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Origin of noncollinear magnetization coupling across RuX layers
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We present a simple atomistic model for the description of noncollinear coupling in magnetic multilayers with
hybrid spacer layers made of Ru alloyed to ferromagnetic atoms such as Fe. In contrast to previous analytical
and micromagnetic models that explain the noncollinear coupling by means of lateral fluctuations in the coupling
constant, the presented model accounts for atom-atom coupling in all three spatial dimensions within the spacer
layer. The model is able to accurately predict the dependence of the macroscopic bilinear and biquadratic
coupling constants on the spacer-layer composition and thickness, showing much better quantitative agreement
than lateral-fluctuation models. Moreover, it predicts that the noncollinear coupling is virtually independent of
the exchange stiffness in the ferromagnetic layers, which goes beyond the predictions of previous models. This
prediction is validated by experimental measurements.

DOI: 10.1103/PhysRevB.106.054401

I. INTRODUCTION

Magnetic multilayers build the backbone of many spin-
tronics applications, such as magnetoresistive sensors [1,2],
magnetoresistive random access memory (MRAM) [3–7], or
spin-torque nano-oscillators [8–10]. The coupling between
the magnetic layers plays a crucial role in controlling the
functionality of multilayer devices. In this regard, an impor-
tant effect is the Ruderman-Kittel-Kasuya-Yosida (RKKY)
coupling [11], which introduces an exchange coupling be-
tween two magnetic layers separated by a nonmagnetic layer,
typically made of Ru. Depending on the thickness of the
nonmagnetic spacer layer, the RKKY coupling between the
magnetic layers is either of a parallel or antiparallel nature
and hence collinear. While a collinear coupling mechanism
is useful, e.g., for the construction of synthetic antiferromag-
nets, a tunable control of the coupling angle would introduce
numerous advantages for the design of spintronic devices.

Considering a typical spin-transfer torque MRAM device,
as depicted in Fig. 1(a), the collinear alignment of the distinct
magnetic layers introduces serious drawbacks to the writing
process. Namely, the spin torque generated by a reference
layer on a perfectly collinear free layer vanishes for the equi-
librium configuration. In this case, the switching of the free
layer is facilitated by thermal activation. By breaking the
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collinearity between the reference layer and the free layer,
this restriction is overcome, allowing for a reliable switching
process with low power consumption.

A possible method to avoid collinearity in spin-torque de-
vices is the tilting of the reference layer anisotropy [12,13].
Alternative strategies for noncollinear spin polarization in-
clude the use of two reference layers, one being in-plane
and the other being out-of-plane [14,15], or the combi-
nation of an out-of-plane spin-polarization layer with an
in-plane free layer [16,17]. In addition to the enhancement of
MRAM performance, noncollinear magnetic multilayers have
already been proven to be beneficial for spin-torque oscillators
[18–20] and are likely to play a crucial role for designing a
variety of future spintronic devices. Recently, a novel mech-
anism for the noncollinear coupling in magnetic multilayers
was experimentally demonstrated [21], and it was shown that
spacer layers made of RuFe alloys are able to generate a
strong noncollinear coupling between two Co layers. The
angle of this coupling can be precisely controlled by adjusting
the ratio of the RuFe composition in the spacer layer. This
introduces a very powerful tool for the development of novel
spintronic devices. Figure 1(b) depicts an MRAM structure
with noncollinear alignment between the free and reference
layers, which is achieved by using a reference layer that con-
sists of two noncollinearly coupled magnetic layers. Such a
reference system would allow for a tilted spin polarization in
the free layer and hence lower the critical switching current
[12]. Other implications such as magnetization oscillations
due to spin-torque effects within the noncollinear reference
system might introduce further implications for the device
optimization.

This paper is organized as follows. In Sec. II we pro-
vide an overview of the effect of noncollinear coupling and
the concept of bilinear and biquadratic coupling constants.
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FIG. 1. Simplified perpendicular MRAM stack with magnetic
free layer mfree and magnetic reference layer mref. When applying
a perpendicular current, J, the reference layer polarizes the itiner-
ant electrons, resulting in a spin torque exerted on the free-layer
magnetization. (a) Conventional collinear MRAM. (b) MRAM with
noncollinear reference system for improved writing.

