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Bosonic fractional quantum Hall conductance in shaken
honeycomb optical lattices without flat bands
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We propose a scheme to realize bosonic fractional quantum Hall conductance in shaken honeycomb optical
lattices. This scheme does not require a very flat band, and the necessary long-range interaction relies on s-wave
scattering, which is common in many ultracold-atom experiments. By filling the lattice at 1/4 with identical
bosons under Feshbach resonance, two degenerate many-body ground states share one Chern number of 1 and
correspond exactly to the fractional quantum Hall conductance of 1/2. Meanwhile, we prove that the fractional
quantum Hall state can be prepared by adiabatically turning on the lattice shaking, and the fractional conductance
is robust in the shaken lattice. This provides an easy way to initialize and prepare the fractional quantum Hall
states in ultracold-atom platforms, and it paves the way to investigate and simulate strongly correlated quantum
matters with degenerate quantum gas.
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I. INTRODUCTION

The fractional quantum Hall (FQH) effect is one of the
most fascinating phenomena in recent decades [1]. In the FQH
effect, multiple many-body ground states share one integer
Chern number, and effectively each of the bands obtains a
fractional number to characterize the conductivity. In pre-
vious studies [1–3], it was proved that the FQH effect can
be achieved either in fermions or bosons. However, due to
the fermionic nature of electrons in conventional materials,
the FQH effect has only been observed experimentally in
fermions. This leaves open the question of how to realize the
bosonic FQH effect experimentally, e.g., to realize and probe
the Hall conductance corresponding to one-half.

With the development of quantum simulations [4,5], the
platforms of ultracold atoms now provide good opportunities
to study and simulate strongly correlated many-body systems
[6–14], particularly for the bosonic FQH effect. There are
many pioneer experiments in realizing nontrivial Chern num-
bers or large synthetic gauge fields [15–23] in order to reach
regimes of strong correlations. Inspired by previous studies
of the FQH effect in “Haldane-like” models [9,10,17,24],
we find that the bosonic FQH conductance can be achieved
and experimentally initialized in shaken honeycomb optical
lattices without synthetic magnetic fields. This scheme relies
on the Feshbach resonance at s-wave scatterings [25], which
does not require special long-range interactions.

Meanwhile, compared to previous studies [9,10,12,13] re-
quiring a flat band where the band gap is much larger than the
bandwidth, our scheme is realized with the nearest-neighbor
hopping model, and it does not require a very flat band.

*hujiazhong01@ultracold.cn

Our band gap is almost the same as the bandwidth. This
avoids special designs for high-order hoppings for far-apart
lattice sites to flatten the bands, and it reduces the complexity
of Hamiltonian engineering. Furthermore, we find that the
states with FQH conductance can be prepared by adiabatically
turning on the shaking of static optical lattices, which is topo-
logically trivial. This simplifies the procedures to initialize the
FQH states in optical lattices. We believe that this scheme will
inspire new opportunities to experimentally study the bosonic
FQH effect in an easier way.

II. SHAKEN HONEYCOMB OPTICAL LATTICES
AND SINGLE-BODY TOPOLOGY

The honeycomb optical lattice is formed by the interfer-
ence of three red-detuned lasers at the same frequency, which
have a relative angle at 120◦ and are in one incident plane
[Fig. 1(a)]. The polarizations of lattice beams are parallel
to the incident plane. The dipole potential Vop of the optical
lattice can be written in the form of

Vop = −VD
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where VD is the trap depth in our definition, k = 2π/λ is
the wave vector, and λ is the wavelength of lattice lasers.
This gives a lattice spacing a = λ/2

√
3, corresponding to

a hexagon whose side length is λ/2
√

3. When cold atoms
are trapped in honeycomb lattices, they can be described
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FIG. 1. (a) The schematic of shaken honeycomb optical lattices. The definition of the m- (n-) axis of lattice coordinate and the hopping
terms are marked on the lattice. When the phases of three beams are modulated by φ1 = φA cos(�t + π/2), φ2 = φA cos(�t − π/6), and
φ3 = φA cos(�t + 5π/6), the lattice sites move along a counterclockwise circular trajectory whose angle frequency is � and orbital radius is
proportional to φA. (b) The band flatness ratio vs modulation parameters z0 and t0/�. (c) Effective tunnelings t̃m vs z0 at t0/� = 0.1 [red line
in panel (b)]. (d) The single-particle band at z0 = 2.3, t0/� = 0.108 [red cross in panel (b)], where each band has a nonzero Chern number.

by a tight-binding model, whose Hamiltonian H0 is H0/h̄ =
−∑

〈i, j〉 t0ĉ†
i ĉ j where t0 is the nearest-neighbor hopping am-

plitude; ĉ†
i (ĉi) is the creation (annihilation) operator on lattice

cite i; 〈·〉 corresponds to the summation of all nearest-neighbor
sites.

To create nontrivial topological bands in tight-binding hon-
eycomb lattice, we apply a periodic modulation on the phases
of the lattice beams to break the time-reversal symmetry,
where phases of each laser beam are modulated according to
φ1 = φA cos(�t + π/2), φ2 = φA cos(�t − π/6), and φ3 =
φA cos(�t + 5π/6). This creates a shaken lattice of which
each site i follows a circular motion �ri(t ) where �ri(t ) = �ri,0 −
A[cos(�t )x̂ + sin(�t )ŷ] and A is orbital radius of the circular
trajectory. The lattice shaking alternates the original Hamilto-
nian H0 into a time-dependent form Ĥ ′(t ), and

Ĥ ′(t )/h̄ = −
∑
〈i, j〉

eizi j sin(�t+φi j )t0ĉ†
i ĉ j + H.c., (2)

where 〈i, j〉 corresponds to a pair of nearest-neighbor lat-
tice sites, zi j = ma�Aρi j/h̄, ma is the mass of an atom, and
ρi jeiφi j = (�ri,0 − �r j,0) · (x̂ + ŷe−iπ/2). Here zi j is the ratio of
ma�

2Aρi j to h̄�, where the numerator is the product of the
centrifugal shaking force ma�

2A and the distance ρi j , and the
denominator is the Floquet energy h̄�.

