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Dzyaloshinskii-Moriya interaction induced magnetoelectric coupling in a tetrahedral molecular
spin-frustrated system
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We have investigated magnetoelectric (ME) coupling in the single-molecule magnet Mn4Te4(PEt3)4 with
tetrahedral spin frustration. Our density functional studies found that an electric dipole moment can emerge with
various noncollinear spin orderings. The forms of spin-dependent dipole are determined and consistent with that
in noncentrosymmetric magnets driven by the Dzyaloshinskii-Moriya interaction. Writing a parameterized spin
Hamiltonian, after solving for eigenvalues and eigenstates, we quantified the ME coupling by calculating the
thermal average of the electric and magnetic susceptibilities, which can be influenced by external magnetic and
electric fields, respectively. The quadratic relations are expected to be observable in experiments.

DOI: 10.1103/PhysRevB.106.054412

I. INTRODUCTION

Considerable interest has been focused recently in the lit-
erature [1–6] on the search for multifunctional materials that
couple magnetic and electric states through magnetoelectric
(ME) interactions. Interest is not only for the fundamental
science but also for the possible generation of electric-
field-driven devices and their inherent low power dissipation
compared with magnetically driven state changes found in
conventional memory and related storage systems. In the
search for ME materials, it is important to note that ME effects
accompany both time-reversal and spatial inversion symmetry
breaking. For example, the lattice-mediated ME effect usually
happens when controllable ferroelectric properties without
centrosymmetry coexist with a structure-sensitive spin state
or spin ordering when time-reversal symmetry is broken. The
distortion of the lattice influences both electric polarization
and magnetization. In addition to conventional crystalline
solids, such ME effects based on ionic displacement have been
confirmed in molecule-based magnetic materials with lower
Young’s modulus [7–11].

Another origin of ME effect is the noncollinear magnetism
characterized by the Dzyaloshinskii-Moriya (DM) interaction
[12,13] in noncentrosymmetric magnets. In this theory, the po-
larization is described by êi j × (Si × S j ), where ji j = Si × S j

is the so-called spin supercurrent for two spins Si and S j ,
and êi j is the unit vector connecting the two spins [1,14,15].
The mechanism of the DM-induced ME effect is confirmed in
some spiral magnetic systems such as rare-earth manganite
TbMnO3 and DyMnO3 [16]. Although experiments found
nonstructural induced ME effects in some polynuclear molec-
ular nanomagnets [17,18], DM-induced ME effect studies in
molecular magnets remain largely underinvestigated. Special
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quantum features of the quantum spin states in molecular
magnets that differentiate these systems from other crystalline
materials can provide ME couplings with potential applica-
tions in quantum information science.

When we consider the symmetry of a molecular magnet,
tetrahedral symmetry with point group T (chiral tetrahedral
symmetry) is a rare example in which the absence of spatial
inversion symmetry alone does not bring about a net polariza-
tion. Furthermore, an antiferromagnetic exchange interaction
in a tetrahedral geometry can lead to frustrated spins, where
the ground spin state can be uncertain and easily be altered
by external fields. A representative multiferric crystal system
with tetrahedral structure is Cu2OSeO3 which hosts magneti-
cally induced polarization in the ferrimagnetic, helimagnetic,
and skyrmion crystal phases [19–23] because of DM inter-
action. In contrast to the distorted Cu4 tetrahedron that does
not respect tetrahedral spin frustration, the Mn4Te4(PEt3)4

molecule where the magnetic center Mn4 forms an equilateral
tetrahedron in this paper is a magnetically frustrated unit. The
crystalline phase of Mn4Te4(PEt3)4 shown in Fig. 1 has a
body-centered-cubic lattice, and the space group is I23(197)
with point group T , so that both the global symmetry and local
chemical environment respect a perfect tetrahedral symmetry.