Furthermore, we discuss the shortcomings of existing mod-
eling approaches in order to motivate the development of the
presented model. In Sec. III we introduce an atomistic model
to explain the origin of noncollinear coupling, and in Sec. IV
we explain how we use numerical simulation to solve the
presented model. In Sec. V we present simulation results for
various systems, and we compare them to experimental data
from our previous publication [21]. In Sec. VI we validate the
predictions made by our model with experimental measure-
ments. The conclusion is given in Sec. VII.

II. NONCOLLINEAR COUPLING

In [21], we developed a simple micromagnetic model based
on a fluctuation mechanism introduced in [22] that divides the
spacer layer laterally into regions of ferromagnetic coupling
and antiferromagnetic coupling. In this model, the coupling
energy across the RuFe spacer layer is given by the interface
integral

E =
∫

�

−A(x) m1(x) · m2(x)ds, (1)

with � being the interface between the magnetic layers, m1

and m2 being the respective magnetization configurations in
these layers, and A being the spatially varying coupling con-
stant. If the spatial fluctuations in A are on a lengthscale
Lfluc that is small compared to the exchange length Lex of the
ferromagnetic layers, Lfluc � Lex, the effective coupling of the
magnetization in the ferromagnetic layers m1 and m2 amounts
to the average coupling constant Ā, resulting in an areal energy
density

ε = −Ā m1 · m2 (2)

and collinear coupling of the ferromagnetic layers. If Lfluc is
large compared to Lex, the ferromagnetic layers will couple
region by region, leading to a domain pattern defined by the
distribution of ferromagnetically (A > 0) and antiferromag-
netically (A < 0) coupled regions. However, if Lfluc ≈ Lex,
the fluctuations in the coupling constant are able to generate
slight inhomogeneities in the ferromagnetic layers without
generating domains. In this case, the magnetization in the
ferromagnetic layers can be assumed to be approximately
homogeneous, and the coupling of the ferromagnetic layers

FIG. 2. Atomistic model of ferromagnetic multilayer structure,
with the alloy spacer layer containing ferromagnetic (X/Y) as well
as Ru atoms in a cubic lattice.

can be described by adding an additional biquadratic term to
the coupling energy,

ε = −A1m1 · m2 − A2(m1 · m2)2. (3)

The values of A1 and A2 depend on various system parameters
such as the exchange constant of the ferromagnetic layers
and the exact distribution of the coupling strength A(x). For
negative A2 and |A1| < |2A2|, noncollinear coupling of the
ferromagnetic layers becomes energetically stable. To theoret-
ically determine the macroscopic coupling constants A1 and
A2, a microscopic model that resolves the inner structure of
the spacer layer is required. While the micromagnetic model
based on lateral fluctuations in A(x) has been shown to pro-
vide a possible explanation for the noncollinear coupling in
Co/RuFe/Co multilayers [21], it fails to accurately describe
all experimentally observed effects of the coupling mediated
by RuFe layers. For instance, the A1 as predicted by the micro-
magnetic model exhibits a linear dependence on the fraction
of Ru content in the spacer layer, while the experiment shows
saturation for high Ru content [21]. This leads to unrealisti-
cally high values of A1 when fitting the model parameters to
reproduce the experimentally observed A2. Moreover, the mi-
cromagnetic model has a low predictivity for the dependence
of A1 and A2 on the spacer-layer thickness since it requires
the thickness-dependent antiferromagnetic coupling constant
as an input.

