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We study the combined effect of quasiperiodic disorder, driven, and interaction in the periodically kicked
Aubry-André model. In the noninteracting limit, by analyzing the quasienergy spectrum statistics, we verify the
existence of a dynamical localization transition in the high-frequency region, whereas the spectrum statistics
becomes intricate in the low-frequency region due to the emergence of the extended/localized-to-multifractal
edges in the quasienergy spectrum, which separate the multifractal states from the extended (localized) states.
When the interaction is introduced, we find the periodically kicked incommensurate potential can lead to a
transition from the ergodic to many-body-localization phase in the high-frequency region. However, the many-
body localization phase vanishes in the low-frequency region even for the strong quasiperiodic disorder. Our
studies demonstrate that the periodically kicked Aubry-André model displays rich dynamical phenomena and
the driving frequency plays an important role in the formation of many-body localization in addition to the
disorder strength.
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I. INTRODUCTION

Anderson localization is a fundamental phenomenon of
quantum disorder systems and has attracted longstand-
ing attention in condensed matter physics [1–3]. While
localization-delocalization transition and mobility edges only
occur in three dimensions for random disorder systems,
the localization-delocalization transition can be found in
one-dimensional quasiperiodic systems, which have attracted
increasing interest in recent years [4–8]. When the quasiperi-
odical potential strength exceeds a critical value, a localization
transition takes place as illustrated by the prototypical
quasiperiodic model known as the Aubry-André (AA) model
[7,8]. The quasiperiodic optical lattices have become an
ideal platform for studying the localization-delocalization
transition [4–6]. Particularly, the interplay of interaction
and disorder can induce many-body localization (MBL)
[9–13], which violates eigenstate thermalization hypothesis
and prevents erogdicity [14,15]. The existence of MBL has
been confirmed in one-dimensional interacting systems with
random disorder [12,16–21] or incommensurate potential
[22–37]. Moreover, the MBL phase has been experimentally
observed in the ultracold atomic gases trapped in incommen-
surate optical lattices [38–42].

Exploring novel nonequilibrium phases in driven, inter-
acting quantum systems is a topic of perennial interest.
In general, periodically driving a quantum system results
in thermalization of the system [43,44]. Nevertheless, re-
cent works have demonstrated the existence of MBL which
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allows avoiding heating in the presence of driving [45–49].
The combination of MBL and Floquet driving can lead to
new nonequilibrium phases of matter, such as time crystals
[50,51], suggesting that the interplay of periodic driving and
MBL would give rise to rich dynamical phenomena. On the
other hand, by applying a pulsed incommensurate potential to
an optical lattice, a periodically kicked AA model was pro-
posed to exhibit dynamical Anderson transition [52], which
is revealed from its dynamical evolution of wave packets.
A dynamical localization is characterized by the halt of the
spreading of an initial wave packet, and the transition de-
pends on both the strength of the quasiperiodic potential
and the kicking period [52–54]. For the periodical kicked
case, while the time evolution is governed by an effective
time-independent AA model in the high-frequency region, the
dynamics in the low-frequency region is far more intricate
and has not yet been well understood. Besides the kicked AA
model, other periodically driving quasiperiodic models are
also studied [55–58], and the effect of temporal disorder on
the wave-packet dynamics is also analyzed [59]. Particularly,
a recent experiment has observed nonergodic and ergodic
phases in the driven quasiperiodic many-body system which
are separated by a drive-induced delocalization transition [60].

Motivated by these theoretical and experimental pro-
gresses, we shall study the periodically kicked interacting AA
model and investigate the combined effect of quasiperiodic
disorder, driven period (frequency), and interaction on the
dynamical localization by analyzing the quasienergy spec-
trum of Floquet operator and the related dynamical behavior.
To understand the interplay of the quasiperiodic potential
and kicked period, we first analyze the quasienergy spec-
trum statistics of the noninteracting kicked AA model, which
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displays different behaviors in the high-frequency and low-
frequency region. In the high-frequency region, the spectrum
statistics clearly demonstrates a dynamical localization transi-
tion signaled by the abrupt change of the average ratio of adja-
cent quasienergy gaps. In the low-frequency region, the spec-
trum statistics becomes intricate due to the emergence of the
extended/localized-to-multifractal edges, which separate the
multifractal states from the localized (extended) states. The
corresponding average ratio of adjacent quasienergy gaps is
not an universal value and depends on the ratio of numbers of
multifratal states and localized (extended) states. The multi-
fractal states can be identified by finite-size scaling analysis of
the corresponding wave functions, and we propose a scheme
to extract the average multifractal exponent from the long-
time survival probability. We then investigate the interacting
kicked AA model and identify the existence of MBL in the
high-frequency region. Through the finite-size analyze, we
unveil the occurrence of a transition from the ergodic phase to
the MBL phase when the quasiperiodic potential strength ex-
ceeds a critical value. However, in the low-frequency region,
we find that the MBL phase vanishes and no MBL occurs even
for strong quasiperiodic disorder.