In this paper, we have investigated both the magnetic
properties and the electric polarization for various spin states
of Mn4Te4(PEt3)4 based on density functional calculations.
We confirmed the DM-induced ME effect in the molecular
magnets. After solving the eigenvalues and eigenstates of
the parameterized spin Hamiltonian, we quantified the ME
coupling by calculating the thermal average of the electric
susceptibility, which can be influenced by external magnetic
field. The rest of the paper is organized as follows: In Sec. II,
we describe the computational details; in Sec. III, we present
results from density functional theory (DFT) calculation and
the model Hamiltonian; and finally, in Sec. IV, we conclude
our investigation.
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FIG. 1. (a) The crystalline phase of Mn4Te4(PEt3)4. Purple: Mn,
dark yellow: Te, pink: P. (b) The Dzyaloshinskii-Moriya (DM) vector
D12 of Mn1 and Mn2 composed of two DM vectors D12−1 and D12−2

perpendicular to two Mn-Te-Mn exchange paths, respectively. The
apex angle in the isosceles triangle composed of D12−1, D12−2, and
D12 is also shown. (c) The DM vectors between each two Mn and
(d) the axes of magnetic anisotropy of each Mn in Mn4Te4(PEt3)4.

II. COMPUTATIONAL METHODS

Our DFT-based calculations are performed with projec-
tor augmented wave pseudopotentials [24,25] implemented
in the Vienna Ab initio Simulation Package (VASP) [26,27].
The generalized gradient approximation in the Perdew, Burke,
and Ernzerhof (PBE) formation [28] is used as the exchange-
correlation energy, and the Hubbard U method (U = 4.0 eV,
J = 0.9 eV) with density only and a spin-independent double
counting scheme [29] is applied on Mn(3d) orbitals to include
strong-correlation effects. An energy cutoff of 600 eV is used
for the plane-wave expansion throughout the calculations. The
DFT-D3 method [30] with inclusion of van der Waals correc-
tion is employed. For noncollinear spin orderings, spin-orbit
couplings (SOCs) are included. The polarization vectors were
obtained by the evaluation of the Berry phase expressions
[31,32].

We use a body-centered cubic lattice with experimental
lattice constant 13.174 Å [33] including one Mn4Te4(PEt3)4

molecule for all calculations. The positions of each atom were
optimized without SOC in all-up spin configurations until the
atomic forces on each atom were <1.0 meV/Å. The K-points
were sampled on a 7 × 7 × 7�-centered mesh in the Brillouin
zone.

III. RESULTS

A. Density functional results

DFT results showed that the local magnetic spin moment
on each Mn is 4.27μB in a collinear spin configuration, where

FIG. 2. Without spin-orbit coupling: (a) the total density of
states of Mn4Te4(PEt3)4 in the two-up-two-down spin configuration.
(b) The projected density of states (PDOS) for Mn(3d) orbitals.
Positive and negative values refer to spin-majority and spin-minority
channels, respectively. The Fermi energy is set to zero.

two of four Mn spins are up and other two are down, without
SOC. As shown in Fig. 2(a), the total density of states (DOS)
has a gap ∼1.5 eV, indicating an insulating nature. The corre-
sponding projected DOS (PDOS) results [see Fig. 2(b)] show
that all Mn(3d) components in the spin-majority channel are
fully occupied, while almost all Mn(3d) components in the
spin-minority are above the Fermi energy. Thus, each Mn ion
has five spin-up electrons half filling the d orbitals, following
Hund’s rule, and in Mn4Te4(PEt3)4, each Mn displays a +2
valence state and S = 5

2 high spin state.
Because of the absence of inversion symmetry, the ex-

change interaction between two local magnetic spins on Mn
includes an off-diagonal contribution, the DM interaction
[12,13]. Because the SOC energy of Te is about one order
of magnitude larger than that of Mn, the strength of the DM
interaction is not negligible and is highly influenced by the
SOC of the two Te atoms linking two neighbor Mn atoms.
The direction of the DM interaction driven by each Mn-Te-Mn
superexchange path is perpendicular to the Mn-Te-Mn plane
according to Moriya’s rule [13]. The net direction of the two
paths is therefore perpendicular to the Mn-Mn connection and
parallel to the Te-Te connection [see Fig. 1(b)]. The spin-spin
Hamiltonian that properly includes this interaction for the four
S = 5