III. MODEL

To overcome the weaknesses of the micromagnetic model,
we employ a simple atomistic model that considers pair cou-
pling of neighboring ferromagnetic atoms as well as indirect
coupling of ferromagnetic atoms across Ru atoms. For the
sake of simplicity, we assume a cubic lattice where each
atomic site is either populated by a ferromagnetic atom X/Y
or a Ru atom; see Fig. 2. For neighboring ferromagnetic atoms
in the principal directions of the cubic lattice, we employ the
classical Heisenberg model

H = −JS1 · S2, (4)

with J being the coupling constant and S1 and S2 being unit
vectors that represent the coupled spins. To account for the
influence of the Ru atoms in the spacer layer, we assume that
the ferromagnetic atoms are also coupled when separated by
one or more Ru atoms in one of the three principal directions
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TABLE I. Exemplary couplings of ferromagnetic atoms depend-
ing on neighboring Ru atoms. The couplings are generalized up to
arbitrary distances and applied along all three principal axes.

of the lattice; see Table I. The Hamiltonian of our atomistic
model is completed by the Zeeman energy and a uniaxial
anisotropy that accounts for both crystalline as well as shape
anisotropy, resulting in

H = −
∑
i, j

Jk(i, j)Si · S j −
∑

i

μ0μiH · Si + Ka3(Si · ek )2,

(5)
with Jk(i, j) being the coupling constant according to Table I,
μi being the magnetic moment of a single atom, K be-
ing the anisotropy constant, and ek being the unit vector
along the uniaxial anisotropy axis. The coupling constants Jk

for the atomistic model can be determined from micromag-
netic constants that can be determined by measurement. The
nearest-neighbor coupling J1 is chosen as J1 = Aexa, with Aex

being the exchange constant and a being the (artificial) cubic
lattice constant in order to reproduce accurate ferromagnetic
behavior in homogeneous layers. The coupling constants Jk

with k > 1 can be chosen according to the areal interlayer ex-
change coupling strength of multilayers with pure Ru spacer
layers, A(d ), with layer thickness d as Jk = A(ka)a2 [23].
By this gauge process, the atomistic model is equivalent to
a micromagnetic model for simple systems such as ferromag-
netic monolayers or ferromagnetic layers separated by pure
Ru layers of arbitrary thickness.

The assumption of a cubic lattice along with the restriction
of couplings along the principal directions remains to be one
of the main simplifications introduced by the presented model
since many ferromagnetic as well as alloyed materials exhibit
more complicated lattice structures [24–26]. The choice of
the cubic lattice constant a applies to all involved materials
and hence always constitutes a compromise. Changes in a
will impact the quantitative results of the model, even if all
involved coupling parameters are scaled accordingly.

IV. SIMULATION

To find stable magnetization configurations for arbitrary
spacer-layer compositions, we minimize (5) with respect
to the spin configuration Si, considering the unit sphere

constraint |Si| = 1. With this minimization procedure, the
equilibrium magnetization configuration and the angle be-
tween the ferromagnetic layers can be obtained. To determine
the macroscopic coupling constants A1 and A2 for a specific
spacer-layer configuration, the equilibrium spin configuration
for various in-plane external fields H is determined for a sym-
metric system with two identical ferromagnetic layers with
an effective easy-plane anisotropy. In this configuration, the
magnetization in the ferromagnetic layers can be considered
symmetric around the field direction. This means that m1 ·
efield = m2 · efield = cos(θ/2), with efield being the direction
of the in-plane external field and θ being the angle between
the macroscopic magnetizations cos(θ ) = m1 · m2. With this
choice of field and anisotropy, the areal energy density of the
system only depends on the angle θ and reads

ε(θ ) = −A1 cos(θ ) − A2 cos2(θ )

− 2dfm[Hμ0Ms cos(θ/2) + K sin2(θ/2)], (6)

with dfm being the thickness of the ferromagnetic films.
The macroscopic coupling constants A1 and A2 can then
be determined from atomistic simulations by fitting simu-
lated values of θ to the equilibrium energy density condition
dε/dθ (H, A1, A2) = 0. The atomistic model is benchmarked
against the experimental findings for the Co/RuFe/Co multi-
layer introduced in [21]. As a lattice constant, we choose a =
0.23 nm throughout the complete system. To accurately ac-
count for the exchange coupling within the ferromagnetic lay-
ers, we compute the Heisenberg exchange constants J1 from
the respective exchange constants Aex as J1 = Aa. Namely, we
use JCo/Co