The rest of this paper is structured as follows. In Sec. II, we
introduce the model and the method of quasienergy spectrum
statistics. In Sec. III, we analyze the quasienergy spectral
statistics and carry out multifractal analysis for the non-
interacting kicked AA model. We unveil the existence of
dynamical localization transition in the high-frequency re-
gion and the emergence of extended/localized-to-multifractal
edges in the low-frequency region. In Sec. IV, we study the
MBL in the interacting kicked AA model in detail. A sum-
mary is given in the final section.

II. MODEL AND METHOD

We consider a periodically kicked quasiperiodic model
described by the Hamiltonian

H = H0 + HK , (1)

with

H0 = HJ + HV

= −J
∑

j

(ĉ†
j ĉ j+1 + H.c.) +

∑
j

V n̂ j n̂ j+1 (2)

and

HK =
∑

n

δ(t − nT )
∑

j

μ j n̂ j, (3)

where ĉ†
j (ĉ j ) is the fermion creation (annihilation) operator,

n̂ j = ĉ†
j ĉ j is the particle number operator, J is the hopping

amplitude between nearest-neighbor sites, and V is the inter-
action strength between the neighboring particles. The kicking
part of the Hamiltonian is described by HK with the quasiperi-
odic potential

μ j = λ cos (2π jα + φ) (4)

being periodically added with a pulsed period T , where α =√
5−1
2 , λ is the strength of the quasiperiodic potential and φ is a

random phase. Taking sample average for the random phase φ

can reduce statistical and finite-size effects. For convenience,
we set h̄ = 1 and take J = 1 as the unit of energy in the
following calculation. Our model is similar to the interact-
ing spinless fermions model in a quasiperiodic lattice, which
has been applied to study MBL [22,26], but with a periodic
kicked potential. We shall demonstrate that the periodically
kicked quasiperiodic lattice displays rich dynamical phenom-
ena, including the emergence of multifractal states with no
equilibrium counterpart, and the driving frequency plays an
important role in the formation of MBL in addition to the
quasiperiodic potential strength.

The dynamical evolution of the periodically kicked system
is determined by the Floquet unitary propagator, which can be
written as

U (T ) = e−iH0T e−iλ
∑L

j cos (2π jα+φ)n̂ j . (5)

For a given initial state ψ (t ), the finial state after N periods
can be written as ψ (t + NT ) = [U (T )]Nψ (t ). For a Floquet
unitary propagator, all the quasienergies are distributed on the
unit circle and we use angles θn to denote different quasiener-
gies:

	 = {θn|λn = eiθn , θn ∈ [−π, π )}, (6)

where λn are the eigenvalues of the operator U (T ) and θn <

θn+1. In analogy to Hamiltonian systems, we define sn =
θn+1 − θn, and the level spacing distribution of θ can be cap-
tured by the ratio between adjacent gaps [44,45]:

rn = min{sn, sn+1}
max{sn, sn+1} . (7)

The average of rn is introduced as

〈r〉 = 1

D

D∑
n=1

rn, (8)

where D = N − 1 with N being the size of Hilbert space.
For the static Hamiltonian system with eigenvalues En, we
have sn = En+1 − En and the ratio can serve as a probe of
the phase transition between the ergodic and MBL phases
[12,13]. In the ergodic phase, the energy level spacings satisfy
the Wigner-Dyson distribution with 〈r〉 ≈ 0.529, whereas in
the localized phase with the Poisson distribution 〈r〉 ≈ 0.387
[12]. This quantity was also applied to study the disordered
Floquet systems [45,61].

III. SPECTRAL STATISTICS AND MULTIFRACTAL
ANALYSIS FOR THE KICKED AA MODEL

We first consider the noninteracting case with V = 0, for
which the model (1) reduces to the periodically kicked AA
model [52]. In the high-frequency region, the time evolution
can be effectively described by the AA model with the critical
point given by λ/T = 2. However, in the low-frequency re-
gion, the time evolution is far more intricate and has not been
fully explored yet [52,53].