2 spins on Mn2+ ions with tetrahedral symmetry is given
by

H0 =
∑

〈i, j〉
[J Si · S j + Di j · (Si × S j )] − Ku

∑

i

(Mi · Si )
2,

(1)
where J is the Heisenberg interaction and Di j = D D̂i j is
the DM vector with the direction D̂i j for two local spins
on neighboring Mn sites i and j [see Fig. 1(c)]. Here, Ku

is the magnitude of the magnetic anisotropy (note that Ku

is often denoted as D in the molecular magnet literature),
and Mi is a unit vector which represents the direction of the
magnetic anisotropy on Mn site i. Because of the tetrahedral
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FIG. 3. Twelve noncollinear spin configurations, labeled SO1–
SO12, used for total energy calculations and electric dipole
calculations. Brown and blue arrows correspond to the directions of
the total magnetization and the electric dipole moment for each spin
configuration, respectively.

symmetry, Mi is directed from Mn site i to the body center of
the tetrahedron [see Fig. 1(d)].

Based on the Hamiltonian, we investigate the magnetic
properties of Mn4Te4(PEt3)4 by calculating total energies for
two collinear spin configurations along the [111] direction
of the cubic crystalline lattice, all-up and two-up-two-down,
and 12 noncollinear spin configurations, labeled SO1–
SO12, including six zero-magnetization configurations and
six nonzero-magnetization configurations, shown in Fig. 3.
The relative total energies are listed in Table I. We trans-
fer spin configurations into quantum spin states and obtain
the parameters (J , D, Ku, etc.) through an overdetermined
system of linear equations (see Appendix for details). We
obtained two solutions based on two set of configurations: J =
14.02 meV, D = −0.44 meV, and Ku = 0.26 meV, labeled as
Sol1, is determined from the equations containing all 14
spin configurations. Also, J = 14.21 meV, D = −0.51 meV,
and Ku = 0.31 meV, labeled as Sol2, is determined from
the equations containing the 12 noncollinear spin configura-
tions.

The residuals labeled as Res1 and Res2 for the configura-
tions using Sol1 and Sol2, respectively, are shown in Table I.
For Sol1, the two collinear configurations dominate the

TABLE I. The relative total energies, the residuals of the so-
lutions (Res1 and Res2 corresponding to Sol1 and Sol2), and the
magnitude of the dipole moment for each spin configuration. SO1–
SO12 correspond to the noncollinear spin configurations shown in
Fig. 3. CO-uudd and CO-uuuu correspond to two collinear configu-
rations along the [111] direction of the cubic crystalline lattice, all-up
and two-up-two-down, respectively.

E ( meV) Res1 ( meV) Res2 ( meV) P (eÅ)

SO1 0.00 2.56 0.78 0.000
SO2 −20.80 3.48 −1.69 0.000
SO3 −17.32 4.98 0.65 0.000
SO4 −24.27 3.54 −1.02 0.000
SO5 −9.17 5.21 1.11 0.000
SO6 −17.3 4.98 0.65 0.000
SO7 275.94 −3.34 −2.62 0.012
SO8 265.13 2.50 2.37 0.019
SO9 208.24 −0.58 −0.95 0.058
SO10 276.83 −0.80 −0.70 0.000
SO11 265.13 2.50 2.37 0.019
SO12 208.24 −0.58 −0.95 0.058
CO-uudd 12.11 −24.46 — 0.000
CO-uuuu 946.43 −118.82 — 0.000

residuals, especially the all-up one. However, the solution
works well for the noncollinear configurations which we focus
on. The large deviation of the energy for CO-uuuu is due to
its highest energy, which is far above others. Its electronic
properties such as orbital energies are different from other
configurations, and a simple spin model is not enough to
describe such behavior. With the two collinear configurations
excluded, the Sol2 residuals for the 12 noncollinear spin con-
figurations generally decrease significantly. The mean square
of the 12 noncollinear residuals for Sol1 is 3.32 meV, and
the dispersion about the average of 2.03 meV (biased by the
large contribution of the collinear terms) is 2.61 meV, while
the dispersion of the Sol2 residuals (average value zero) is
1.50 meV.

