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Absence of thermalization of free systems coupled to gapped interacting reservoirs
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We study the thermalization of a small XX chain coupled to long, gapped XXZ leads at either side by
observing the relaxation dynamics of the whole system. Using extensive tensor network simulations, we show
that such systems, although not integrable, appear to show either extremely slow thermalization or even lack
thereof since the two cannot be distinguished within the accuracy of our numerics. We show that the persistent
oscillations observed in the spin current in the middle of the XX chain are related to eigenstates of the entire
system located within the gap of the boundary chains. We find from exact diagonalization that some of these
states remain strictly localized within the XX chain and do not hybridize with the rest of the system. The
frequencies of the persistent oscillations determined by numerical simulations of dynamics match the energy
differences between these states exactly. This has important implications for open systems, where the strongly
interacting leads are often assumed to thermalize the central system. Our results suggest that, if we employ
gapped systems for the leads, this assumption does not hold.
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I. INTRODUCTION

Microscopic analysis of quantum transport, especially
nonequilibrium transport across a system, is often carried out
by connecting the boundaries of the system to two or more
reservoirs [1–3]. These reservoirs act as a source or sink of
conserved quantities, e.g., charge, energy, and spin. They are
generally maintained at a fixed bias by keeping them, e.g.,
at different chemical potentials or temperatures or magneti-
zations. The explicit inclusion of such an interface between a
system and a reservoir is essential in understanding the role
of decoherence and dissipation (induced by the reservoir to
the system) in controlling the quantum transport in physical
systems [4–8]. For example, the difference between the Lan-
dauer’s four-probe and two-probe resistance arises from the
contact resistance due to such interfaces [4,5,9]. Apart from
acting as a perfect source or sink, a reservoir should also
thermalize the system to which it is connected. Therefore, it is
crucial to investigate the essential properties of a reservoir to
implement the above-prescribed tasks.

In most theoretical studies, the reservoirs are traditionally
modeled as large (infinite) collections of harmonic oscillators
or noninteracting electrons or spins [7,10–15]. The large-
reservoir-volume limit is taken to ensure very long (practically
infinite) Poincaré recurrence time so that the particle, or
any local packet of a conserved quantity, once transferred
to the reservoir is not fed back to the system. Nevertheless,
these noninteracting models of reservoirs neither thermalize
themselves in strict quantum mechanical sense nor do they
provide any mechanism for mixing or relaxation for the trans-
ported degrees of freedom entering from the system. One
then assumes some thermal statistical ensemble for these

reservoirs from the outset. However, the absence of mixing
in the noninteracting reservoirs creates further issues when
their energy dispersion does not cover all the system’s energy
levels. For example, it has already been demonstrated that
a system is not thermalized by such noninteracting reser-
voirs when one or more energy levels (bound states) of it
lie either outside the reservoir’s energy band or inside the
energy gap of the reservoir spectrum [16–19]. These bound
states are mostly localized within the central system’s Hilbert
space and do not leak out in the reservoir. One can sim-
ply consider the hybrid system as a conductor sandwiched
between insulators, and the energy transport through the
boundary reservoirs (insulators) is blocked leaving the con-
ductor in a nonthermal state. Notably, there is no unique
long-time steady-state for such a coupled system-reservoir
in the presence of bound states, and transport properties
across the system depend on the initialization of the full
system.

It is thus intriguing to examine if the inclusion of inter-
actions between the reservoir’s degrees of freedom can help
in thermalizing the system with the reservoir in the presence
of bound states, i.e., the central system eigenenergies gapped
away from the spectrum of the infinite reservoirs. Such an
energy gap in the spectrum of a reservoir with nontrivial inter-
actions between its constituents can naturally occur in many
physical setups where the reservoirs are superconductors, cor-
related magnets, or other strongly correlated materials. One
would naively expect that system-reservoir interactions would
mix the bound states and eventually thermalize the system
with the reservoir. Nevertheless, it is a nontrivial problem
to analytically study such a coupled system-reservoir as the
dynamical evolution of inhomogeneous interacting systems is
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FIG. 1. (Bottom) A schematic of a finite-size XX spin-1/2 chain
(red circles) sandwiched between two long anisotropic Heisenberg
(XXZ) spin-1/2 chains (blue circles). (Top) Density of states ρε with
energy ε of the sandwich depicting discrete energy (bound) states
(red lines) arising from XX spin chain in the excitation gap between
ground and first excited states of the boundary XXZ spin chains.

a daunting task. On the other hand, numerical techniques to
calculate the dynamics of such coupled system-reservoir mod-
els are mostly limited to relatively small sizes and timescales.
In this paper, we critically investigate the role of interactions
in thermalizing bound states by applying large-scale numerics
using the time-evolving block decimation (TEBD) algorithm
[20–22].