A periodic Hamiltonian is decomposed into a Fourier
transformation that Ĥ ′(t ) = ∑

l∈Z Ĥleil�t . When � is large,
we obtain an effective time-independent Floquet Hamil-
tonian Ĥf l based on high frequency expansion method
[26–29]. We rewrite the effective Floquet Hamiltonian Ĥf l

based on the nearest-neighbor (NN), next-nearest-neighbor
(NNN), next-next-nearest-neighbor (NNNN), and next-next-
next-nearest-neighbor (NNNNN) hoppings, i.e.,

Ĥf l/h̄ = −
∑
〈i, j〉

t̃0ĉ†
i ĉ j −

∑
〈i, j〉2

t̃1ĉ†
i ĉ j −

∑
〈i, j〉3

t̃2ĉ†
i ĉ j

−
∑
〈i, j〉4

t̃3ĉ†
i ĉ j + H.c., (3)

where 〈·〉, 〈·〉2, 〈·〉3, and 〈·〉4 correspond to the summations
of the NN, NNN, NNNN, and NNNNN sites. We plot t̃m

in Fig. 1(c), and the detailed formula of t̃m can be found in
the Appendixes. The effective NNN hopping amplitude has
an imaginary part, which breaks the time-reversal symmetry,
opens the band gap, and gives a nonzero Chern number to each
band. The band flatness ratio is usually used to characterize
the potential of many-body topology [30], where the ratio
is defined by the band gap divided by the bandwidth of the
ground band. In Fig. 1, we present the flatness ratio, hopping
strength, and energy bands under different parameters. Usu-
ally a flat band is required to show the dominated bosonic
FQH effect [9,10], while flattening the band is a challenge
in ultracold-atom experiments since the intrinsic long-range
hoppings are strongly suppressed for remote lattice sites. In
our scheme, the flatness ratio is less than 2 where the gap is
near the same as the bandwidth. We find that it is still suitable
to realize the FQH conductance of 1/2.

III. MANY-BODY TOPOLOGY WITH STRONGLY
INTERACTING BOSONS

Now we switch our description from single-body physics
to many-body physics. To achieve the fractional conductance,
we need both strong on-site interactions and finite nearest-
neighbor interactions. This can be realized by conventional
s-wave Feshbach resonance [25]. For a given trap depth VD

in Eq. (1), we calculate the Wannier functions of each site
by the methods in Ref. [31] (see Appendix B for more de-
tails). The on-site interaction U is obtained by the integral
U = 4π h̄2as

ma

∫
d3rw†(r)w†(r)w(r)w(r), where as is the scat-

tering length and ma is the mass of one atom. w(r − ri ) is the
Wannier function centered at the position ri. Usually in Bose-
Hubbard models we only keep the on-site interactions and
ignore the NN interaction V1. However, once the scattering
length as approaches infinity under Feshbach resonance, the
NN interaction V1 becomes significant with a form of [32]

V1 = 8π h̄2as

ma

∫
d3rw†(r)w†(r − a)w(r − a)w(r)

= 2U

∫
d3rw†(r)w†(r − a)w(r − a)w(r)∫

d3rw†(r)w†(r)w(r)w(r)
. (4)
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TABLE I. V1 versus the trap depth VD. We calculate the intrinsic
NN tunneling t0, NNN tunneling t1, and NNNN tunneling t2 of
the original unshaken lattice, where t1 and t2 are usually negligible
compared with t0. Here we assume there is a perpendicular trap
tightly confining cold atoms into 2D degenerate gas, and the tight
trap is described by a harmonic trap with a vibrational frequency at
50 kHz.

VD/Er h̄t0/Er h̄t1/t0 104t2/t0 U/Er V1/2Er V1/t0

20 0.059 −0.020 16 71.34 0.034 1.16
22 0.050 −0.016 11 75.47 0.024 0.96
24 0.043 −0.014 7.4 79.41 0.017 0.78
26 0.037 −0.011 5.2 83.19 0.012 0.64
28 0.031 −0.0096 3.6 86.82 0.0088 0.58
30 0.027 −0.0081 2.6 90.31 0.0063 0.48
32 0.023 −0.0068 1.8 93.68 0.0047 0.40

Here a corresponds to the relative vector between two nearest-
neighbor sites.

In rubidium 85, there is a Feshbach resonance at 155.3 G
[33,34] with a width around 11 G and a background scattering
length −441a0, where a0 is the Bohr radius. Considering that
magnetic-field fluctuations can be controlled within 1 mG in
most labs, the scattering length can be tuned up to 10 000a0

with a relative uncertainty less than 0.25%. This offers the
opportunity that the on-site interaction reaches the hard-core
regime while the nearest-neighbor interaction is still important
in the tight-binding model. In Table I, we list the hopping
coefficients and interaction strength versus VD in unshaken
lattices. At the condition of as = 10 000a0 and VD = 28Er

(Er = h̄2k2

2ma
), the original t0 is 0.031Er and the on-site inter-

action U is 88Er , which satisfies U 	 t0. U strongly repulses
any doublons in one site. Meanwhile, the NN interaction V1 is
0.56h̄t0 and is significant compared with the hopping ampli-
tudes.

In the strong-correlation regime, the single-particle band
description cannot capture the actual physics. Therefore, using
the twisted boundary condition, we write out the many-body
Floquet Hamiltonian ĤFl-many of hard-core bosons with the
nearest-neighbor interaction V1 under the trap depth VD =
28Er . Here the twisted boundary condition is ψ (ri + Lmm̂) =
eiθx ψ (ri ) and ψ (ri + Lnn̂) = eiθyψ (ri ), where Lm(Ln) is the
lattice size along the m- (n-) axis and the axes are marked
in Fig. 1(a). At θx = θy = 0, the twisted boundary condition
is the same as the periodic boundary condition. ĤFl-many is a
giant-sized sparse matrix (see Appendix E for more informa-
tion). Then we apply the exact diagonalization to calculate the
lowest four energy levels and their corresponding many-body
bands in the case of 6 bosons in 24 lattice sites (ĤFl-many has a
size around 105 × 105), where the bands are characterized by
θx and θy instead of the quasimomenta kx and ky.

By scanning the Floquet parameter z0 and NN interaction
V1, there are some regions in which the lowest two many-body
bands cross each other while they are away from the third
band. In Fig. 2(a), we present the energy difference between
the second and third energy states (E3 − E2) under the twisted
boundary condition. Here we take the inherent long-range
hopping beyond the tight-binding models (t1 and t2) into

FIG. 2. (a) Different phases distinguished by the many-body gap
E3 − E2. We also label out NOON phase here. While the system
is in NOON states, the honeycomb lattice is decomposed into two
individual sets of triangle lattices. The atoms fill one of the triangle
lattices and leave the other empty. The actual ground states are the
superpositions of these two possibilities, like a NOON state. (b) The
variation of many-body energy levels with lattice sites N under VD =
28Er . Here it shows the same behavior as Ref. [9] and maintains
the FQH band gap. (c) Many-body bands at VD = 28Er . (d) Discrete
Berry curvature of the two lowest states while the integral is −1.

account in calculating the zeroth-order effective Hamiltonian,
and we neglect them in higher-order expansions. We mark
the candidates for the FQH conductance at 1/2 in Fig. 2(a)
according to the gap opening. In Fig. 2(c), we plot the many-
body bands versus θx and θy in this phase regime. It shows that
two lowest bands cross each other and are away from the third
band.