Both solutions provide positive J , negative D, and positive
Ku. Positive J indicates antiferromagnetic coupling. Negative
D indicates the handedness of the spiral coupling, so that
the DM interaction favors the coplaner (SO2 or SO4, etc.)
instead of the all-in/all-out (SO1) spin configuration. Positive
Ku means that each Mi of site i is an easy axis. The Sol2
solution is chosen in the following discussions. The electric
dipole moments are calculated for each spin configuration.
According to the results shown in Table. I, both collinear
spin configurations and all six noncollinear configurations
with zero magnetization have zero dipole moments. Among
noncollinear configurations from SO7 to SO12, SO7 has a
nonzero electric dipole moment 0.012 eÅ along the [100]
direction, the same as the direction of its net magnetization.
Spin configurations SO8 and SO11, with the same magneti-
zation along the [100] direction, provide an electric dipole of
the same magnitude 0.019 eÅ and opposite orientations along
the [101] direction. Both SO9 and SO12 retain a threefold
rotation axis along the [111] direction with nonzero magneti-
zation and dipole moment 0.058 eÅ along the same direction.
Configuration SO10 has a zero electric dipole moment. All
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dipole moments are plotted in Fig. 3. Note that the atomic
positions as well as the lattice are fixed, so that the calculated
dipole moments are purely from charge density displacement
driven by noncollinear spin ordering. The dipole moments
are not changed significantly when the atomic positions are
relaxed in their spin configurations, so that the results are
robust.

The spin-dependent electric dipole moments do not change
magnitude or sign when all spins are reversed, indicating that
the dipole is a function of even order in spins. SO11 is the
spin configuration where spins on Mn1 and Mn2, Mn3 and
Mn4 are exchanged from SO8, reversing the direction of the
dipole moment. Furthermore, SO9 and SO12, with opposite
spin chiralities, result in the same dipole moment, so the
dipole moment is not relevant to chiral spin textures. Based
on the dipole moment results from DFT and analysis based
on symmetry properties, we obtain the spin-dependent electric
dipole moment as a function of spins as

P = α
∑

〈i, j〉
êi j × (Si × S j ), (2)

where êi j is the direction from site i to j. The magnitude of
the coefficient α is ∼0.005–0.035 eÅ in Mn4Te4(PEt3)4 based
on different spin configurations with nonzero spin-dependent
electric dipole moments. Here, we demonstrate that, even at
the single molecular scale, the DM-induced electric dipoles
are still valid.

We also investigated the magnetic and dielectric proper-
ties under hydraulic external strain by modulating the lattice
constant by ±1% in length. The corresponding applied pres-
sure is ∼1.39 kilobar (0.139 GPa) which is a large value for
molecular systems. The atomic positions are relaxed under
all-up spin configurations without SOC and the total energies
relative to SO1; the dipole moments of SO12 are obtained
under SOC. As a result, the changes of Mn-Mn connections
are ±0.02 Å, and the changes of Mn-Te-Mn bond angles
are ±0.3◦. The changes of dipole moments are ∓0.003 eÅ
(∼ ∓ 6%), and the changes of total energies relative to SO1
are ∓6.38 meV<∓1%). All responses show almost the same
magnitude and opposite sign under the same magnitude and
opposite sign of the applied strain. Therefore, no significant
response is identified. This indicates that the magnetic (J ,
D, Ku, etc.) and dielectric properties here are insensitive to
hydraulic strain.

B. Quantum spin model

Once the spin-dependent electric dipole moment is deter-
mined, the Hamiltonian for the response to external magnetic
field and electric field is given by

H = H0 − B ·
∑

i

Si − E · P, (3)

where E is the electric field, P is the spin-driven polarization,
and B = gμBμ0H is proportional to the magnetic field H. The
electric field is coupled with spins since the electric dipole
moment is a function of spin as in Eq. (2), with α = 0.035 eÅ

FIG. 4. Without external magnetic and electric fields, the eigen-
values (energies) and the expectation value of 〈S2〉 of the first 100
eigenstates. The energy of the ground state is set to zero. Insert:
The expectation value of the dipole moment for the first 51
eigenstates.

chosen. We diagonalized the Hamiltonian matrix for various
B and E and obtained the total 64 = 1296 eigenvalues and
eigenstates. The corresponding quantum spin states and the
expectation values of polarization are also obtained.