We mainly study quench dynamics in a quantum XX
spin-1/2 chain coupled to two anisotropic Heisenberg (XXZ)
spin-1/2 chains, one on either side (see Fig. 1), by following
the time evolution of the full density matrix after the quench.
The XXZ spin chains with an excitation energy gap between
the ground and excited states act as boundary reservoirs
with nontrivial (nonquadratic) interactions between spins. The
quantum XX spin chain of short length (compared to the
boundary wires) as the central system in the middle has a
gapless continuous spectrum with spins that can be considered
trivially (quadratic) interacting. We take very long lengths for
both boundary chains in our numerics to avoid Poincaré recur-
rence and boundary effects (see Appendix A for details). We
calculate the time evolution of magnetization and spin current
in the entire system. We are specifically interested in detecting
the relaxation dynamics of these quantities inside the middle
XX chain. We observe thermalization of the central system
with the interacting reservoirs even in the presence of bound
states when the length M of the central system is relatively
short (M � 3), which is sharply different from the case for
the noninteracting reservoirs [19]. For a longer central system
(M > 3), we find a strong signature of very slow (or absent)
relaxation of some particular modes of the magnetization and
spin current inside the XX spin chain. The frequencies of
these special slow modes are related to the energies of states
within the excitation gaps of the boundary XXZ chains that
remain localized to the middle XX chain.

II. THE MODEL

The Hamiltonian of the coupled spin-1/2 chains can be
written in a general form as

H = −
N−1∑
l=1

∑
α

Jα
l σα

l σα
l+1, (1)

where σα
l , α ∈ {x, y, z} is the Pauli matrix at site l , and Jα

l
is the exchange coupling between the α component of spins
at sites l and l + 1. The choice of exchange couplings de-
fines the system, boundary reservoirs, and their interfaces.
We choose the boundary chains of length L in the regions
l ∈ [1, L] and l ∈ [L + M + 1, N], and the middle chain of
length M is at l ∈ [L + 1, L + M]. We take the exchange
couplings for the boundary chain as Jx

l = Jy
l = Jz

l /� = J0.
The middle XX chain has Jx

l = Jy
l = J1 and Jz

l = 0. The XX -
type couplings at the interfaces are Jx

l = Jy
l = J ′ and Jz

l = 0
for l ∈ {L, L + M}. The spin current operator is defined as
Il = 2Jl (σ

y
l σ x

l+1 − σ x
l σ

y
l+1), where Jl is the value of the hop-

ping between sites l and l + 1. The expectation value of the
spin current is defined as 〈Il (t )〉 = Tr[ρ(t )Il ], where ρ(t ) is
the density matrix of the full system at time t . We mostly
investigate the quench dynamics of coupled spin chains in the
XXZ-XX -XXZ configuration, where we choose J1/J0 = 0.2,
J ′/J0 = 0.05, and � = 2. The choice of parameters here is
such that some energy states of the full system appear within
the gap of the two boundary chains (which have a nonzero gap
for � > 1) due to the coupling to the XX chain. Additionally,
we have also simulated the quench dynamics of coupled spin
chains in the XXX -XX -XXX configuration for comparison,
since the XXX boundary chains are gapless. In the latter case,
we simply fix � = 1, leaving the other parameters unchanged
[23].

III. QUENCH PROTOCOLS AND RESULTS

In our numerical investigation of quench dynamics, we
typically set the initial density matrix of the two boundary
XXZ or XXX chains to a high-temperature state with constant
magnetization in the z direction. For the middle XX chain, we
choose a random magnetization profile (see Appendix A for
details). In general the initial density matrix takes the product
form

ρ(0) ∝
N⊗

l=1

eμl σ
z
l , (2)

where the parameters μl determine the initial magnetization
at each site. We choose μl to be small for all l , such that our
state is effectively a high-temperature state. We then evolve
the density matrix ρ(t ) of the full system from the initial
density matrix ρ(0) using ρ(t ) = e−iHt/h̄ρ(0)eiHt/h̄, and we
follow the time evolution of relevant local observables, such
as the spin and spin current densities. We provide the details
of the numerics using the TEBD algorithm in Appendix A.

