(c). We explore the physics of this point at λ = 1, where
the system is perfectly dimerized as in Fig. 3(c). We set
V = 0 in order to obtain analytic solution. In this case, the
equations of motion are simply given by

mη1 = −J sin (η1 − η2), (27)

mη2 = −J sin (η2 − η1), (28)
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FIG. 5. Time evolution of sin φi for 0 � t � 50. (a1), (a2), (c1),
and (c2) Topological phase with λ = −0.5. (b1), (b2), (d1), and (d2)
Trivial with λ = 0.5. (a1), (a2), (b1), and (b2) ξ = 0.1. (c1), (c2),
(d1), and (d2) ξ = 0.5. We have set m = 1, J = 1, and V = 0.1. We
have used a finite chain with length L = 50.

which are equivalent to

m(η1 + η2) = 0, (29)

m(η1 − η2) = −2J sin (η1 − η2). (30)

The solution is given by

η1(t ) = −η2 + c3 = am

[√
(4J + c1)(t + c2)2

2
,

8J

4J + c1

]
,

(31)

where c1 c2, and c3 are determined from the initial condition,
or by solving η1(0) = ξπ , and “am” represents the Jacobi
amplitude function. This solution indicates that there is an
oscillation in the two layers at the bottom edge at λ = 1, and
hence we call it a dimer state. Numerical analysis shows the
emergence of the dimer state also at λ �= 1, forming a dimer
phase in the nonlinear regime, as we will discuss.

B. Quench dynamics of a helicity wave

We analyze the quench dynamics of the system under the
initial condition (16) numerically for −1 � λ � 1 and for 0 �
ξ � 1. The time evolution of sin ηi is shown in Fig. 5. There is

a finite stationary oscillation at the site i = 1 in the topological
phase as shown in Fig. 5(a2), but this is not the case in the
trivial phase as shown in Fig. 5(b2). This feature holds also
for the case with ξ = 0.5 as shown in Figs. 5(c2) and 5(d2).

Figure 5 indicates that the amplitude after long enough
time is a good signal to detect whether the system is topologi-
cal or trivial. To detect it quantitatively, we define an indicator
with the use of the maximum value of sin |η1| as

�(λ, ξ ) = max
0.9T <t<T

[sin |η1|], (32)

taking large enough T so that the time evolution of η1 be-
comes stationary. We show �(λ, ξ ) for −1 � λ � 1 by taking
typical values of ξ in Fig. 6. In the weak nonlinear regime,
� is finite in the topological phase while it is almost zero in
the trivial phase, as shown in Fig. 6(a). As the increase of the
nonlinearity (ξ → 1), the finite region of � is expanded in
the vicinity of λ = 1, forming the dimer phase, as shown in
Figs. 6(b)–6(d).

There is only a slight difference in the indicator � for
various V in the topological phase as shown in Fig. 6. On the
other hand, the peak value of � is identical between λ = 1
and λ = −1 due to the energy conservation.

C. Phase diagram

The indicator � is shown in the λ-ξ plane in Fig. 7. We
find three phases: the topological, trivial, and dimer phases. In
the isolated limit λ = −1, � = sin ξπ for ξ � 1/2 and � = 1
for 1/2 � ξ � 1. The topological distinction is hard to see for
ξ � 0 because sin ξπ is very small. However, there is a clear
distinction between the topological and trivial phase as shown
in Fig. 6(a). The phase boundary between the topological and
trivial phase is always λ = 0 even in the nonlinear regime. On
the other hand, the dimer phase emerges in the trivial phase
when the nonlinearity exists. The region of the dimer phase
consists of a point at ξ = 0 but occupies a quite large area for
ξ � 1/2.

A comment is in order with respect to the color difference
between Figs. 7(a) and 7(c) especially in the vicinities of
λ = 0 and ξ = 0 in the topological phase. We have used the
color palette (b) to make (a), where the excitation of the helic-
ity wave is very small in these region although they belong to
the topological phase. This is clearly seen in Fig. 6.

VI. DISORDER EFFECTS

We next analyze the effect of the randomness in the
exchange interaction. It is naturally introduced by the ran-
domness in the thickness of the spacer layers. We introduce
randomness by JA → JA(1 + ζ ) and JB → JB(1 + ζ ), where
ζ is a uniformly distributed random real number satisfying
|ζ | < R.

We show the phase indicator for various randomness R in
Fig. 8. The effect of the randomness is small for the topolog-
ical and dimer phases. On the other hand, the trivial phase
is largely affected. Namely, the propagation of the helicity
wave is suppressed by the presence of the disorder. In order
to observe a sharp topological phase transition, we need to
use a sample with R < 0.1.
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FIG. 6. Phase indicator � as a function of the dimerization λ. (a) ξ = 0.1, (b) ξ = 0.25, (c) ξ = 0.5, and (d) ξ = 0.75. Black curves
indicate V = 0, magenta curves indicate V = 0.1, and cyan curves indicate V = 0.2. We have set m = 1, J = 1, L = 50, and T = 100.