The eigenvalues and the expectation value of 〈S2〉 of the
first 100 eigenstates under zero magnetic and electric field are
shown in Fig. 4. Note that, because of the DM interaction
in the Hamiltonian, the total spin S of the molecule is not a
good quantum number, and the expectation value of 〈S2〉 is not
precisely S(S + 1) for each eigenstate. However, since D � J
in Mn4Te4(PEt3)4, the integer spin quantum number can still
be used to label the spin states. The first six eigenstates with
the lowest energies have 〈S2〉 close to zero, so that these states
correspond to a S = 0 quantum spin state. The next 45 states,
which are ∼10 meV higher than the S = 0 states, have 〈S2〉
near 2, corresponding to a S = 1 state. The final 49 eigenstates
are ∼40 meV higher than S = 0 states and have 〈S2〉 near 6,
corresponding to a S = 2 state. Considering that the energy
scale of external fields is several millielectronvolts, we focus
on S = 0 and 1 states.

The results of expectation values of polarization for S = 0
and 1 states are shown in the insert of Fig. 4. All six of the
S = 0 states have zero dipole moments. Some S = 1 states
have a nonzero polarization, but the magnitude of the dipole
moment is much smaller than the nonzero dipole obtained
from DFT calculations. It is because, according to the DFT
results, the spin configurations with nonzero dipole such as
SO9 and SO12 have nonzero total magnetization and are
>200 meV higher in energy than the spin configurations with
zero magnetization. Therefore, the quantum spin states S = 1,
the superposition of classical spin configurations, are dom-
inated by zero magnetization configurations and only have
very small nonzero dipole moments.

Based on the eigenvalues, eigenstates, and the correspond-
ing expectation values of spins and dipoles of the quantum
spin model, we obtained thermal properties of that system.
The corresponding partition function Z , thermal average of
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FIG. 5. The electric susceptibility as a function of temperature
with various magnetic fields. The red dashed rectangle in the insert
panel shows the region expanded in the main panel. The direction
of electric susceptibility is perpendicular to the direction of the
magnetic field [along the c axis in Fig. 1(a)].

magnetization m̄, and dipole P̄ at finite temperature β =
1/kBT are given by

Z (E, B, β ) =
∑

i

exp(−βεi ), (4)

m̄(E, B, β ) = gμB

Z

∑

i

〈S〉 exp(−βεi ), (5)

P̄(E, B, β ) = 1

Z

∑

i

〈P〉 exp(−βεi ), (6)

where the summation is over all eigenvalues {εi}. Then the
corresponding electric susceptibility χe which depends on
magnetic fields is given by

χe(E, B, β ) = ∂P̄(B, E)

∂E
. (7)

Similarly, the magnetic susceptibility χm influenced by elec-
tric fields is given by

χm(E, B, β ) = ∂m̄(B, E)

∂B
. (8)

The temperature-dependent results for χe and χm are shown in
Figs. 5 and 6, respectively. In the inserts for both χe and χm,
dashed contours identify the region of nonzero ME response,
where χe can be affected by magnetic fields, and χm is mod-
ulated by the electric fields, though the magnitude of the ME
coupling is very small.

All the electric susceptibility curves have a local minimum
at T ∼ 3 K and a local maximum at T ∼ 25 K. Meanwhile,
all the magnetic susceptibility curves have a local maximum
at about T ∼ 3 K and a local minimum at T ∼ 25 K. Since the
energy of ∼2.2 meV corresponding to 25 K is much smaller
than the energy gap between S = 0 and 1 states, the thermal
average of χe and χm <25 K is determined by only the first
six S = 0 states. For each eigenstate i, the contribution to

FIG. 6. The magnetic susceptibility as a function of temperature
with various electric fields. The red dashed rectangle in the insert
panel shows the region expanded in the main panel. The direction
of magnetic susceptibility is perpendicular to the direction of the
electric fields [along the b axis in Fig. 1(a)].