To further verify the conductance, we calculate
the total Chern number C of the lowest two bands.
Here C equals 1

2π

∑
K=1,2

∫
dθxdθyFxy,K (θx, θy), where

Fxy,K (θx, θy) = Im(〈 ∂ψK

∂θy
| ∂ψK

∂θx
〉 − 〈 ∂ψK

∂θx
| ∂ψK

∂θy
〉) is the Berry

curvature of the K th state in the ground-state manifold. We
divide the whole θx − θy space into 20 × 20 pieces, and
we calculate the energies and the discrete Berry curvatures
[35] in Figs. 2(c) and 2(d). The two lowest bands share one
integer Chern number C = −1 together, corresponding to
FQH conductance of 1/2. We calculate cases in lattices of
different sizes to show the robustness of our scheme against
the finite-size effect [Fig. 2(b)], while the size of ĤFl-many

increases dramatically (ĤFl-many has a size of 108 × 108 for 36
sites).

IV. ROBUSTNESS AGAINST THE HIGHER BAND
EXCITATION AND FLOQUET HEATING

The tight-binding Hamiltonian in Eq. (2) only considers
the contributions from s-bands, while a large scattering length
may cause the s-band to mix with higher-excited bands. We
follow the same treatment in Ref. [36], which successfully
describes the interband transitions in optical lattices. We build
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a model with two sites, two particles, and both s-bands and
p-bands to estimate the contributions from higher bands. The
detailed numerical calculations and analyses are listed in Ap-
pendix C, and only the conclusion is presented in the main
text. The dominant interband transitions induced by a large
scattering length are that two neighboring particles in s-bands
will scatter to p-bands together due to collisions. The coupling
matrix element of this process is less than 0.1Er , but the
energy detuning is more than 10Er . This suggests that there
will be a suppressing factor more than 10−4 for a higher-band
mixture, which is negligible in our systems.

In addition to the phenomena of higher-band mixture due
to a large scattering length, the Floquet modulation may also
cause the transitions to the excited bands. A particle at site-i
may absorb 
np Floquet “photons,” and be excited to a higher
band. The effective coupling strength Q
np to excite a particle
to higher bands via a resonant 
np-photon process is (see
Appendix D for detailed calculations)

Q
np = B
np

(
z0

z0,th

)
np−1

. (5)

Here B
np is a coefficient whose magnitude has a weak depen-
dence on 
np, and we list the detailed form in Appendix D.
The threshold z0,th is a dimensionless quantity that is approx-
imately the photon number 
np divided by Euler’s number
e. In the case of VD = 28Er , it requires at least 28 photons
to excite a particle to the higher bands, so z0,th is around
10, while z0 in our proposal is 2.3. Then ( z0

z0,th
)
np−1 in the

equation provides a factor of 10−19. Therefore, the interband
heating caused by Floquet modulation is negligible in our
scenario.

V. ADIABATIC PREPARATION OF FQH STATES

Another potential question about our model is whether
it is appropriate to derive an effective Hamiltonian by the
high-frequency-expansion method. To eliminate this concern
and prove that we can prepare such FQH states adiabatically
in cold-atom platforms, in the following calculations we ap-
ply the original time-dependent Hamiltonian, which contains
intrinsic long-range hoppings and does not include Floquet
treatments. The original time-dependent Hamiltonian is in the
form of

H (t ) = −
[∑

〈i, j〉
eizi j sin(�t+φi j )t0ĉ†

i ĉ j +
∑
〈i, j〉2

eizi j sin(�t+φi j )t1ĉ†
i ĉ j

+
∑
〈i, j〉3

eizi j sin(�t+φi j )t2ĉ†
i ĉ j

+
∑
〈i, j〉4

eizi j sin(�t+φi j )t3ĉ†
i ĉ j + · · · + H.c.

]

+
∑
〈i, j〉

Vi, j n̂in̂ j . (6)

Here t0, t1, t2, and t3 are intrinsic NN, NNN, NNNN, and
NNNNN hopping coefficients for static honeycomb optical
lattices (Table I). The on-site interaction U does not appear
in the expression since we limit the Hilbert space into the

(a) (b)

(c)

FIG. 3. (a) Fidelity vs z0 and C. The inset is a zoom-in plot to
show the difference near z0 = 2.3. Slowly turning on the Floquet
modulation helps the fidelity, and 400 modulation cycles will be slow
enough to reach the adiabatic limit. (b) The spectrum of energy En vs
θx for the eight lowest-energy states of the effective Hamiltonian. The
energy is normalized by t0, and θx is changed from 0 to 4π . The two
lowest states share the Chern number 1, and it is a typical signature
of fractional quantum Hall conductance at 1/2. (c) Fidelity within
the manifold of the lowest two states while changing θx . The green
belt denotes the adiabatic-evolved state; the red dotted line is for the
ground state of the effective Hamiltonian; the blue solid line is for
the ground state of a topologically trivial Hamiltonian.

states where each site can be filled with one particle at most.
zi j and φi j have the same meaning as those in Eq. (2) and have
different values for different hoppings.

Therefore, we simulate how to prepare the target FQH
state, which is the ground state of the effective Hamiltonian
under the twisted boundary condition, with FQH conductance
of 1/2. Initially, the lattice is static and unshaken, and we start
with the ground state |ψ (z0 = 0)〉 under twisted boundary
conditions. Then we fix the shaking frequency � at 0.108 and
linearly ramp the shaking amplitude A to increase z0 from 0
to 2.3 in C Floquet-modulation cycles, and we calculate the
fidelity, which is the module square of inner products, between
the time-evolved state and the target FQH state.

In Fig. 3(a), we plot the fidelity versus z0 and different
ramping rates (or total modulation cycles C). The fidelity at
the end of ramping reaches over 85% for both cycles C = 300
and 400, and it approaches a constant while C > 400. We
find that if we ignore t̃3 (NNNNN hoppings) in the effective
Hamiltonian, the fidelity drops below 80%. Although t̃3 is
only 1/30 of other major terms, it hurts the calculations of
fidelities. It suggests that the ground state of the effective
Hamiltonian is not identical to the experimentally prepared
state by adiabatic ramping, and this causes the fidelity to fall
below 100%.

Following the discussion of FQH conductance in Ref. [37],
the ground state and the first excited state cross each other
in the many-body energy spectrum while they are isolated
from the higher excited states. Besides this level isolation, one
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of the 1/2-FQH states evolves into the other one when the
boundary condition θx is changed by 2π . Then, 4π instead of
2π becomes the period for the state to evolve back to itself. In
Fig. 3(b), we show that the states of the effective Hamiltonian
have a 4π -period and the level isolation.