Here we shall scrutinize the kicked AA model by study-
ing the spectral statistics of the quasienergies. To reduce the
impact of the edge, we take the lattice size as the Fibonacci
number and consider the periodic boundary condition (PBC)
in the calculation. In Fig. 1(a), we show 〈r〉 (the average
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FIG. 1. (a) The average ratio 〈r〉 in the parameter space spanned by λ and T . (b) 〈r〉 vs T for fixed λ. (c) 〈r〉 vs λ for fixed T . The dashed
lines are given by λ/T = 2. The system is under the PBC with L = 987 and we take 100 samples for each point.

ratio of two consecutive quasienergy gaps) in the parameter
space spanned by λ and T . In the high-frequency region of
T � 1, it is shown that there is an abrupt transition in 〈r〉
when the parameter λ or T crosses over the diagonal line
λ/T = 2. This is also witnessed in Figs. 1(b) and 1(c), which
indicate an abrupt transition around the diagonal region of
λ/T = 2. When the system is in the dynamically extended
region, the ratio is close to 0, whereas 〈r〉 ≈ 0.39 in the
region of dynamical localization. It turns out that increasing
λ can lead to a transition from the extended region to the
localized region in the high-frequency region. On the other
hand, when T > 1, an abrupt transition is observed before
reaching the diagonal line of λ/T = 2, due to the emergence
of multifractal eigenstates, which are neither fully localized
nor fully extended and separated from the extended (localized)
eigenstates by extended/localized-to-multifractal edges.

We note that 〈r〉 ≈ 0 is due to the existence of nearly
double degeneracy in the dynamically extended region. To see
it clearly, we define the even-odd (odd-even) level spacings of
the quasienergies as

se−o
n = θ2n − θ2n−1

(
so−e

n = θ2n+1 − θ2n
)
.

In Figs. 2(a)–2(c), we show the even-odd (odd-even) spac-
ings of the kicked AA model with L = 987, T = 0.2, and
λ = 0.2, 0.4, and 0.6, corresponding to extended, critical,
and localized phases, respectively. In the extended region, the
spectrum is nearly doubly degenerate and hence there is an
obvious gap between se−o

n and so−e
n . In the localized region,

se−o
n and so−e

n have the same form and the gap vanishes. In
the critical region, distributions of se−o

n and so−e
n are strongly

scattered. Our results demonstrate that the distribution of
quasienergies of the kicked AA model in the high-frequency
region displays similar behaviors as the spectrum distribution
of the AA model, for which the even-odd (odd-even) spacings
se−o

n = E2n − E2n−1 (so−e
n = E2n+1 − E2n) were utilized to dis-

tinguish the different phases of the AA model [62].
Now we study the low-frequency region where the distribu-

tions of se−o
n and so−e

n become intricate. As concrete examples,
we consider systems with parameters (λ = 1.6, T = 1.5) and
(λ = 3, T = 0.8), which distribute symmetrically about the

diagonal line λ = 2T in the parameter space and can be con-
nected together by a dual transformation (see Appendix A).
The even-odd (odd-even) spacings for these systems are dis-
played in Figs. 3(a) and 3(b), respectively. It is shown that
the distribution of even-odd (odd-even) spacings exhibits dif-
ferent behavior in the middle and side regions, which are
separated by some edges. While there is a gap between se−o

n
and so−e

n in the middle region, their distributions are strongly
scattered in the side regions, as shown in Fig. 3(a). The distri-
bution suggests that the states in the middle and side regions
are extended and critical (multifractal) states, respectively.
As a contrast, for the system shown in Fig. 3(b), while the

0 0.2 0.4 0.6 0.8 1
10-10

10-5

100

0 0.2 0.4 0.6 0.8 1
10-10

10-5

100
0 0.2 0.4 0.6 0.8 1

10-10

10-5

100

(a)

(b)

(c)

FIG. 2. Even-odd (odd-even) level spacings for the kicked AA
model with T = 0.2 and L = 987 under the PBC. From top to bot-
tom: (a) λ = 0.2 (extended), (b) λ = 0.4 (critical), and (c) λ = 0.6
(localized).
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FIG. 3. Even-odd level spacing (se−o) and odd-even level spacing (so−e) for (a) T = 1.5, λ = 1.6 and (b) T = 0.8, λ = 3, respectively.
IPR for (c) T = 1.5, λ = 1.6 and (d) T = 0.8, λ = 3, respectively. The system is under the PBC with L = 987.

distributions in side regions are similar, the gap vanishes in the
middle region, suggesting that the states in the middle region
are localized states.

To unveil the properties of states more clearly, we also cal-
culate the inverse participation ratio (IPR) for the eigenstate
of the unitary operator, which is defined as Pn = ∑L

i=1 |ψn,i|4
with |ψn〉 = ∑L

i=1 ψn,i|i〉 representing the n-th eigenstate of
U (T ). As shown in Fig. 3(c) for the system with λ = 1.6
and T = 1.5, we see Pn ∼ 1/L in the middle region, indicat-
ing that the corresponding states are extended states. In the
side regions, the corresponding states are multifractal (criti-
cal) states which are separated from the extended states by
the presence of extended-to-multifractal edges. On the other
hand, for the system with λ = 3 and T = 0.8 as shown in
Fig. 3(d), the IPR tends to a finite number in the middle region
with the corresponding state being localized. Also there exist
localized-to-multifractal edges separating the localized and
critical regions. By carrying out a finite-size scaling analysis
for the eigenstates, we can distinguish the extended, localized,
and multifractal states.