In Fig. 2, we compare the relaxation dynamics of the
XXX -XX -XXX and XXZ-XX -XXZ systems by looking at
the time evolution of the spin current in the middle of the
XX chain. It is immediately clear that in the case of XXX
boundary chains the system quickly relaxes as the middle
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FIG. 2. Time evolution of spin current in the middle of the XX chain after the quench for both XXZ (blue) and XXX (red) boundary chains
with various lengths of the middle segment. A clear difference in relaxation dynamics is observed since the system with gapped boundaries
exhibits much slower (or no) decay in spin current oscillations compared to the gapless boundaries. In the initial state, the boundaries are at
infinite temperature (μ = 0) while the middle XX chain has a random magnetization profile (μl i.i.d. in [−0.02, 0.02]). We use J1/J0 = 0.2
and J ′/J0 = 0.05 in all cases, as well as � = 1 for XXX and � = 2 for XXZ . The length of the full system is set to N = 720 with the XX
chain positioned in the middle.

chain thermalizes with the rest of the system. We note here
that, even though the isolated XXX and XXZ chains are
exactly solvable via Bethe ansatz, the coupled chains of
XXX -XX -XXX or XXZ-XX -XXZ are not integrable [24].
Thus, the thermalization in XXX -XX -XXX is in line with
the eigenstate thermalization hypothesis (ETH) [25]. On the
other hand, looking at the system with XXZ boundary chains
we notice clearly slower themalization or even lack thereof
at larger M. Thus, the persistent oscillations of spin current in
some particular frequency modes for larger M seem to suggest
a violation of the ETH for XXZ-XX -XXZ systems. In Fig. 3,
we further show the time dependence of the frequencies of
these spin current oscillations in XXZ-XX -XXZ systems for
different M. We observe that some frequencies are particularly
stable and show (almost) no decay for greater M within the
accessible times. We attribute this lack of thermalization in
the XXZ case to the existence of states due to the middle
chain that are within the gap of the boundary chains. To test
this assertion, we now look at the eigenstate properties of
shorter lengths of coupled chains, paying particular attention
to eigenstates within the spectral gap of the boundary chains.

IV. EIGENSTATE PROPERTIES OF THE COUPLED
CHAINS

In Fig. 4, we present a typical low-energy spectrum of
an isolated ferromagnetic XXZ chain of length N = 14 and
�/J0 = 2. It exhibits an excitation gap δEeg/J0 = 3.0 be-
tween two degenerate ground states (ε1/J0 = −26) and the
first excited states (ε3/J0 = −23). In Fig. 4, we further show
the energy eigenstates appearing within the excitation gap of
isolated boundary chains in the low-energy spectrum of an
XXZ-XX -XXZ system for N = 14, L = 6, and M = 2 and
for N = 14, L = 5, and M = 4. Increasing the length of the
full system by lengthening the leads only shifts the values of
these energies but does not change the differences between
the energies of the bound states and thus has no effect on our
results (see Appendix A).

We notice that some of these mid-excitation-gap states
have all spins pointing either up or down in both boundary
chains and only have any nontrivial spin pattern in the middle
chain. In the presence of some local perturbation, we can
thus have local spin dynamics between these special states
which is confined in the middle chain without affecting the
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FIG. 3. Power spectral density (PSD) extracted from different time windows (solid colored lines) of the TEBD simulation for several sizes
of M of the middle chain of XXZ-XX -XXZ . The gray dashed lines represent the frequencies of spin current oscillations obtained from bound
state analysis using exact diagonalization on smaller systems. We can observe excellent agreement between the peaks in PSD and the computed
frequencies. We see clear decay of the only existing frequency for M = 2. However, as we increase M, we begin to see modes with extremely
slow or even no decay within the accuracy of our simulations. This suggests that these modes would not thermalize with the rest of the system
and would maintain a memory of the initial conditions for long times.
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FIG. 4. Typical low-energy spectrum εi of an isolated XXZ spin-
1/2 chain (green) with an excitation gap, and coupled spin-1/2
chains of the XXZ-XX -XXZ configuration (red and blue) with
bound states within the excitation gap. The parameters are J1/J0 =
0.2, J ′/J0 = 0.05, and � = 2 in all plots. The lengths are L = N =
14 (green); N = 14, L = 6, and M = 2 (red); and N = 14, L = 5,
and M = 4 (blue).