Therefore, for the adiabatic-evolved states without tight-
binding approximations, we apply the same arguments to
prove the FQH conductance. We use State I to denote the
adiabatic-evolved state during the preparation. We tune θx by
2π very slowly, and State I evolves and cannot come back
to itself since the gap is closed during the change of bound-
ary conditions. We extract the orthogonal component at 2π

change, and we refer to it as State II. This state maintains a
good fidelity (always above 75%) with the first excited state
of the effective Hamiltonian.

We change θx for multiple 2π [Fig. 3(c)] and calculate
the overall fidelity within this manifold of States I and II for
the actual scenario. In Fig. 3(c), we show how the fidelity
changes while the boundary condition is being varied (green
belts). When θx leaves 0 or 2π , the overlap between State I
and State II decreases since the state is evolving. When θx

reaches integer times of 2π , the fidelity comes back again.
After a few 2π , the fidelity is stably oscillating and does not
decay while θx is varied. The shape of belts is due to rapid
Floquet modulations. Within each modulation, the fidelity is
oscillating and the long-time-scale fidelity behaves like an
area instead of a line. Here the fidelity does not exactly come
back to 1, and we believe this is mainly due to the numerical
errors of the giant matrix and data storage.

To prove this point, we numerically calculate another two
cases for direct comparisons. One case is for the effective
Hamiltonian under Floquet theory (red dotted line), and the
other is for a topologically trivial Hamiltonian (blue solid
line). For the effective Hamiltonian, the change of fidelity
behaves very similar to the case of an adiabatic-evolved state.
It is robust and does not decay while we continue changing
θx. Since we analytically solve this model, the ideal case
should be that the fidelity reaches 1 again when θx is integer
times of 2π . The fidelity below 1 is due to the numerical
errors of a large-size matrix. The same reason applies to the
case of the adiabatic-evolved state. Therefore, the robustness
of the fidelity in the manifold of State I and State II proves
the properties of FQH conductance. For the case of the topo-
logically trivial Hamiltonian, we find the fidelity is decreasing
while we change θx. This indicates that the wave function is
leaking out from this manifold. There is no gap separating the
two lowest-energy states with the other bands, which cannot
support FQH conductance.

VI. CONCLUSIONS

In conclusion, we find a scheme realizing the bosonic FQH
conductance of 1/2 in optical lattices without a flat band.
By circularly shaking the optical lattice and applying Fesh-
bach resonance, the system displays a fractional quantum Hall
conductance of 1/2. We show that the state with this conduc-
tance can be experimentally prepared by adiabatic turning on
the lattice shaking. It provides a convenient and robust way
to investigate the bosonic FQH effect [38–43] in cold-atom
experiments.
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APPENDIX A: EFFECTIVE FLOQUET HAMILTONIAN

In this Appendix, we derive the effective Floquet Hamil-
tonian for shaken optical lattices. The lattice moves along
a trajectory rl (t ), where the subscript l corresponds to the
displacement of the whole lattice. In the lattice coordinate,
there is an inertial force F(t ) = −mr̈l (t ) applying to each
atom whose mass is m, and this leads to a site-dependent
potential −F(t ) · ri. Therefore, the Hamiltonian in the lattice
coordinate has a form of

Ĥ (t ) = −
∑
i, j

h̄ti j ĉ
†
i ĉ j −

∑
i

[F(t ) · ri]ĉ
†
i ĉi

+
∑
〈i, j〉

Vi, j n̂in̂ j + 1

2

∑
i

Uin̂i(n̂i − 1), (A1)

where i or j may represent any lattice site, while 〈i, j〉
corresponds to a nearest-neighbor pair of lattice sites. By
introducing a unitary transformation

Û (t ) = exp

[
i

h̄

∑
i

[−maṙl (t ) · ri]ĉ
†
i ĉi

]
, (A2)

the Hamiltonian is converted into

Ĥ ′(t ) = Û †(t )Ĥ (t )Û (t ) − ih̄ Û †(t )∂tÛ (t ). (A3)

The first term on the right-hand side leaves the inertial-force
potential and interaction terms unchanged, and the second
term cancels out the inertial-force potential. By applying the
Baker-Campell-Hausdorff formula, the hopping terms after
the transformation become

Û †(t )

(
−

∑
i, j

h̄ti j ĉ
†
i ĉ j

)
Û (t ) = −h̄

∑
i, j

ti j ĉ†
i ĉ je

i
h̄ ma ṙl (t )·ri j ,

(A4)
where ri j = ri − r j is the relative position between sites i and
j, and the Hamiltonian after the transformation is

Ĥ ′(t ) = −h̄
∑
i, j

ti j ĉ†
i ĉ je

i
h̄ ma ṙl (t )·ri j

+
∑
〈i, j〉

Vi, j n̂in̂ j + 1

2

∑
i

Uin̂i(n̂i − 1) (A5)

when the lattice moves along a circular trajectory with a ra-
dius A, i.e., rl (t ) = rl,0 − A[cos(�t )x̂ + sin(�t )ŷ]. Then we
introduce the symbols ρi j and φi j to simplify the equation,
whose definitions are ρi jeiφi j = (�ri,0 − �r j,0) · (x̂ + ŷe−iπ/2).
Then Ĥ ′(t ) is

Ĥ ′(t ) = −h̄
∑
i, j

ti j ĉ†
i ĉ je

i
h̄ maA�ρi j sin(�t+φi j )

+
∑
〈i, j〉

Vi, j n̂in̂ j + 1

2

∑
i

Uin̂i(n̂i − 1). (A6)
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Then we use a dimensionless parameter zi j = maA�ρi j/h̄ to
characterize the system. In the main text, z0 is the nearest-
neighbor zi j , and the higher order of zi j can be derived based
on this formula and the value of z0. A periodic Hamiltonian
can be Fourier-decomposed by the Jacobi-Anger method into
Ĥ ′(t ) = ∑

n∈Z Ĥnein�t , and the nth-order Fourier term for
Ĥ ′(t ) is

Ĥn = −h̄
∑
i, j

ein�t Jn(zi j )e
inφi j ti j ĉ†

i ĉ j

+ δn0

(∑
〈i, j〉

Vi, j n̂in̂ j + 1

2

∑
i

Uin̂i(n̂i − 1)

)
, (A7)

where Jn(x) is the nth Bessel function.
In the high-frequency region, the time-dependent Hamil-

tonian can be approximated by a time-independent Floquet
Hamiltonian ĤFl based on the high-frequency expansion
method [26–29] with a form of ĤFl = Ĥ0� + Ĥ1� + Ĥ2� +
· · · . Here Ĥ0�, Ĥ1�, and Ĥ2� are obtained via the commuta-
tion relations of Ĥn, i.e.,

Ĥ0� = Ĥ0, (A8)

Ĥ1� = 1

h̄�

∞∑
n=1

1

n
[Ĥn, Ĥ−n], (A9)

Ĥ2� = 1

2h̄2�2

∞∑
n=1

1

n2
([[Ĥn, Ĥ0], Ĥ−n] + H.c.)