Now we carry out a finite-size scaling analysis for eigen-
states in different regions [58,62,68]. For a given eigenstate
|ψn〉 = ∑

j ψn( j)| j〉, we can use the moments

Iq(n) =
∑

j

|ψn( j)|2q ∝ L−Dq (q−1) (9)

to characterize the distribution information of the eigenstate.
Dq are the fractal dimensions and take difference values in dif-
ferent regions: Dq = 1 in the extended region, Dq = 0 in the
localized region and 0 < Dq < 1 in the multifractal region. In
our calculation, we choose q = 2 and the fractal dimensions
can be obtained from the inverse participation ratio (I2). After
a simple transformation, it is easy to get

− ln[I2(n)]/ ln(L) = −c/ ln(L) + D2,

where c is a size-independent coefficient. We can get the D2 by
the intercept of the curve in the space spanned by 1/ ln(L) and
− ln[I2(n)]/ ln(L). In Fig. 4, we plot the curves in different
regions, as marked by the red squares in Figs. 3(c) and 3(d).
For localized states and extended states, we choose a typical
eigenstate at the middle of the spectrum (n/L = 1/2). For
multifractal states, we choose 20 eigenstates near the n-th
eigenstate with n/L = 0.1 and take an average to eliminate
fluctuation. After a linear fitting, we find that D2 = 1 for
extended states and D2 = 0 for localized states when L → ∞.
We also find that 0 < D2 < 1 for the multifractal eigenstates
while L → ∞. It confirms the existence of the multifractal
states.

Similar to the AA model, we note that the unitary op-
erator fulfills a self-duality relation at λ = 2T after a dual
transformation (see Appendix A for details). The existence
of a duality mapping suggests that there is a one-to-one
correspondence for parameters which are symmetric about
λ = 2T , for example, T = 0.8, λ = 3 and T = 1.5, λ = 1.6.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

FIG. 4. Finite-size scaling analysis for different eigenstates.
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FIG. 5. (a) 〈r〉 vs λ with fixed T = 1. (b) 〈r〉 versus T with fixed
λ = 2. Black lines (right y axis) depict the fraction of multifractal
states for the system with L = 987 and different parameters. We take
100 samples for each point.

When across the self-duality point, there is a sharp transi-
tion from localized (extended) to extended (localized) states.
As we discussed above, there are multifractal states in the
low-frequency region which can be detected by analyzing the
spectrum and eigenvectors. The transition from extended to
multifractal or localized to multifractal cannot be predicted
by the self-duality relation. In order to study the behavior
in the region that the multifractal states begin to appear, we
calculate the 〈r〉 along the line T = 1 and make finite size
analysis. As shown in Fig. 5, there is a sharp transition when
λ ≈ 1.68 and this value is smaller than the self-dual point
λ/T = 2. When we increase the system size, we find that the
transition of 〈r〉 around the transition point becomes more and
more sharper, which shows a signature of transition instead of
crossover. Fixing the strength of quasiperiodic potential λ = 2
and tuning the period T , we observe that there is also a sharp
change of 〈r〉 around T ≈ 0.8 as shown in Fig. 5. It is worth
pointing out that a sharp change around the self-duality point
λ/T = 2 is always observed in Figs. 5(a) and 5(b). Such a
change is induced by the change of extended (localized) to
localized (extended) states in the middle region when across
the self-duality point.

Besides, we define a quantity to describe the fraction of
multifractal states:

Q = nmul/nall,

where nmul is the number of multifractal states and nall is the
number of all the eigenstates. We show the change of Q versus
λ and T for the system with L = 987 in Figs. 5(a) and 5(b),
respectively. Below the first transition point, Q = 0. When the
parameters satisfy λ = 2T , all the eigenstates are multifractal
and Q = 1. The sharp change of 〈r〉 has a one-to-one cor-
respondence to the change of Q. When 〈r〉 goes to zero or
Poisson value, the fraction of multifractal states approaches
to zero, indicating completely delocalized or localized bands,
respectively.