1 = 6 × 10−21 J and JCo/Fe
1 = JFe/Fe

1 = 4.5 × 10−21 J.
The dipole moments of our model μ are obtained from the
saturation magnetization Ms as μ = Msa3. For the sake of
simplicity, we set μCo = μFe = 2.11μB. To account for the
dipole-dipole interaction, we introduce an effective anisotropy
in the Co layers that accounts for both the crystalline as well
as the shape anisotropy, Keff = Kcryst − μ0M2

s /2 = −7.1 ×
105 J/m3; see [21]. The shape anisotropy is chosen as easy-
plane anisotropy of an infinite plane with a demagnetizing
factor of 1, which is a reasonable choice for the extended
thin films investigated in [21]. For the (antiferromagnetic)
coupling across Ru atoms, we choose JFe/Ru/Fe

k = −1.85 ×
10−40 Jm2/(ka)2, JCo/Ru/Fe

k = −2.38 × 10−40 Jm2/(ka)2, and
JCo/Ru/Co

k = −7.94 × 10−40 Jm2/(ka)2. We consider only cou-
plings across up to four Ru atoms, which justifies the
simplified dependence on the distance ka. While the coupling
mediated by Ru atoms is usually expected to oscillate and
change sign with the distance, a purely antiferromagnetic
coupling with a decay of 1/(ka)2 is in agreement with the
experimental data on Co/Ru/Co multilayers reported in [21]
and has proven to yield good macroscopic results. However,
depending on the exact material system under consideration,
the presented model can easily be adjusted to model an ar-
bitrary dependence of the Ru-mediated coupling from the
distance. The distribution of ferromagnetic (Fe) and nonmag-
netic (Ru) atoms in the spacer layer is randomly generated
according to the respective composition.

To find stable magnetization configurations, we use a
random configuration as an initial value and apply an
adaptive steepest-descent minimizer to the energy functional
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FIG. 3. Equilibrium angle θ and macroscopic coupling constants
A1 and A2 for a Co/RuFe/Co multilayer system for various Fe con-
centrations x in the spacer layer. Simulations for θ were performed
for various spacer-layer thicknesses given in atomic layers nz. Sim-
ulations for A1 and A2 were performed for nz = 3. The dotted lines
mark experimental values for a spacer-layer thickness of d = 0.5 nm;
see [21].

(5). Specifically, we use a pseudotransient method that con-
siders the unit sphere constraint of the spins. For this purpose,
we introduce an effective field

Heff,i = −∂H
∂Si

(7)

and solve the time-dependent differential equation

∂Si

∂t
= −Si × (Si × Heff,i ) (8)

with an adaptive, explicit Runge-Kutta method to find a stable
solution. This procedure is equivalent to a projected steepest-
descent method in the tangential plane of Si [27] and hence is
suitable for the minimization of Si subject to the unit-sphere
constraint. The numerical implementation is done with Py-
Torch [28], enabling fast simulation on graphics processing
units (GPUs).

V. RESULTS

We perform simulations of the Co/RuFe/Co system intro-
duced in [21] in order to compare and validate our model
against the experimental results published therein. Figure 3
shows the simulation results for varying Fe concentrations in
the spacer layer. The simulated system has a lateral size of
40 × 40 spins and layer thicknesses of 10 atomic layers for
each of the two Co layers. This system size turned out to be
sufficient to average out the influence of the random distri-
bution of atoms in the spacer layer to a negligible level. We
calculate the equilibrium coupling angle of the Co layers for
various Fe concentrations and thicknesses of the spacer RuFe
layer, and we compare to experimental findings for a 0.5 nm
spacer layer, which equals two to three atomistic layers in our

FIG. 4. Bilinear and biquadratic coupling constants A1 and A2

in Co/Ru30Fe70/Co multilayer depending on the thickness of the
spacer layer as measured in [21] (dotted lines) and simulated with
the atomistic model (solid lines).