boundary chains. Here we refer to these states as bound states,
borrowing the notion from noninteracting models [16,19]. For
example, we have such special bound states with energies
εi/J0 = −20.4 and −19.6 for N = 14, L = 6, and M = 2:

|−20.4〉↑ ≈ |↑〉L ⊗ (0.7068|↓↑〉 + 0.7068|↑↓〉) ⊗ |↑〉R,

|−19.6〉↑ ≈ |↑〉L ⊗ (−0.7066|↓↑〉 + 0.7066|↑↓〉) ⊗ |↑〉R,

and |−20.4〉↓ and |−19.6〉↓ with all spins flipped compared
to |−20.4〉↑ and |−19.6〉↑, respectively. Here the basis states
|↓〉L/R and |↑〉L/R represent the state of left or right bound-
ary chain with all spins ↓ and ↑, respectively. There are
some other bound states of the form |↑〉L ⊗ |↑↑〉 ⊗ |↑〉R, and
|↑〉L ⊗ |↓↓〉 ⊗ |↑〉R as well as their spin-flipped partners at
εi/J0 = −20, which we do not consider here since they do
not affect the spin current dynamics in the middle of the
XX chain that we are interested in. We emphasize that most
eigenstates, including those with energy within the excitation
gap of the XXZ-XX -XXZ system, are not of the above special
forms and have nontrivial spin texture in both the middle and
boundary chains. The bound states |−20.4〉↑,↓ and |−19.6〉↑,↓
still have some extremely small overlaps with the other basis
states in their corresponding symmetry sectors. Thus, the spin
orientations of the boundary chains are mostly the same for
the states |−20.4〉↑,↓ and |−19.6〉↑,↓. A coherent oscillation
of spin current at the middle of the XX chain occurs at an
angular frequency of 0.8J0 (h̄ = 1) due to spin exchange
between |−20.4〉↑,↓ and |−19.6〉↑,↓ upon application of the
current operator. We find 〈I7(t )〉 ∝ sin(0.8J0t ). Nevertheless,
the boundary chains directly connected to both of the spins
in the middle act as a reservoir. Thus, the boundary chains
would induce strong dephasing/decoherence to such coherent
oscillation, and the oscillations will eventually die out even
in the presence of a large excitation gap. While the coherent
oscillation due to spin flip inside the middle chain should also
decay due to the dephasing effect from the boundary chains
for M = 3, it should survive for M > 3 where a coherent

spin flip inside the middle chain between spins away from the
interfaces is possible.

In order to observe such survival of oscillations, we extend
the above analysis of bound states for an XXZ-XX -XXZ
system of N = 14, L = 5, and M = 4. We find the energies
of the bound states with a single spin flip in the XX chain
for this case are εi/J0 = −16.648, −16.249, −15.755, and
−15.354. We give the full expressions of the corresponding
eigenstates in Appendix B, where we also discuss other mul-
timagnon bound states and their contributions to spin current
oscillations. The contribution of these single-magnon bound
states to the expectation value of the spin current at the middle
of the XX chain is found to be

〈I7(t )〉 ∝ [0.362c0 sin(1.29J0t ) + 0.223c1 sin(0.4J0t )

+ 0.138c2 sin(0.49J0t ) − 0.224c3 sin(0.4J0t )].
(3)

Here the coefficients c0, c1, c2, and c3 depend on the
initial state occupation amplitudes of these bound states and
can be considered real for simplicity. The spin current in
Eq. (3) oscillates in time at angular frequencies 1.29J0, 0.4J0,
and 0.49J0. However, the amplitudes of these current oscilla-
tions essentially depend on the initialization (the coefficients
c0, c1, c2, and c3) of these bound states. We further notice
that the oscillation at the angular frequency 1.29J0 is arising
from the bound states with energies −16.648 and −15.354,
both of which have maximum amplitudes for spin flips of
the middle spins (second and third spin for M = 4) away
from the interface between the XX chain and the boundary
chains (see Appendix B). Current oscillations at any other
frequency do not have this feature. Therefore, considering
faster dephasing of those bound states with higher amplitudes
for spin flips near the interfaces, we predict that the coherent
oscillation at the angular frequency 1.29J0 would survive for
the longest time. We would like to emphasize here that for
noninteracting reservoirs, the nonthermalization occurs even
for shorter central systems (e.g., M = 2 and 3) and for all
modes appearing from the bound states within the spectral
gap (see, e.g., Ref. [19]). Therefore, the nontrivial many-body
interactions in the boundary reservoirs significantly influence
the physics of thermalization even in the presence of a spectral
gap, and the simple picture for the inhomogeneous system as
a conductor sandwiched between insulators is not apt here.
We have further observed that the spin current oscillations can
also appear due to bound states with multiple flipped spins in
the middle XX chain. For example, we find the above angular
frequencies 1.29J0, 0.4J0, and 0.49J0 can also emerge from
the two-magnon bound states in Appendix B. We can easily
extend the above analysis to longer middle XX chains.