In general, multifractal eigenstates or mobility edges can
lead to exotic dynamical behaviors. Next we study the expan-
sion dynamics of wavepacket in the region with multifractal
states and try to extract the multifractal exponents from the
dynamical behavior. We label the center of the lattice as j0
and choose the initial state localized at site of j0. The time
evolution of an initial state can be expanded by the eigenstates
of U (t ):

|ψ (t )〉 =
∑

m

e−iθmt 〈ψm|ψ (0)〉|ψm〉 =
∑

j

Cj (t )| j〉,

FIG. 6. (a) Long-time survival probability (t = 107) with differ-
ent parameters. Fitting result (1): we use Eq. (11) to fit the curve
of T = 0.8, λ = 3 with the fitting parameters c0 = 0.55 and D2 =
0.53. Fitting result (2): for the curve of T = 1.5, λ = 1.6, we get
c0 = 0.55 from its dual model. Then we use Eq. (B2) to fit the
curve and get D′

2 = 0.55. (b) Finite size analysis for multifractal
states and we take an average for all the multifractal states with fixed
parameters. We choose L = 987 and take 1000 samples.

with Cj (t ) = ∑
m C(m)∗

j0
C(m)

j e−iθmt , where C(m)
j = 〈 j|ψm〉. Here

we focus on the long-time survival probability P(r) defined as

P(r) =
∑

| j− j0|�r/2

|Cj (t → ∞)|2, (10)

which is the probability of finding the particle in sites within
the region (−r/2, r/2) after a long time evolution. P(r) is pro-
portional to (r/L)D̃2 , where D̃2 is the generalized dimension of
the spectral measure [62,63]. For one-dimensional systems,
the dimension of eigenstates fulfills D2 = D̃2 [63,64]. It is
obvious that D2 = 0 in the localized region and D2 = 1 in the
extended region.

Consider the case with localized-to-multifractal edge, for
which the eigenstates are either localized or multifractal.
While the wave packet does not expand in the localized re-
gion, the multifractal states play an important role in the
expansion of the wave packet. As shown in Fig. 6, P(r)
shows quite different behaviors in the localized region (T =
0.3, λ = 1), extended region (T = 0.5, λ = 0.6) and region
with localized-to-multifractal edge (T = 0.8, λ = 3). In the
localized region, all eigenstates are localized, and P(r) grows
to 1 rapidly because the wave function is mainly distributed at
the initial position. In the extended region, all the eigenstates
are extended. P(r) grows uniformly and the wave function is
distributed in space uniformly. In the region with a localized-
to-multifractal edge, P(r) increase with r but with a nonzero
value at r = 0. Due to the existence of some localized states,
a part of the wave function remains at the initial position. As
the increase of P(r) is entirely determined by the multifractal
states, we can extract the average multifractal exponent by

ln(P(r) − c0) ≈ D2 ln(r/L) + ln(1 − c0), (11)

where c0 is a constant and depends on the proportion of
localized states in all the eigenstates [62]. D2 is determined
by the slope of ln(P(r) − c0) − ln(r/L) line, which gives rise
to D2 ≈ 0.53. Because all eigenstates contribute to the time
evolution, the multifractal exponents extracted by the wave-
packet dynamics should be an average for all mutlifractal
states. In Fig. 6(b), we compare the multifractal exponent
extracted from the wave-packet dynamics with the result from
the finite size analysis, which also approaches 0.53 in the
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FIG. 7. (a) The average ratio 〈r〉 versus λ for systems with
T = 0.1 and different sizes. (b) 〈r〉 versus scaled λ with different
sizes collapse into a single curve. Each data point is averaged over
2000 quasiperiodic disorder realizations for L = 12 and 14, and 50
realizations for L = 16.

limit L → ∞. For the case with extended-to-multifractal edge
(T = 1.5, λ = 1.6), since both the extended and multifractal
eigenstates attribute to the expansion of the wave packet, it is
hard to read out the multifractal exponent directly from P(r).
However, we note that one may roughly estimate the average
multifractal exponent D′

2 by using the duality property and we
get the result D′

2 = 0.55 which is consistent with the result
from the finite-size analysis (see Appendix B for details).

IV. MANY-BODY LOCALIZATION IN THE
INTERACTING KICKED AA MODEL

Now we study the interacting system with finite V and
consider the half-filling case with Nf /L = 1/2, where Nf is
the particle number. In the high-frequency limit, we expect
the interaction to induce MBL when the strength of quasiperi-
odic potential exceeds a critical value. The transition from a
dynamical ergodic phase to MBL phase can also be captured
by the average level-spacing ratio 〈r〉 for the quasienergy
spectrum. In Fig. 7(a), we plot the average energy level-
spacing ratio with a fixed T = 0.1 versus λ for the system
with V = 1 and various system sizes. We find the level-
spacing ratio changes from about 0.52 ± 0.1 to 0.39 when λ