simplified model; see Fig. 3, top panel. The simulated results
show a good agreement, specifically with respect to the slope
of angle that describes a smooth transition from antiferromag-
netic to ferromagnetic coupling around a Fe concentration
of 0.7. For a larger spacer-layer thickness of four atomic
layers, the simulated equilibrium angle θ exhibits a notable
dip around x = 0.4 that is not seen in experiment. We attribute
this deviation to the simplifications of our model, such as the
assumption of a cubic lattice. Furthermore, we compute the
macroscopic coupling constants A1 and A2 for various Fe con-
centrations for a fixed spacer-layer thickness of three atomic
layers; see Fig. 3, bottom panel. While the simulations in this
case fail to accurately reproduce the experimental values in a
quantitative fashion, they perfectly reproduce notable trends
seen in experiment. Namely, the bilinear coupling constant
A1 saturates for low Fe concentrations, and the biquadratic
coupling constant A2 decreases slightly in the significant cou-
pling region around x = 0.7. We use the same simulation
procedure to calculate the thickness dependence of A1 and
A2 on the spacer-layer thickness for a fixed Fe concentration
of x = 0.7, which marks exactly the center of the transition
between antiferromagnetic and ferromagnetic coupling, see
Fig. 4. As for previous simulation results, the presented model
fails to quantitatively match the experimental measurements,
but it shows an excellent agreement concerning the trends.
For intermediate to high spacer-layer thicknesses d , both A1

and A2 are negative with asymptotically decreasing magnitude
and A1 < A2. At d ≈ 0.5 nm, both simulation and experiment
exhibit a dip in the bilinear coupling constant A1 and a cross-
ing of A1 and A2, which constitutes a great agreement. To
compute the magnetic moment of the spacer layer depending
on spacer-layer thickness and Fe concentration, the system is
relaxed to an energetic minimum at zero external field. We
compute the averaged moment of the spacer layer in relative
units of the Fe saturation magnetization by summing up the
normalized spins of all ferromagnetic atoms in the spacer
layer Nmag, and we divide by the total number of atoms in
the spacer layer Nall,

〈m〉 = N−1
all

∑
i∈Nmag

si. (9)
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FIG. 5. Relative saturation of spacer-layer magnetization (1
means full Fe saturation) depending on Fe concentration and spacer
layer thickness. Solid lines represent simulation results with layer
thicknesses given in number of atomic layers nz, and dotted lines
represent experimental data [21] with layer thicknesses d .

Instead of a linear behavior 〈m〉 ∝ x that would be expected
for uncoupled Fe atoms, the magnetic moment of the spacer
layer almost vanishes for x < 0.5 and shows steep ascent
around the critical Fe concentration 0.7, which reproduces
the experimental findings, see Fig. 5. As for the experimen-
tal measurements, the simulations show a steeper transition
for larger spacer-layer thicknesses. To understand the highly
nonlinear dependence of the spacer-layer magnetization from
the Fe concentration, the spin configuration is investigated in
detail. Figure 6(a) depicts the equilibrium configuration for a
multilayer with a spacer-layer thickness of five atomic layers.
As indicated by the streamlines, the spacer-layer magneti-
zation exhibits a nontrivial magnetization configuration with
multiple vortexlike structures. This misalignment of spins
in the spacer layer explains the asymptotic behavior of the
net magnetization for high-layer thicknesses. The magnetic
vortices are obviously caused by the complicated interplay
of couplings between the ferromagnetic atoms within the
spacer layer, including ferromagnetic and antiferromagnetic
couplings.

Note that the spacer-layer spins at the interfaces to the
magnetic layers are almost homogeneous. The tilting of the
bottom and top magnetic layers seems to be caused by a com-
plex transition of the magnetic spins within the spacer layer.
This kind of coupling mechanism is fundamentally different
from the micromagnetic model proposed by Slonczewski and
used in our former work. In the micromagnetic model, the
ferromagnetic regions of the spacer layer are basically as-
sumed to be rigid, and the noncollinearity is merely a result
of the alternating ferromagnetic and antiferromagnetic cou-
pling that results in slight fluctuations in the magnetization
configuration of the ferromagnetic layers [21]. Hence, the sta-
bility of noncollinear states as described by the Slonczewski
model is highly dependent on the exchange constant of the
ferromagnetic layers A and vanishes for infinite stiffness since
A2 ∝ 1/Aex. The proposed atomistic model, however, enables
noncollinear coupling even for infinitely stiff ferromagnetic
layers, since the noncollinearity evolves within the spacer
layer itself, as shown in Fig. 6. To investigate the influence of
the exchange constant, we compute the equilibrium angle of