In Fig. 3, we now compare the frequencies of spin cur-
rent oscillations obtained from the above analysis with bound
states to the frequencies found from TEBD simulations. The
angular frequencies of current oscillations from TEBD match
nicely with our predicted values from bound state analysis.
Furthermore, we observe that our prediction on which modes
will survive longest also holds; for instance, the oscillation at
ω/J0 ≈ 1.29 for M = 4 shows very little decay compared to
oscillations at lower angular frequency. From this compari-
son, we can conclude that the extremely slow thermalization
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or even the absence of thermalization indeed appears to be
related to the bound states within the spectral gap of the
boundary chains (acting as reservoirs), even in the presence
of interactions within the boundary chains.

V. CONCLUSION

In this work, we have checked the necessary conditions for
a good thermalizing reservoir by extending the analysis from
earlier works with noninteracting reservoirs [16,19] to inter-
acting ones. Using large-scale TEBD simulations, we showed
that gapless interacting reservoirs appear to thermalize the
system in question. On the other hand, interacting reservoirs
with a spectral gap show prolonged thermalization, or even
no thermalization for longer (M > 3) central systems [26].
This suggests the latter (e.g., superconductors and correlated
magnets) are not ideal candidates for coupling to systems to
study dissipative dynamics of longer central systems, e.g.,
as in Josephson junctions made of an insulating or metal-
lic layer sandwiched between two gapped superconductors.
Furthermore, we show that the frequencies of the persistent
spin current oscillations we observed for XXZ boundary
chains match nicely to the energy differences between the
eigenstates that remain primarily localized within the middle
chain and contribute to the spin current expectation value
in the middle of the chain. We have also investigated the
role of stronger couplings between XX and XXZ chains,
suggesting an inevitable change in relaxation dynamics as
the mid-excitation-gap states shift with increasing couplings.
Our findings further indicate that an open quantum system
description of transport depends not only on the properties of
the system but also on those of the interfaces/couplings and
reservoirs (e.g., spectral properties of reservoirs). Our study
can be extended to understanding the relaxation dynamics
of other correlated systems with various bound states, e.g.,
Yu-Shiba-Rusinov [27–29] and Majorana [30] bound states,
which appear in the spectral gap of s-wave or p-wave super-
conductors. Another inhomogeneous many-body system of
a magnetic impurity coupled to superconducting electrodes
has been explored in Ref. [31], which appeared shortly after
our study. It has been shown that the local Coulomb inter-
actions do not provide an effective relaxation mechanism for
the initially trapped quasiparticles in their study. Therefore,
the emergence of nonthermalizing (slow) modes for gapped
boundary spectrum even in the presence of interactions seems
to be a general description for different inhomogeneous junc-
tions. There is growing interest in understanding transport
and nonequilibrium dynamics in inhomogeneous many-body
quantum models by coupling multiple different systems [32],
especially quantum spin chains [33,34], and our present re-
sults would be helpful in those studies with a spectral gap that
mainly was unexplored.
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APPENDIX A: DETAILS ON NUMERICAL SIMULATIONS

Numerical simulations have been performed using two al-
gorithms. For the time-evolution of spin current, we use the
TEBD algorithm, which allows us to study very long system
sizes. For the eigenstate properties, we apply exact diagonal-
ization (ED) to obtain the eigenstates of the coupled chains at
relatively short system sizes, as is typically the case with this
method.

1. TEBD simulations

In TEBD simulations, we look at the time evolution of a
density matrix which is initially prepared in a high-energy
configuration:

ρ(t = 0) =
(⊗

i∈L

eμLσ z
i

)
⊗

(⊗
i∈C

eμC,iσ
z
i

)
⊗

(⊗
i∈R

eμRσ z
i

)
,

(A1)

where L, C, and R represent the left, center, and right parts of
the coupled spin-1/2 chains. We then choose μL = μR = 0,
which can be interpreted as preparing the boundary chains
at infinite temperature, and we select μC,i to be i.i.d. random
variables in [−0.1, 0.1] or [−0.02, 0.02], which ensures some
nontrivial distribution of initial magnetization in the central
part. The density matrix is then evolved in time using TEBD.
Here, we perform the time evolution with several bond di-
mensions ranging from very small χ = 32 up to χ = 256
(although the largest bond dimensions do not reach the re-
quired final times in reasonable simulation time). Comparing
the results between these different bond dimensions, we deter-
mine whether the simulations are sufficiently converged. We
note that while these bond dimensions are relatively small,
these systems are unique since most entanglement is located
in the central chain, which in turn is small and thus can be
captured relatively well even with smaller bond dimensions.