increases. The curves with different L intersect at the same
point λc ≈ 0.31. By plotting 〈r〉 versus the scaled potential
strength (λ − λc)/L1/ν for different system sizes, we find that
all curves collapse into a single one, as shown in Fig. 7(b). The
finite size analysis gives the transition point and the critical
index as λc ≈ 0.3138 and ν ≈ 0.6 (see Appendix C for more
details). In the large size limit, it then follows that 〈r〉 ≈ 0.39
for λ > λc and 〈r〉 ≈ 0.53 for λ < λc. Our numerical results
confirm that quasienergy spectrum statistics follows a Pois-
son distribution in the MBL phase and a circular orthogonal
ensemble (COE) in the ergodic phase [45,49,61].
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FIG. 8. Dynamical behavior in the kicked interacting AA model
with kicked period T = 0.1. (a) Entanglement entropy growth with
L = 14 and different quasiperiodic strength λ = 0.1, 0.3, and 1.
(b) Entanglement entropy growth in the ergodic region with λ = 0.1
and different system sizes. The insert in (b) shows the saturation val-
ues of the entanglement entropy with different system sizes. (c) The
evolution of entanglement entropy in the MBL region with λ = 1
and different interaction strength. (d) Density distribution after 104

kicked periods for system with L = 14 and different λ. In our calcu-
lation, we choose 1000 samples for L = 10, 12, and 500 samples for
L = 14.

The entanglement entropy is another important parameter
to distinguish the ergodic phase and MBL phase. The en-
tanglement entropy of the system’s eigenstate shows distinct
behavior in different phases:it follows a volume law in the
ergodic phase yet an area law in the MBL phase [17,65].
The growth of entanglement entropy with time in the kicked
quasiperiodic lattice is also expected to show different dynam-
ical behaviors in the ergodic and MBL phase. We choose the
initial state as |10 . . . 10〉 with all the odd sites being occupied
and all the even sites empty. In our calculation, we act U (T )N

on the initial state |ψ (0)〉 to get the finial state |ψ (NT )〉. In
order to calculate the growth of entanglement entropy, we
divide the system into two parts A and B with the same length
and take the trace of subsystem B to get the reduced density
matrix ρA. The entanglement entropy can be written as

S = −tr(ρA ln ρA).

In Fig. 8(a), we display the entanglement entropy growth
for λ = 0.1, 0.3, and 1, which exhibits distinct behaviors
in different phases. In the ergodic phase with λ = 0.1, the
entanglement entropy increases with time and approaches
a saturation value (about 3.916 at t = 104T ). As shown in
Fig. 8(b) for systems with λ = 0.1 and different system sizes,
the saturation value of the entanglement entropy displays a
linear increase with L in the ergodic phase and fulfills the
volume law [66]. In contrast, the entanglement entropy in the
localized phase takes a small value and is not sensitive to
the system size. In Fig. 8(c), we display the long-time be-
havior of entanglement entropy in MBL phase for different
interaction strengthes. It is shown that the entanglement en-
tropy for the interacting systems grows slowly after a long
time evolution, whereas the entanglement entropy for the
noninteracting system keeps almost unchanged. Although the
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FIG. 9. (Left) Energy-resolved spectral statistics for T = 0.3.
(Right) Energy-resolved spectral statistics for T = 1.5. We choose
L = 14 and take 1000 samples.

entanglement entropy in the MBL phase keeps growing, it is
always much smaller than that in the ergodic phase [67].

Further, the dynamics of the system can be intuitively
illustrated through the evolution of density distributions. In
Fig. 8(d), we display the change of real space density dis-
tribution 〈|ni(t ) − ni(0)|〉 for various λ, where ni(t ) is the
time-dependent local density at site i, 〈. . . 〉 means sample
averages over different phase φ, and t = NT with N = 104

kicked periods. In the ergodic region with λ = 0.1, ni(t ) tends
to 0.5 and it means all the particles are evenly distributed on
the sites after a long time evolution, whereas in the localized
region with λ = 1 the change of density distribution is small
which means the system retains the initial state information.

In the noninteracting case, we have shown the existence
of multifractal states and extended/localized-to-multifractal
edges in the low-frequency region. Now we study the fate of
multifractal states and check whether extended/localized-to-
multifractal edges survive in the interacting case. To this end,
we plot the energy-resolved spectral statistics in the parameter
space spanned by λ and ε for V = 1, T = 0.3 and T = 1.5 in
Fig. 9, where ε is defined as

ε = θn − θmin

θmax − θmin
,

which labels the place of the quasienergy θn lying in the
quasienergy density spectrum. We note that the energy-
resolved spectral statistics have been used to characterize the
energy-resolved MBL in Ref. [69]. In the high-frequency re-
gion with T = 0.3, it is shown that a transition from ergodic
to MBL phase occurs when we increase λ. On the other
hand, in the low-frequency region with T = 1.5, we do not
observe such a transition and the system is always in the
ergodic phase. Our result shows no signature for the existence
of extended/localized-to-multifractal edges in the interacting
system.