FIG. 6. (a) Noncollinear magnetization configuration of a mag-
netic multilayer with rigid ferromagnetic layers and a spacer-layer
thickness of five atomic layers. (b) Simulated equilibrium magneti-
zation angle for various Fe concentrations for ferromagnetic layers
with realistic exchange coupling (exchange) compared to infinitely
stiff ferromagnetic layers (rigid) for a spacer-layer thickness of two
atomic layers. (c) Bilinear and biquadratic coupling constants A1

and A2 in a Co/RuFeCo/Co multilayer depending on the exchange
stiffness Aex in the ferromagnetic layers.

the magnetization for a realistic exchange stiffness within the
ferromagnetic layers, and we compare the result with a similar
three-layer structure having infinitely stiff ferromagnetic lay-
ers. The results shown in Fig. 6(b) demonstrate the negligible
influence of the exchange stiffness of the ferromagnetic layers
on the simulation outcome.

VI. EXPERIMENTS

To check the independence of the noncollinear cou-
pling from the exchange stiffness of the ferromagnetic
Co layers, we perform additional experiments. Namely,
we perform measurements on a Co/RuFeCo/Co multi-
layer where we artificially reduce the exchange stiffness
in the Co layers by doping. For this purpose, we fab-
ricate Ta(3.5)/Ru(3.5)/Co100−xRux(5.2)/Co(0.8)/Ru33.4(Fe50

Co50)66.5/Co(0.8)/Co100−xRux(5.2)Ru3.5 multilayers, where
the values in parentheses denote the respective layer thick-
nesses in nm and x denotes the Ru concentration in the
CoRu layers. The magnetic layers in the deposited structure
consist of a thick Co100−xRux layer and a thin Co interface
layer. The role of the Co interface layer is to ensure that
the coupling between the magnetic layers (Co100−xRux/Co)
across the RuFeCo spacer layer is not affected by the Ru
concentration in Co100−xRux [29]. The exchange stiffness of
the Co100−xRux/Co magnetic layer is modified by varying
the Ru concentration in the thick Co100−xRux layer. Eyrich
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et al. showed that adding Ru to Co can sharply decrease the
exchange stiffness of Co [30]. We deposit multilayers with
radiofrequency magnetron sputtering on (100) Si substrates at
room temperature and an argon pressure below 2 mTorr. The
Ta seed layer is deposited to induce the growth orientations
of the Ru, CoRu, Co, and RuFeCo layers, and the top Ru
film is used to protect magnetic layers from oxidation. For
details regarding the substrate cleaning and film deposition,
see [21]. Figure 6(c) shows the dependence of A1 and A2 on
the exchange stiffness in Co100−xRux/Co magnetic layers. It is
evident that A1 and A2 are independent of Aex, which confirms
the prediction made by our model.

VII. CONCLUSION

In conclusion, we present an atomistic model for the de-
scription of magnetic multilayer structures with spacer layers
made from Ru alloyed to ferromagnetic material. Our model
accounts for the influence of the Ru atoms by means of
additional Heisenberg coupling terms that couple magnetic
atoms separated by Ru atoms in an antiferromagnetic fashion.
We find that the proposed model is able to reproduce the

experimental results to a high level of detail, which is not
accomplished by the micromagnetic model of Slonczewski
that was used in our former publications [21]. Our model is
able to correctly describe trends with respect to the change of
composition and thickness of the spacer layer, and it predicts
noncollinear coupling even for infinitely stiff ferromagnetic
layers. Quantitative deviations can be attributed to simplifica-
tions introduced by the model, e.g., the assumption of a cubic
lattice and the restriction of couplings to the principal direc-
tions of the lattice. The prediction of a noncollinear coupling,
which is largely independent from the exchange stiffness of
the ferromagnetic layers, has been validated experimentally.
This is expected to have tremendous implications on the
future development of spintronic devices with noncollinear
coupling.
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