+ 1

3h̄2�2

∞∑
n,n′=1

1

nn′ ([Ĥn, [Ĥn′ , Ĥ−n−n′ ]]

− [Ĥn, [Ĥ−n′ , Ĥ−n+n′ ]] + H.c.). (A10)

Considering an unshaken lattice with only nearest-
neighbor (NN) hopping t0, the commutator of two NN
hopping produces a new hopping term with longer
range, i.e., [ĉ†

i ĉ j, ĉ†
j ĉk] = ĉ†

i ĉk . Therefore, the Floquet
Hamiltonian has NN, next-nearest-neighbor (NNN), next-
next-nearest-neighbor (NNNN), and next-next-next-nearest-
neighbor (NNNNN) hoppings, with a form of

ĤFl/h̄ = −
∑
〈i, j〉

t̃0ĉ†
i ĉ j −

∑
〈i, j〉2

t̃1ĉ†
i ĉ j −

∑
〈i, j〉3

t̃2ĉ†
i ĉ j

−
∑
〈i, j〉4

t̃3ĉ†
i ĉ j + H.c., (A11)

where 〈·〉, 〈·〉2, 〈·〉3, and 〈·〉4 correspond to the summations
of the NN, NNN, NNNN, and NNNNN sites. The effective
hopping amplitudes are

t̃0 = t0J0(z0) + 2t3
0

�2

∞∑
s=1

1

s2
Js(z0)J0(z0)J−s(z0)[2 cos(2sπ/3) − 2 cos(sπ/3)

+ 2 cos(2sπ/3) − 3 cos(sπ ) + 1] + 4t3
0

3�2

∞∑
s,s′=1

1

ss′ {Js(z0)Js′ (z0)J−s−s′ (z0)

× [2 cos(2sπ/3 − s′π/3) − 2 cos(sπ + s′π/3) + 2 cos(−2sπ/3 − s′π )

− 2 cos(sπ/3 + s′π ) + cos(s′π ) − cos(sπ + s′π )] − (s′ → −s′)}, (A12)

t̃1 = −2it2
0

�

∞∑
s=1

1

s
Js(z0)J−s(z0) sin(sπ/3), (A13)

t̃2 = 4t3
0

�2

∞∑
s=1

1

s2
Js(z0)J0(z0)J−s(z0)[cos(2sπ/3) − cos(sπ/3)]

+ 8t3
0

3�2

∞∑
s,s′=1

1

ss′ {Js(z0)Js′ (z0)J−s−s′ (z0)[cos(2sπ/3 + s′π/3) − cos(sπ/3 − s′π/3)] − (s′ → −s′)}, (A14)

t̃3 = 2t3
0

�2

∞∑
s=1

1

s2
Js(z0)J0(z0)J−s(z0)[1 − cos(sπ/3)] + 4t3

0

3�2

∞∑
s,s′=1

1

ss′ {Js(z0)Js′ (z0)J−s−s′ (z0)[cos(−s′π/3)

− cos(−sπ/3 − s′π/3)] − (s′ → −s′)}. (A15)

Here we have not taken the interaction terms into account. The
influence of the NN interaction V1 on the Floquet Hamiltonian
is proportional to 1

�2 and produces number-dependent NNN
hopping. In the high-frequency region, the NNN hopping
induced by V1 is less than one-tenth of that in Eq. (13), so
we neglect it in the calculation of effective hopping. This
approximation affects the calculation of the ground state of
the effective Hamiltonian, so we simulate the wave function
under the exact time-dependent Hamiltonian in the main text

and show that the negligence is reasonable. Because we are
interested in the scenario of hard-core bosons (U → ∞), it
requires a high-energy cost for two particles to occupy the
same site, and the Floquet photons cannot provide such a
large energy. In the region where the modulation frequency
is much smaller than the energy scale of interaction, the high-
frequency expansion method is not applicable. In Appendix D,
we show that it is safe to confine the Hilbert space in the
subspace composed of single-occupation states despite the
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Floquet modulation. Therefore, the on-site interaction does
not appear in the Hamiltonian.

APPENDIX B: WANNIER FUNCTIONS IN HONEYCOMB
OPTICAL LATTICES

We calculate the ground-state Wannier function in honey-
comb optical lattices in order to characterize the on-site and
nearest-neighbor interactions. First, we calculate the Bloch
functions |ψ1,k〉 and |ψ2,k〉 of the first and second energy
bands at a 50 × 50 k-point mesh. The Wannier function is the
Fourier transform of the Bloch function with a form of

|Rn〉 = V

(2π )3

∫
FBZ

dk|ψn,k〉e−ik·R, (B1)

where R is a lattice vector, |Rn〉 is the nth Wannier function
in the primitive cell at R, and the integral domain is the first
Brillouin zone (FBZ).

The choice of Bloch function has a gauge freedom that
permits the replacement of |ψn,k〉 by eiθ (k)|ψn,k〉. Therefore,
a good gauge should make the derivative of Bloch function
∇|ψn,k〉 well defined in the FBZ. If there are J bands having
a crossover with each other, the gauge freedom is generalized
to a unitary transform U (k)

mn among J Bloch functions,

|ψ̃nk〉 =
J∑

m=1

|ψmk〉U (k)
mn . (B2)

Here, the gauge is determined by the projection method
[31,44]. We use the ground state of the harmonic trap localized
at the A- or B-site of honeycomb cells as the trial functions
|h1〉 and |h2〉. We define a matrix A(k)mn = 〈ψm,k|hn〉, and
the unitary transform U (k)

mn can be represented by the singular
value decomposition of A(k) = Us(k)Ds(k)V †

s k), where Us(k)
and Vs(k) are unitary and Ds(k) is diagonal. Then, the gauge
matrix U (k)

mn is U (k)
mn = Us(k)V †

s (k).
Then, we use the results above to calculate the required

inputs of WANNIER90 [45] and optimize the output Wan-
nier functions. We find that the spread of optimized Wannier
functions reaches the minimal value, which verifies that the
Wannier function obtained from the projection method is the
maximally localized Wannier function (MLWF). It is required
that the MLWF should be real all over the space, and the
maximal magnitude of imaginary parts in our result is 10−13

less than the maximal values of real parts. It supports that
the nonvanishing imaginary parts are caused by numerical
precision and do not hurt our calculations.