χm is proportional to the fluctuation of spins 〈S2〉 − 〈S〉2, and
〈S〉 = 0 when B = 0, so that χ (i)

m ∝ 〈S2〉. Therefore, at finite
temperature, χm ∝ ∑

i〈S2〉 exp(−βεi ). The 〈S2〉 values of the
first six eigenstates are 0.251, 0.251, 0.269, 0.166, 0.166, and
0.158 from low to high eigenvalues, respectively. The third
eigenstate, with the highest 〈S2〉 among the six S = 0 states,
is only 0.09 meV (1.04 K) higher than the doubly degenerate
ground states. This leads to the small peak of χm at T ∼ 3 K.
On the other hand, the three higher eigenstates with a gap
∼1.18 meV (13.7 K) above the ground states have lower 〈S2〉
than the three lower eigenstates. This leads to the small valley
in χm at T ∼ 25 K. Then above T ∼ 50 K, a rise in χm appears
as temperature increases. This is because, as temperature in-
creases, more S = 1 states contribute to an increase in 〈S2〉.
Note that the antiferromagnetic character is robust for all
temperature regions up to 300 K, so that χm does not follow
the paramagnetic behavior χm ∝ 1/T .

To further investigate the ME coupling, we obtained the
change of χe as a function of B and the change of χm as a func-
tion of E , shown in Fig. 7. The fitted dotted lines show a robust
quadratic relation, so that χe ∼ B2 and χm ∼ E2. Since the
ME coupling originates from the dipole moment term, which
involves the cross-product of two spins, the quadratic relation
is the leading order, with the zero linear term according to
linear response theory. Further, the quadratic relations mean
that the inversion of magnetic/electric fields leaves invariant
χe/χm. It is also consistent with the DFT result that flipping
spins leaves the total dipole moment invariant.

The magnitude of the ME coupling from the quantum
spin model is much smaller than that found from the DFT
calculations. The reason is the quantum spin in a finite system.
In contrast to frustrated systems in solids where magnetic
spins are regarded as classical spin vectors, spins of frustrated
systems in molecular magnets often exhibit their quantum
nature. In solids, spin vectors can rotate continuously with
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FIG. 7. At 2 and 5 K, (a) the change of electric susceptibility
as a function of magnetic field B and (b) the change of magnetic
susceptibility as a function of electric field E . Solid diamonds are the
data, and dashed lines are the results of quadratic fitting.

external fields since the system is gapless. In a quantum spin
system, there is a gap between different quantum spin states,
and the magnitude of the gap is positively correlated with the
magnitude of the exchange interaction, DM interaction, and
magnetic anisotropy. Once the energy of the external field is
much smaller than the gap, the response is limited.

C. Implication for experimental measurements

Figure 7(b) shows the predicted change in spin suscepti-
bility for experimentally accessible E fields. The fractional
change in magnetic susceptibility at 2 K for E = 0.10 V/Å (or
1 MV/m) is

�χm(E )

χm(0)
≈ 3 × 10−6. (9)

Although the change is very small, it is within the range of
modern high sensitivity techniques for measuring radiofre-
quency susceptibility [34]. For typical experimental applied
field strengths of order of 3 × 105 V m−1, the fractional
change in the magnetic susceptibility is �χm(E )/χm(0) ≈
2 × 10−7 which is comparable with experimental capabilities
of the order of 1 × 10−7 in the relevant temperature range.

It is also significant that the dependence of the change in
magnetic susceptibility on electric field strength is quadratic,
as shown in Fig. 7. The absence of a linear electric effect is
due to the lack of large strain dependence. The ME effect
is caused by a superexchange interaction via Mn-Te-Mn or
symmetric striction. Because of the quadratic dependence on
field strength, experiments should be designed for the highest
possible values of E within limitations imposed by electrical
breakdowns of sample cell materials and thermal bonding
agents used for the samples.