The weak coupling to the boundary chains means that
after an initial fast growth of entanglement in the middle,
the growth slows down significantly, allowing us to reach the
required final times with relatively good accuracy.

Several configurations are considered for the initial random
magnetization in the central chain to ensure results are consis-
tent, but only one configuration is run to these long times. The
initial configuration only affects the weights corresponding to
each eigenstate. Thus it merely affects the relative weights in
the initial frequency spectrum of the spin current oscillations
but does not change the decay rate (or lack thereof).

Finally, to ensure there is no finite-size effect in our sim-
ulations, we perform all simulations for two lengths of the
entire system, N = 360 and N = 720, and compare the re-
sults to ensure they match to within numerical precision. We
should note here that the nature of these dynamics is such
that the spin expectation values become nonzero only for a
much smaller part of the whole system, and even significantly
smaller complete systems could be considered. Nevertheless,
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the additional computational cost of sites in the boundary
where bond dimension does not grow beyond 1 is negligible.

2. ED simulations

Exact diagonalization is performed for various symmetric
configurations of the full system. At fixed M, we take several
values of the length of the boundaries but always ensure they
are symmetric to maintain reflection symmetry in the model.
The diagonalization is then performed for all these cases and
compared to ensure that the distances between the energy
levels we are interested in are not affected by the finite size, as
that would affect the corresponding frequencies. This is done

by performing ED on the system of total length N = 12 up
to N = 21. The actual diagonalization is done separately for
each symmetry sector. We consider both magnetization and
reflection symmetries of the entire system to minimize the
sizes of these matrices and thus maximize the length we can
study.

APPENDIX B: BOUND STATES FOR M = 4

In this section, we give explicit expressions of bound states
with single or multiple flipped spins in the middle XX chain
of an XXZ-XX -XXZ system of N = 14, L = 5, and M = 4.
The single-magnon bound states with a single flipped spin in
the middle XX chain are the following:

|−16.648〉↑↑ ≈ |↑〉L ⊗ (0.372|↓↑↑↑〉 + 0.601|↑↓↑↑〉 + 0.601|↑↑↓↑〉 + 0.372|↑↑↑↓〉) ⊗ |↑〉R,

|−16.249〉↑↑ ≈ |↑〉L ⊗ (−0.602|↓↑↑↑〉 − 0.371|↑↓↑↑〉 + 0.371|↑↑↓↑〉 + 0.602|↑↑↑↓〉) ⊗ |↑〉R,

|−15.755〉↑↑ ≈ |↑〉L ⊗ (0.601|↓↑↑↑〉 − 0.373|↑↓↑↑〉 − 0.373|↑↑↓↑〉 + 0.601|↑↑↑↓〉) ⊗ |↑〉R,

|−15.354〉↑↑ ≈ |↑〉L ⊗ (0.371|↓↑↑↑〉 − 0.602|↑↓↑↑〉 + 0.602|↑↑↓↑〉 − 0.371|↑↑↑↓〉) ⊗ |↑〉R,

|−16.648〉↓↓ ≈ |↓〉L ⊗ (0.372|↑↓↓↓〉 + 0.601|↓↑↓↓〉 + 0.601|↓↓↑↓〉 + 0.372|↓↓↓↑〉) ⊗ |↓〉R,

|−16.249〉↓↓ ≈ |↓〉L ⊗ (−0.602|↑↓↓↓〉 − 0.371|↓↑↓↓〉 + 0.371|↓↓↑↓〉 + 0.602|↓↓↓↑〉) ⊗ |↓〉R,

|−15.755〉↓↓ ≈ |↓〉L ⊗ (0.601|↑↓↓↓〉 − 0.373|↓↑↓↓〉 − 0.373|↓↓↑↓〉 + 0.601|↓↓↓↑〉) ⊗ |↓〉R,

|−15.354〉↓↓ ≈ |↓〉L ⊗ (0.371|↑↓↓↓〉 − 0.602|↓↑↓↓〉 + 0.602|↓↓↑↓〉 − 0.371|↓↓↓↑〉) ⊗ |↓〉R.