In Fig. 4(a), the MLWF centered at the A-site wA(r) is
plotted in a logarithmic scale. In Figs. 4(b) and 4(c), the
MLWFs along the x-axis are plotted, and they are compared
with the trial functions hA(r) and hB(r). Both MLWFs and
trial functions are normalized so that the squared-integral in
the x-y plane is 1.

The calculation of interactions in the BH model requires
a three-dimensional Wannier function, so we assume a har-
monic trap along the z-axis with a vibrational frequency
ωz = 2π × 50 kHz. We use the ground-state wave func-
tion wA(z) of the harmonic trap along the z-axis for the
third dimension. The integral contribution along the z-axis is∫

dz w
†
A(z)w†

A(z)wA(z)wA(z) =
√

maωz

h̄ , where A corresponds

FIG. 4. (a) MLWF centered at the A-site. The trap depth VD =
30Er . Here a is the lattice constant corresponding to the distance
between the nearest A-site and B-site. (b) Comparison of MLWFs
and trial functions (Gaussian functions from harmonic traps). (c) A
zoom-in plot of panel (b) for comparison of MLWFs and trial func-
tions around 0. All the panels are plotted in the logarithmic scale for
the wave-function values.

to the A-site. We use rubidium 85 as an example, and the
integral contribution is 4.16 μm−1. In Table II, we present
the integral in the x-y plane and the corresponding interaction
at the scattering length as = 10 000a0 (a0 is the Bohr radius).
The integral for the on-site overlap is

I1 =
∫

dx dy w
†
A(x, y)w†

A(x, y)wA(x, y)wA(x, y). (B3)

The integral of the NN overlap is

I2 =
∫

dz w
†
A(x, y)w†

B(x, y)wB(x, y)wA(x, y). (B4)

The hopping terms are numerically acquired by fitting the
Bloch bands to the tight-binding model with higher hopping
terms [46]. The results are listed in the main text.

TABLE II. The overlap contributions in the x-y plane for on-site
and nearest-neighbor versus the trap depth VD. The integral of overlap
I1 and I2 is normalized to the units of λ−2, where λ is the wavelength
of lasers for optical lattices. The energy is normalized to the unit of
the recoil energy Er = h2/(2mλ2) = h̄2k2

2ma
.

VD (Er ) I1 (λ−2) I2 (λ−2) U (Er ) V1/2 (Er )

20 25.9009 0.0123 71.34 0.0339
22 27.3995 0.0087 75.47 0.0240
24 28.8305 0.0062 79.41 0.0171
26 30.2013 0.0044 83.19 0.0121
28 31.5182 0.0032 86.82 0.0088
30 32.7867 0.0023 90.31 0.0063
32 34.0115 0.0017 93.68 0.0047
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APPENDIX C: TWO-PARTICLE, TWO-SITE,
AND TWO-BAND MODEL

For bosons in lattices, the field operator is

ψ̂ (r) =
∑
m,Ri

b̂m,iwm(r − Ri ), (C1)

where b̂m,i is the annihilation operator of bosons with site
index i and band index m, and wm(r − Ri ) is the correspond-
ing Wannier function. Considering a δ-function potential, the
general form of the lattice model is [32]

Ĥ = −
∑
i jm

tm
i j b̂

†
m,ib̂m, j + 1

2

mnm′n′∑
i ji′ j′

U mnm′n′
i jkl b̂†

m,ib̂
†
m′,i′ b̂n, j b̂n′, j′ ,

(C2)
where

tm
i j = −

∫
d3rwm(r − Ri )

(
− h̄2∇2

2m
+ Vop(r)

)
wm(r − R j )

(C3)
and

U mnm′n′
i jkl = 4π h̄2as

ma

∫
d3rwm(r − Ri )wn(r − R j )wm′ (r − Rk )

×wn′ (r − Rl ). (C4)

Following the previous reference [36], we use the two-
particle, two-site, and two-band model to estimate the band
mixing due to large scattering length. We calculate the Wan-
nier functions of the p-bands and plot them in Fig. 5 for
both A- and B-sites. Because py-orbitals are antisymmetric in
the y-direction and more localized along the x-direction, the
major contributions of band mixing with s-bands come from
the px-orbital. Therefore, we keep the s-band and px-band
in A- and B-sites to estimate the band mixture. The lattice

FIG. 5. px-orbital and py-orbital at A- or B-sites.

TABLE III. The typical numerical values in the two-particle,
two-site, and two-band model at as = 10 000a0 and VD = 28Er . The
calculation is based on s-orbital Wannier functions and px-orbital
Wannier functions at A- and B-sites. The Wannier function along the
z-direction is the ground-state wave function in a harmonic trap with
a vibrational frequency at 50 kHz. Here all the parameters are in the
unit of the recoil energy Er = h̄2k2

2ma
.

Numeric value (Er)

h̄t e
AA ≈ −8.271 U egeg

ABAB = 0.6409 U eggg
ABAB = 0.0212

U gggg
AAAA = 86.82 U gggg

AAAB = −0.2828

U egeg
AAAA = 34.6818 U eggg

AAAB = −0.2648

U eeee
ABAB = 2.1601 U eegg

ABAB = −0.0676

U eeee
AAAA = 55.0342 U eegg

AAAB = 0.1704

Hamiltonian is further simplified to

H = −t g
AB(b̂†

g,Ab̂g,B + b̂†
g,Bb̂g,A) − t e

AB(b̂†
e,Ab̂e,B + b̂†

e,Bb̂e,A)

− t g
AA(b̂†

g,Ab̂g,A + b̂†
g,Bb̂g,B) − t e

AA(b̂†
e,Ab̂e,A + b̂†

e,Bb̂e,B)

+ 1

2

mnm′n′∈{e,g}∑
i ji′ j′∈{A,B}

U mnm′n′
i jkl b̂†

m,ib̂
†
m′,i′ b̂n, j b̂n′, j′ . (C5)

Here the index g (e) corresponds to the s- (px-) band particles,
and the index A (B) corresponds to the A- (B-) site. We set
t g
AA = 0 as the zero-energy point, and then t e

AA is characterizing
the band separation between s- and p-bands. In Table III, we
list the typical numerical magnitudes in this model. Since we
are interested in the effect on the ground state b̂†

g,Ab̂†
g,B|vac〉,

where |vac〉 is the vacuum state, we focus on the transitions
from the ground state to the states with higher energy. In Ta-
ble IV, all the possible first-order transitions are listed with the
energy costs and the coupling strengths. The ratios between
the coupling strengths and the energy cost are less than 1/100,
so the excited populations due to Feshbach resonance are less
than 10−4. Therefore, the band mixture due to large scattering
length is highly suppressed by the off-resonant coupling.

TABLE IV. The first-order transition channels.