In Fig. 10, we show the average level-spacing ratio 〈r〉 in
the parameter space spanned by λ and T for a system of L =
12 with the interaction strength V = 1. In comparison with
the noninteracting case, we find that the interaction term can
lead to the appearance of the MBL phases in the regime with
all the eigenstates being localized in the noninteracting limit.
However, in the low-frequency region with the corresponding
eigenstates in the noninteracting limit being either extended
or multifractal states, adding an interaction term leads to the
thermalization of the system, characterized by 〈r〉 ≈ 0.53. No
signature of MBL is observed by further increasing λ. In

FIG. 10. The average ratio 〈r〉 in the parameter space spanned
by λ and T for V = 1 and L = 12. We take 1000 samples in our
simulation.

Fig. 11, we display 〈r〉 versus T for system with the inter-
action strength V = 1 and different strength of quasiperiodic
potential λ (discussion on effect of the interaction strength can
be found in the Appendix D). In the low-frequency region,
it is shown that the ratio 〈r〉 increases with the increase of
T for various λ and approaches 0.53. Our results show that
the MBL vanishes when the systems enter the low-frequency
region, and the systems are ergodic even for a very large
λ. The absence of MBL in the low-frequency region is re-
lated to the emergence of localized-to-multifractal edges in
the quasienergy spectrum of noninteracting kicked AA model
discussed in the previous section. The presence of a localized-
to-multifractal edge means that both localized and multifractal
single-particle orbitals are present and their interplay to the
interaction may induce the absence of MBL. Although MBL
can occur in the static interacting systems with single-particle
mobility edge [23,24], it has been shown that the presence of
a mobility edge anywhere in the spectrum is enough to induce
delocalization for any driving strength and frequency [46].
Our model, however, provides a different scenario in which

0 0.5 1 1.5 2

0.4

0.45

0.5

FIG. 11. The average ratio 〈r〉 vs T with different quasiperiodic
strength λ. The system size is L = 14 and we take the average over
500 samples.
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either the presence or absence of MBL is possible by tuning
the driving frequency.

V. SUMMARY

In summary, we have studied the phenomenon of dy-
namical localization and many-body localization as well as
their breakdown in the periodically kicked AA model. By
analyzing the quasienergy spectrum statistics in the nonin-
teracting limit, we have verified the existence of dynamical
localization transition in the high-frequency region, which is
characterized by an abrupt change of average quasienergy
level-spacing ratio 〈r〉 across the self-dual point λ/T = 2.
On the other hand, the spectrum statistics becomes intricate
in the low-frequency region due to the emergence of the
extended/localized-to-multifractal edges in the quasienergy
spectrum, which separate the multifractal states from the
localized (extended) states. We also find that there is a
sharp transition when the multifractal states occur in the
low-frequency region. Furthermore, we discuss the dynami-
cal behavior in different regions and extract the multifractal
exponent from the long-time survival probability. For the in-
teracting periodically kicked AA model, we have found the
occurrence of a transition from the ergodic phase to the MBL
phase in the high-frequency region, when the quasiperiodic
potential strength exceeds a critical value. The transition point
and the critical exponent of the ergodic-MBL transition are
obtained by a finite-size scaling analysis. We also calculate the
time evolution of entanglement entropy and the density dis-
tribution to confirm the existence of the MBL phase. We find
that the interaction can lead to the thermalization of the system
when there are multifractal states in the noninteracting limit,
and demonstrate that the MBL phase vanishes even for strong
quasiperiodic potential. Our results show that the interplay of
quasiperiodic disorder, driven period, and interaction can lead
to rich dynamical phenomena in the periodically kicked AA
model.

Note added. Recently, we became aware of the experimen-
tal realization of the kicked AA quasiperiodic model studied
in the present work and the study of multifractality in a related
parallel experimental work [70].
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APPENDIX A: DUAL TRANSFORMATION FOR
THE FLOQUET UNITARY PROPAGATOR

OF KICKED AA MODEL

The phase diagram of kicked AA model displays a sym-
metrical structure about the diagonal line λ = 2T and this is
due to the existence of a duality mapping for the kicked AA
model. The Floquet unitary propagator is given by

U (T ) = e−i
∑L

j=1 (c†
j c j+1+H.c.)T e−iλ

∑L
j cos (2πα j+φ)n̂i .