The states are labeled by their energy and the magnetization of the left and right leads. Again, the bound states |−16.648〉↑↑,↓↓,
|−16.249〉↑↑,↓↓, |−15.755〉↑↑,↓↓, and |−15.354〉↑↑,↓↓ have very small amplitudes to those basis states where one spin of the
left or right boundary chain is flipped. As we have discussed in the main text, the persistent spin current oscillations can also
result due to those bound states with multiple flipped spins in the middle XX chain. Below we provide two-magnon bound states
with two flipped spins in the middle XX chain (as well as in the entire system), which also give rise to persistent spin current
oscillations:

|− 16.891〉↑↑ ≈ |↑〉L ⊗ (0.224|↑↑↓↓〉 + 0.224|↓↓↑↑〉 + 0.5|↑↓↑↓〉 + 0.5|↓↑↓↑〉 + 0.446|↑↓↓↑〉 + 0.448|↓↑↑↓〉) ⊗ |↑〉R,

|− 16.403〉↑↑ ≈ |↑〉L ⊗ (0.5|↑↑↓↓〉 − 0.5|↓↓↑↑〉 + 0.5|↑↓↑↓〉 − 0.5|↓↑↓↑〉) ⊗ |↑〉R,

|− 16.002〉↑↑ ≈ |↑〉L ⊗ (−0.447|↑↑↓↓〉 − 0.447|↓↓↑↑〉 + 0.002|↑↓↑↓〉 + 0.002|↓↑↓↑〉 + 0.724|↑↓↓↑〉
− 0.276|↓↑↑↓〉) ⊗ |↑〉R,

|− 15.603〉↑↑ ≈ |↑〉L ⊗ (0.5|↑↑↓↓〉 − 0.5|↓↓↑↑〉 − 0.5|↑↓↑↓〉 + 0.5|↓↑↓↑〉) ⊗ |↑〉R,

|− 16.891〉↓↓ ≈ |↓〉L ⊗ (0.224|↓↓↑↑〉 + 0.224|↑↑↓↓〉 + 0.5|↓↑↓↑〉 + 0.5|↑↓↑↓〉 + 0.446|↓↑↑↓〉 + 0.448|↑↓↓↑〉) ⊗ |↓〉R,

|− 16.403〉↓↓ ≈ |↓〉L ⊗ (0.5|↓↓↑↑〉 − 0.5|↑↑↓↓〉 + 0.5|↓↑↓↑〉 − 0.5|↑↓↑↓〉) ⊗ |↓〉R,

|− 16.002〉↓↓ ≈ |↓〉L ⊗ (−0.447|↓↓↑↑〉 − 0.447|↑↑↓↓〉 + 0.002|↓↑↓↑〉 + 0.002|↑↓↑↓〉 + 0.724|↓↑↑↓〉
− 0.276|↑↓↓↑〉) ⊗ |↓〉R,

|− 15.603〉↓↓ ≈ |↓〉L ⊗ (0.5|↓↓↑↑〉 − 0.5|↑↑↓↓〉 − 0.5|↓↑↓↑〉 + 0.5|↑↓↑↓〉) ⊗ |↓〉R.

These two-magnon bound states contribute to spin current oscillations at angular frequencies 1.29J0, 0.49J0, and 0.4J0, which
can be determined by taking the expectation of the spin current operator in these states. There are no nontrivial bound states in
the three-magnon, four-magnon, and five-magnon sectors which can contribute to spin current oscillations. The bound states in
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the six-magnon sector contribute to spin current oscillation at frequency 0.4J0:

|− 16.650〉↑↓ ≈ |↑〉L ⊗ (0.370|↑↑↑↓〉 + 0.600|↑↑↓↑〉 + 0.602|↑↓↑↑〉 + 0.364|↓↑↑↑〉) ⊗ |↓〉R,

|− 16.250〉↑↓ ≈ |↑〉L ⊗ (0.600|↑↑↑↓〉 + 0.375|↑↑↓↑〉 − 0.370|↑↓↑↑〉 − 0.602|↓↑↑↑〉) ⊗ |↓〉R,

|− 16.650〉↓↑ ≈ |↓〉L ⊗ (0.370|↓↑↑↑〉 + 0.600|↑↓↑↑〉 + 0.602|↑↑↓↑〉 + 0.364|↑↑↑↓〉) ⊗ |↑〉R,

|− 16.250〉↓↑ ≈ |↓〉L ⊗ (0.600|↓↑↑↑〉 + 0.375|↑↓↑↑〉 − 0.370|↑↑↓↑〉 − 0.602|↑↑↑↓〉) ⊗ |↑〉R,

|− 16.650〉↓↑ ≈ |↓〉L ⊗ (0.370|↓↓↓↑〉 + 0.600|↓↓↑↓〉 + 0.602|↓↑↓↓〉 + 0.364|↑↓↓↓〉) ⊗ |↑〉R,

|− 16.250〉↓↑ ≈ |↓〉L ⊗ (0.600|↓↓↓↑〉 + 0.375|↓↓↑↓〉 − 0.370|↓↑↓↓〉 − 0.602|↑↓↓↓〉) ⊗ |↑〉R,

|− 16.650〉↑↓ ≈ |↑〉L ⊗ (0.370|↑↓↓↓〉 + 0.600|↓↑↓↓〉 + 0.602|↓↓↑↓〉 + 0.364|↓↓↓↑〉) ⊗ |↓〉R,

|− 16.250〉↑↓ ≈ |↑〉L ⊗ (0.600|↑↓↓↓〉 + 0.375|↓↑↓↓〉 − 0.370|↓↓↑↓〉 − 0.602|↓↓↓↑〉) ⊗ |↓〉R.