Transition Energy cost Coupling

b̂†
g,Ab̂†

g,B|vac〉 → b̂†
g,Ab̂†

e,B|vac〉 −t e
AA + 2U egeg

ABAB 2U eggg
ABAB

(or b̂†
g,Bb̂†

e,A|vac〉)
b̂†

g,Ab̂†
g,B|vac〉 → b̂†

g,Ab̂†
g,A|vac〉 U gggg

AAAA U gggg
AAAB

(or b̂†
g,Bb̂†

g,B|vac〉)
b̂†

g,Ab̂†
g,B|vac〉 → b̂†

g,Ab̂†
e,A|vac〉 −t e

AA + 2U egeg
AAAA 2U eggg

AAAB

(or b̂†
g,Bb̂†

e,B|vac〉)
b̂†

g,Ab̂†
g,B|vac〉 → b̂†

e,Ab̂†
e,B|vac〉 −2t e

AA + 2U eeee
ABAB 2U eegg

ABAB

b̂†
g,Ab̂†

g,B|vac〉 → b̂†
e,Ab̂†

e,A|vac〉 −2t e
AA + U eeee

AAAA U eegg
AAAB

(or b̂†
e,Bb̂†

e,B|vac〉)
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APPENDIX D: FLOQUET HEATING

In this Appendix, we estimate the interband excitations
caused by Floquet modulations. Since the energy scale for
interband excitations is much larger than the modulation
frequency, the high-frequency expansion method is not ap-
plicable. The quasienergy operator and a set of new bases,
combining stationary states and Floquet photons, are applied
to solve this problem [27]. Although there are lots of in-
teraction terms in Eq. (C4), only the on-site interaction has
larger energy than a Floquet photon. Therefore, we focus
on the on-site interaction and ignore the nearest-neighbor
interaction.

Similar to Eq. (A1), the complete tight-binding Hamilto-
nian in the moving reference frame is

Ĥc(t ) = −
∑

i, j,m,m′

[
F(t ) · rm′m

i, j

]
ĉ†

i,m′ ĉ j,m

−
∑
i, j,m

h̄tm
i j ĉ

†
i,mĉ j,m + 1

2

∑
i,m

U mmmm
iiii n̂i,m(n̂i,m − 1).

(D1)

Here m is band index, tm
ii is the mean energy of the mth

band, and rm′m
i, j = ∫

d3rwm′ (r − Ri ) r wm(r − R j ). If only the
contributions from the s-bands are taken into account, rss

i, j will
be equal to δi jri where ri is the position of the lattice site i in
the moving reference frame. Then we obtain the same results
as from Eq. (A1).

For interband transitions, there is relation of rmm′
i,i 	 rmm′

i, j( �=i).
Therefore, by inspecting the first term on the right-hand side
of Eq. (D1), the excitation by Floquet photons is mainly from
the in situ transitions where the particle is still in the same
spatial position but jumps to a higher band. Then we will focus
on this contribution and demonstrate that it is not a concern.
For simplicity, the repeated subscripts or superscripts will be
contracted, e.g., rm,m

i,i → rm
i . The Hamiltonian is simplified to

Ĥc(t ) = −
∑
i, j,m

h̄tm
i j ĉ

†
i,mĉ j,m −

∑
i,m,m′

[
F(t ) · rm′m

i

]
ĉ†

i,m′ ĉi,m

+ 1

2

∑
i,m

U m
i n̂i,m(n̂i,m − 1)

= −
∑
i, j,m

h̄tm
i j ĉ

†
i,mĉ j,m

− h̄�z0

∑
i,m,m′

[
cos(�t )

xm′m
i

a
− sin(�t )

ym′m
i

a

]
ĉ†

i,m′ ĉi,m

+ 1

2

∑
i,m

U m
i n̂i,m(n̂i,m − 1). (D2)

By introducing a unitary transformation

Ûc(t ) = exp

[
i

h̄

∑
i,m

[ − maṙl (t ) · rm
i

]
ĉ†

i,mĉi,m

]
, (D3)

the Hamiltonian is converted to

Ĥ ′
c(t ) = −h̄

∑
i, j,m

tm
i j ĉ†

i,mĉ j,me
i
h̄ maA�ρi j sin(�t+φi j ) + 1

2

∑
i,m

U m
i n̂i,m(n̂i,m − 1)

− h̄�z0

∑
i,m �=m′

(
cos(�t )

xm′m
i

a
− sin(�t )

ym′m
i

a

)
ĉ†

i,m′ ĉi,me
i
h̄ [ma ṙl (t )·(rm′

i −rm
i )]. (D4)

Based on the symmetry of honeycomb lattices, the centers
of Wannier functions wm(r − Ri ) along the y-direction for
all bands are the same as the y-center of the lattice site i.
However, the centers of Wannier functions wm(r − Ri ) along
the x-direction are not the same as the x-center of the lattice
site. We define the dimensionless parameters ηx

m′m = xm′m
i
a and

η
y
m′m = ym′m

i
a to further simplify Ĥ ′

c(t ) to

Ĥ ′
c(t ) = −h̄

∑
i, j,m

tm
i j ĉ†

i,mĉ j,meiz0 sin(�t+φi j ) − h̄�z0

∑
i,m �=m′

× [
cos(�t )ηx

m′m − sin(�t )ηy
m′m

]
ĉ†

i,m′ ĉi,meiz0
lm′m
i sin(�t )

+ 1

2

∑
i,m

U m
i n̂i,m(n̂i,m − 1). (D5)

Here 
lm′m
i = xm′

i −xm
i

a is characterizing the difference between
the centers of m and m′ Wannier functions.

According to the Floquet theory, the solution of the
Schrödinger equation ih̄dt |ψ (t )〉 = Ĥ ′

c(t )|ψ (t )〉 has a form of
|ψν (t )〉 = |uν (t )〉e− i

h̄ tεν , where |uν (t )〉 is a periodic function

with a period of T = 2π/�. |ψ (t )ν〉 is called the Floquet
state, |uν (t )〉 is the Floquet mode, and εν is the quasienergy.
|ψν (t )〉 is also an eigenstate of the time-evolution operator in
one period T , i.e.,

Û (t0 + T, t0) |ψν (t0)〉 = e− i
h̄ T εν |ψν (t0)〉, (D6)

where Û (t0 + T, t0) denotes the time-evolution operator from
t0 to t0 + T , and the eigenvalue e− i

h̄ T εν does not depend on the
start time t0. By solving the eigenvalue problem of the time-
evolution operator, the phase factor e− i

h̄ T εν and the Floquet
state |ψν (t )〉 are uniquely defined, while the corresponding
quasienergies and Floquet modes are not unique. A Flo-
quet state can be written as |ψν (t )〉 = |uνnp (t )〉e− i

h̄ tενnp , where
ενnp = εν + nph̄� and |uνnp (t )〉 = |uν (t )〉einp�t . For a particu-
lar ν, there are a series of orthogonal Floquet modes |uνnp (t )〉
with quasienergies ενnp . The quasienergies and the Floquet
modes are the eigenstates and eigenenergies of quasienergy
operator Q̂(t ) = Ĥ ′

c(t ) − ih̄dt , i.e.,

Q̂|uνnp〉〉 = ενnp |uνnp〉〉. (D7)
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TABLE V. Numeric value relevant to Floquet heating.