For convenience, we fix φ = 0 and take a Fourier transform
c j = ∑

k ckei2παk j . It follows

U (T,0) = e−i
∑L

j=1(c†
j c j+1+h.c.)T e−iλ

∑L
j=1 cos (2πα j)c†

j c j

= exp

(
−i

L∑
j=1

L∑
k=1

L∑
k′=1

(c†
kck′ei2παk′ j−i2παk( j+1)+H.c.)T

)

× exp

(
− iλ

L∑
j=1

L∑
k=1

L∑
k′=1

1

2
(ei2πα j+e−i2πα j )

× c†
kck′ei2πα(k−k′ ) j

)
≈ e−i

∑L
k=1 (2 cos(2παk))c†

k ckT e−iλ
∑L

k=1
1
2 (c†

k ck+1+c†
k+1ck ).

In the last step, we use “≈” instead of “=” because we use
an approximation

∑L
j=1 ei2πα(k−k′ ) j ≈ δ(k − k′), which holds

true exactly only in the limit of L → ∞ or by taking α = M/L
to approximately represent an irrational number with M being
coprime to L. Using X to represent the transformation, we get
the following relation:

X −1U (T, λ)X ≈ U †

(
−λ

2
,−2T

)
.

According the properties of Floquet operator U †(T ) =
U −1(T ), we can get

X −1U (T, λ)X ≈ U −1

(
λ

2
,−2T

)
.

After the transformation, we can see that the hopping term
in real space corresponds to the on-site potential term in
momentum space, and the on-site potential term in real space
corresponds to the hopping term in momentum space. It is
clear that λ = 2T is the self-duality point. We note that the
duality mapping is also discussed in Ref. [70].

APPENDIX B: MULTIFRACTAL EXPONENT IN THE CASE
WITH EXTENDED-TO-MULTIFRACTAL EDGE

For the case with extended-to-multifractal edge, both the
extended and multifractal eigenstates attribute to the expan-
sion of the wave packet. In order to extract the average
multifractal exponent, we need to eliminate the effect of the
extended states. According to the duality properties, the po-
sition of the extended-to-multifractal edge is the same as the
position of the localized-to-multifractal edge of its dual model
if the parameters satisfy the dual mapping relation. Extended
eigenstates lead to a linear increase of the long-time survival
probability P(r). We can divide the eigenstates into two parts:
all the eigenvalues are extended in the first part and all the
eigenvalues are multifractal in the second part. We can esti-
mate the number of extended states by the number of localized
states in its dual model. We assume that the proportion of
extended states in all eigenstates is p and we define a modified
long-time survival probability:

P1(r) = P(r) − p × r

L
, (B1)

where the second term is used to eliminate the effect of
the extended states. We can extract the average multifractal
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exponent by

ln(P1(r)) ≈ D′
2 ln(r/L) + ln(1 − p), (B2)

where D′
2 is determined by the slope of ln(P1(r)) − ln(r/L)

line and p = c0 with c0 determined from its dual model.

APPENDIX C: FINITE-SIZE SCALING ANALYSIS

As we know, the ratio 〈r〉 changes from 0.53 to 0.39 when
the system undergoes a transition from ergodic phase to MBL
phase. We perform a finite-size scaling analysis for 〈r〉 =
f [(λ − λc)L1/ν] with a fixed kicked period T = 0.1 and in-
teraction strength V = 1. Here λc denotes the transition point
from the ergodic phase to MBL phase and ν is the associated
critical exponent. We fit numerical data for the region close to
the phase transition by Taylor expanding the scaling function
f [(λ − λc)L1/ν] and the scaling variables

〈r〉 ≈ f (0) + f (1)(λ − λc)L1/ν + . . .

By performing a nonlinear least squares fitting, we find the
best fitting is λc ≈ 0.3138 and ν ≈ 0.6.

APPENDIX D: EFFECT OF THE
INTERACTION STRENGTH

In the discussion of the main text, we choose the interaction
strength as V = 1. Here we discuss the effect of interaction
strength on the thermalization of the system. The results are

0 0.2 0.4 0.6 0.8 1
0.35

0.4

0.45

0.5

0.55

FIG. 12. 〈r〉 in different kick periods and system sizes. We
choose λ = 3.5 and take 1000 samples for every curve.

shown in Fig. 12. We choose λ = 3.5 and T = 0.3 and 1.5,
respectively. In the noninteracting case, all eigenstates are
localized for T = 0.3 (case 1) and there are multifractal-to-
localized edges for T = 1.5 (case 2). As we can see, for
the case 1, 〈r〉 remains at 0.39 in the MBL region when we
increase the interaction strength and the system size. In con-
trast, for the case 2, increasing interaction strength can lead
to the thermalization of the system. As we increase the size
of the system, smaller interaction can lead to thermalization
of the system.
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