Finally, there are nontrivial bound states in the seven-magnon sector (or the zero magnetization of the full system), which can
also contribute in spin current oscillations at angular frequencies 1.29J0, 0.49J0, and 0.4J0. These bound states are represented
with fixed magnetization on the left and right sides for compactness, and hence they lack reflection symmetry/asymmetry with
respect to the middle of the full system. These states are written as linear combinations of exactly degenerate (within numerical
accuracy) states from the symmetric/antisymmetric sectors:

|−16.897〉↓↑ ≈ |↓〉L ⊗ (−0.225|↑↑↓↓〉 − 0.502|↑↓↑↓〉 − 0.447|↑↓↓↑〉 − 0.447|↓↑↑↓〉 − 0.498|↓↑↓↑〉
− 0.222|↓↓↑↑〉) ⊗ |↑〉R,

|−16.403〉↓↑ ≈ |↓〉L ⊗ (−0.501|↑↑↓↓〉 − 0.498|↑↓↑↓〉 + 0.502|↓↑↓↑〉 + 0.498|↓↓↑↑〉) ⊗ |↑〉R,

|−16.003〉↓↑ ≈ |↓〉L ⊗ (0.632|↑↑↓↓〉 − 0.316|↑↓↓↑〉 − 0.316|↓↑↑↓〉 + 0.632|↓↓↑↑〉) ⊗ |↑〉R,

|−16.003〉↓↑ ≈ |↓〉L ⊗ (0.707|↑↓↓↑〉 − 0.707|↓↑↑↓〉) ⊗ |↑〉R,

|−15.603〉↓↑ ≈ |↓〉L ⊗ (−0.498|↑↑↓↓〉 + 0.501|↑↓↑↓〉 − 0.498|↓↑↓↑〉 + 0.502|↓↓↑↑〉) ⊗ |↑〉R,

|−15.109〉↓↑ ≈ |↓〉L ⊗ (−0.222|↑↑↓↓〉 + 0.497|↑↓↑↓〉 − 0.447|↑↓↓↑〉 − 0.447|↓↑↑↓〉 + 0.502|↓↑↓↑〉
− 0.225|↓↓↑↑〉) ⊗ |↑〉R,

|−16.897〉↑↓ ≈ |↑〉L ⊗ (−0.225|↓↓↑↑〉 − 0.502|↓↑↓↑〉 − 0.447|↓↑↑↓〉 − 0.447|↑↓↓↑〉 − 0.498|↑↓↑↓〉
− 0.222|↑↑↓↓〉) ⊗ |↓〉R,

|−16.403〉↑↓ ≈ |↑〉L ⊗ (−0.501|↓↓↑↑〉 − 0.498|↓↑↓↑〉 + 0.502|↑↓↑↓〉 + 0.498|↑↑↓↓〉) ⊗ |↓〉R,

|−16.003〉↑↓ ≈ |↑〉L ⊗ (0.632|↓↓↑↑〉 − 0.316|↓↑↑↓〉 − 0.316|↑↓↓↑〉 + 0.632|↑↑↓↓〉) ⊗ |↓〉R,

|−16.003〉↑↓ ≈ |↑〉L ⊗ (0.707|↓↑↑↓〉 − 0.707|↑↓↓↑〉) ⊗ |↓〉R,

|−15.603〉↑↓ ≈ |↑〉L ⊗ (−0.498|↓↓↑↑〉 + 0.501|↓↑↓↑〉 − 0.498|↑↓↑↓〉 + 0.502|↑↑↓↓〉) ⊗ |↓〉R,

|−15.109〉↑↓ ≈ |↑〉L ⊗ (−0.222|↓↓↑↑〉 + 0.497|↓↑↓↑〉 − 0.447|↓↑↑↓〉 − 0.447|↑↓↓↑〉 + 0.502|↑↓↑↓〉
− 0.225|↑↑↓↓〉) ⊗ |↓〉R.
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