One should note that the coefficient α in Eq. (2) is a
spin-dependent scalar in terms of the studies of Katsusa
et al. [14,15]. The current treatment of a constant α is just a

simplified estimation. Furthermore, αE is the independent
variable in the numerical simulations. It means that, to ap-
proach the same response, one requires a smaller electric field
with the larger α and vice versa. Electric field E has a linear
relation and a quadratic relation with χe and χm, respectively,
so that it is straightforward to obtain that, with α = 0.005eÅ,
the lower limit we obtained, the responses of χe − B and
χm − E are 1

7 and 1
49 of that with α = 0.035eÅ, respectively.

IV. CONCLUSIONS

In summary, we first investigated the magnetic properties
of the crystalline phase of Mn4Te4(PEt3)4 based on first-
principles calculations. Each Mn has a S = 5

2 high spin state.
The antiferromagnetic coupling leading to frustrated spins
and the noncollinear DM interaction as well as the magnetic
anisotropy was identified and quantized. A nonzero electric
dipole moment was obtained in noncollinear spin configura-
tions based on Berry phase calculations. The magnitude of the
dipole moment follows the formula ∼êi j × (Si × S j ), so that
the electric dipole is coupled with a noncollinear magnetic
moment, and we thus found the DM-induced ME effect in
the single molecular scale. After parameterizing the spin-spin
Hamiltonian, we studied the quantum spin model based on
the eigenvalues and eigenstates found by the direct diagonal-
ization of the Hamiltonian. The magnetic susceptibility χm is
changed by the electric field E , and the electric susceptibility
χe is changed by the magnetic field B, though the change
is small. Further studies showed quadratic relations between
both χm and E , and χe and B, respectively. Such a ME effect
is expected to be observable in experiments.
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APPENDIX: PARAMETERS OBTAINED FROM TOTAL
ENERGY BASED ON DFT FOR A QUANTUM SPIN

HAMILTONIAN

For a spin configuration α, each local magnetic spin i
on a magnetic atom has a normalized classical spin vector
ei = (eix, eiy, eiz ) and spin quantum number si. Diagonalizing
the spin matrix ei · Si, where Si is the matrix of the spin
operator in terms of si, we obtain the quantum spin state for
this spin in the basis of |siz〉 and the eigenvector |αi〉 with the
eigenvalue +si. The quantum spin state containing n spins
for this spin configuration is |α〉 = |α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αn〉,
where ⊗ is the outer product. The total energy based on spin
configuration α is

Eα = E0 + 〈α|H0|α〉, (A1)
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where

〈α|H0|α〉 = J
∑

〈i, j〉
〈α|Si · S j |α〉

+ D
∑

〈i, j〉
〈α|D̂i j · (Si × S j )

∣∣ α〉

− Ku

∑

i

〈α|(Mi · Si )
2|α〉, (A2)

and E0 is the spin-irrelevant energy. According to a sugges-
tion by Ruiz et al. [35,36], when the spin-broken symmetric
antiferromagnetic spin ordering includes overlapped occupied
molecular orbitals, a correction of 1 + min(Si, S j )/2SiS j is
included for obtaining the expectation values of the exchange
interaction terms.

We obtain the (linear) parameters J , D, and Ks by a least
squares minimization of the sum of differences between Eαi

and the total energy (the relative total energy) of that con-
figuration obtained from DFT calculations. Assume there are
N such configurations so that α = α1, α2, . . . , αN . By writing
E0 = EDFT0 + δ, where EDFT0 is the lowest energy from DFT
calculations (note that δ is a small quantity), we have N spin
configurations which give rise to N differences:

Eα1 − EDFT0 = 〈α1|H0|α1〉 + δ,

Eα2 − EDFT0 = 〈α2|H0|α2〉 + δ,

· · ·
EαN − EDFT0 = 〈αN |H0|αN 〉 + δ. (A3)

The number of configurations N is chosen to be larger than the
number of parameters (E0, J , D, Ku, and δ) to be determined,
an overdetermined system. Then the parameters J , D, and Ku

are the least squares minimization of Eq. (A3). The residuals
for each spin configuration are also obtained based on the
solution.
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