A comment is in order with respect to the uniformly
distributed random real number for simulations. We have em-
ployed it because the requirement that the quality is R in the
quality management means that the deviation is smaller than
R at most. For example, if R = 0.1, there should be no sample
exceeding R = 0.1. It is naturally described by the uniformly
distributed random number. On the contrary, in the case of the
normal distributed random number, there is a possibility that
the deviation exceeds R even if its probability is very small,
which is unacceptable in the quality management.

In experiments, the interlayer exchange interaction is sub-
ject to the thicknesses of both the magnetic layer and the
nonmagnetic spacer according to the RKKY-type exchange
interaction mechanism. For example, the RKKY coupling
field (i.e., the interlayer exchange coupling) was measured
as functions of the thicknesses of Ru, Co, and Pt layers for
synthetic antiferromagnetic Pt/Co/Ru multilayers [29]. The
10% deviation of the exchange interaction corresponds to the
thickness deviation of the Ru layer, which is about 0.015 nm.

VII. DISCUSSION AND CONCLUSION

In this work, we have explored the nonlinear helicity dy-
namics of a skyrmion string in a layered frustrated magnet,
where the interlayer coupling is alternating. The topological
physics of the SSH model well survives although the govern-
ing equation is a nonlinear model. Our results show that an
introduction of the interlayer degree of freedom may give us
a rich physics in the dynamics of a skyrmion string.

To analyze the nonlinear topological dynamics, we em-
ployed the method of the quench dynamics under the initial
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FIG. 7. Phase indicator � in the λ-ξ plane. (a) Bird’s eye view
together with the color palette indicating the amplitude. We have
set V = 0.2, m = 1, J = 1, L = 50, and T = 100. (b) Schematic
illustration of the phase diagram.

condition with only the edge site being excited to differentiate
the topological and trivial phases [30–32]. The method has
been already applied to nonlinear systems including photonic
[33–36], mechanical [32,37,38], and electric circuit [30,39]
systems. The present work shows that it is also applicable to
magnetic systems.

There are some reports on topological phases in magnetic
systems with low-energy magnon excitations [40–44]. Spin-
wave dynamics has been studied in dimerized spin-torque
oscillator arrays by using the Holstein-Primakoff transforma-
tion [45]. It simulates the SSH model in magnetic systems,
where the bonding is dimerized. The SSH model is a typical
model of a topological insulator. Nonlinear dynamics of the
non-Hermitian SSH model has also been studied in the same
system [46].

We note that we only focused on the skyrmion string
dynamics at zero temperature in this work. The effect of
temperature on a skyrmion string could be very complicated.
In theory, the stability and the lifetime of a skyrmion string
depend on the temperature. The thermal effect may result in
the collapse of a skyrmion string. Besides, a skyrmion will
show the Brownian motion at finite temperatures [47]. It is
expected that a skyrmion string will also show the Brownian
motion at finite temperatures, where the skyrmion string dif-
fusion increases with increasing temperature. These dynamic
effects induced by temperature will complicate the helicity
dynamics of a skyrmion string.

On the other hand, we point out that our simulation result
given in Fig. 1(d) suggests that the two-dimensional skyrmion
profiles do not shift with respect to each other in the thickness
dimension. The reason could be that the size of the frustrated
skyrmion is so small that the DDI does not induce the inhomo-
geneity in the skyrmion structure in the thickness dimension.
However, one should note that a skyrmion string made of
larger ferromagnetic skyrmions or skyrmion bubbles in chiral
magnets may show a wiggling structure along the z direction
[48–51], which is not significant in our system.

It is worth mentioning that the propagation dynamics of
spin excitations along skyrmion strings have been directly
evaluated in a recent experimental report [52], which is re-
alized by measuring the magnetic contribution to the complex
spectra of self-inductance and mutual inductance for coplanar
waveguides. Also, the dynamics of a 3D skyrmion string
can be experimentally imaged by using a scalar magnetic
x-ray tomography measurement system [50]. In principle,
these experimental techniques can be employed to observe
and measure the helicity wave excitation of a skyrmion string.
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FIG. 8. Disorder effects of the phase indicator � as a function of the dimerization λ. (a) ξ = 0.1, (b) ξ = 0.25, (c) ξ = 0.5, and (d) ξ =
0.75. Cyan curves indicate R = 0, magenta curves indicate R = 0.1, magenta curves indicate R = 0.2, orange curves indicate R = 0.3, and
green curves indicate R = 0.4. We have set m = 1, J = 1, V = 0.2, L = 50, and T = 100.

It would be interesting if we could use a skyrmion string as
an information transmission channel, where the information
is carried by the helicity wave.
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