ηx
pxs 0.1292 
l pxs

i 0.0891
ηx

pys 0 
l
pys
i 0

ηy
pxs 0

ηy
pys 0.1292

Here the time-dependent state |u(t )〉 with a period T is written
as a double-ket |u〉〉. The scalar product for such a state is
given by 〈〈u|v〉〉 = 1

T

∫ T
0 dt 〈u(t )|v(t )〉. Similar to spatially

periodic Hamiltonians, one can fix all quasienergies in the
same interval of width h̄ω, called a Brillouin zone. Therefore,
all Floquet states |ψν (t )〉 can be constructed from the Floquet
modes whose quasienergies lie in a single Brillouin zone.

For the driven optical lattices, a useful set of bases is

|m, i, np〉〉 = ĉ†
i,m|vac〉einp�t . (D8)

Here np is the number of Floquet photons. Then the matrix
elements of the quasienergy operator Q̂ are

〈〈m′, i′, n′
p|Q̂|m, i, np〉〉 = 〈m′, i′|Ĥ ′

c,n′
p−np

+ δn′
pnpnph̄�|m, i〉,

(D9)
where Ĥ ′

c,n is obtained by the Fourier transformation of
Ĥ ′

c(t ) = ∑
n Ĥ ′

c,se
is�t with a form of

Ĥ ′
c,s = −

∑
i, j,m

tm
i j Js(z0)eisφi j ĉ†

i,mĉ j,m − h̄�z0

∑
i,m �=m′

× [
η+

m′mJs−1
(
z0
lm′m

i

) + η−
m′mJs+1

(
z0
lm′m

i

)]
ĉ†

i,m′ ĉi,m.

× + 1

2
δs0

∑
i,m

U m
i n̂i,m(n̂i,m − 1). (D10)

Here η+
m′m (η−

m′m) corresponds to
ηx

m′m+iηy
m′m

2 (
ηx

m′m−iηy
m′m

2 ). In Ta-
ble V, we list the related numeric values of η and 
l for s-
and p-bands.

Then we will estimate the resonant coupling strength of
interband transitions via absorbing 
np Floquet photons. In
our case, the Floquet photon energy � = t/0.108 = 0.287Er

and the band gap −t p
ii ≈ 8.271Er , so it requires around 28

photons to excite a particle from s-band to p-band. For a

np-photon transition process where 
np is large enough, the
coupling strength is

〈〈Px, i, np|Q̂|S, i, np + 
np〉〉
∼ J
np−1(z0
lm′m

i )

=
∞∑

k=0

(−1)k

k!(k + 
np)!

(
z0
lm′m

i

2

)2k+
np−1

∼ 1


np!

(
z0
lm′m

i

2

)
np−1

∼
(

e
z0
lm′m

i

2
np

)
np−1

=
( z0

zth

)
np−1
. (D11)

Here we apply the Stirling formula (n)! = √
2πn( n

e )n to the
factorial. Because 
lm′m

i is less than 1 between all bands, this

suggests zth > 2 
np

e . When z0 is smaller than zth, the coupling
strength is exponentially suppressed.

In addition to absorbing 
np photons directly, the 
np-
order transition to the target state via 
np − 1 intermediate
states may also heat the system. For the 
np-order transition,
the particle absorbs a single photon 
np times. For each time
the coupling strength is

〈〈Px, i, np|Q̂|S, i, np + 1〉〉

≈ h̄�z0

(
ηx

m′m + iηy
m′m

2

)
J0

(
z0
lm′m

i

)

< h̄�z0

(
ηx

m′m + iηy
m′m

2

)
. (D12)

The coupling for the 
np-order process is
〈〈Px, i, np|Q̂|S, i, np + 1〉〉
np divided by the product of
all energetic detuning of intermediate states. According
to the discussion on high-order transition processes in
Refs. [47,48], this product has the same order of magnitude
as 1

(
np−1)! (h̄�)
np−1. Therefore, the coupling term for a


np-order process also behaves as ( z0
lm′m
i

zth
)
np−1. For a

harmonic trap, the dipole matrix element is nonzero only
for two states whose difference of the vibrational energy
level is 1. Based on Table V, the dimensionless dipole matrix
elements are less than 1, so the threshold zth for 
np-order
process is larger than 
np−1

e .
In our case, the target value of the modulation parameter

z0 is 2.3, which is less than the threshold, so the interband
excitation caused by Floquet modulations is exponentially
suppressed and negligible.

In the derivation of Eq. (A11), the on-site interaction
is neglected. Although the modulation couples the single-
occupation state g†

Ag†
B|vac〉 to the doublon state g†

Ag†
A|vac〉, the

coupling strength is suppressed by J
np (z0), where 
np is over
100. Therefore, it is safe to apply the single-occupation state
space under the Floquet modulation.

APPENDIX E: MANY-BODY HAMILTONIAN

In this Appendix, we use the case of 24 lattice sites (3 ×
4 × 2, see Fig. 6) and six particles as an example to illustrate

1(B)0(A)

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

m

n

0

1

2

3

1

2

mb

nb

FIG. 6. 24 lattice sites for exact diagonalization and the enumer-
ation rule.
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FIG. 7. (a)–(d) The nonzero elements of the NN, NNN, NNNN,
and NNNNN contributions are marked, respectively. nz is the number
of nonzero elements.

how to enumerate Fock states and write down the many-body
Hamiltonian for the exact-diagonalization calculation.

First, we give all sites a serial number, which are illustrated
in Fig. 6. c†

n (cn) is the creation (annihilation) operator of a
boson on the nth site, where n = 0, 1, . . . , 23. For hard-core
bosons, the basis is formed by {c†

i6
c†

i5
c†

i4
c†

i3
c†

i2
c†

i1
|vac〉}, where

i1 < i2 < i3 < i4 < i5 < i6, and |vac〉 is the vacuum state. The
total number of base vectors is a binomial coefficient of sites
and particles, which is 134 596 in our case. We give all the
occupation structures a serial number from 1 to 134 596. The
mapping rule is as follows:

{c†
i6

c†
i5

c†
i4

c†
i3

c†
i2

c†
i1
|vac〉}i1<i2<i3<i4<i5<i6

:−→
23∑

n1=24−i1

22−i1∑
n2=24−i2

22−i2∑
n3=24−i3

22−i3∑
n4=24−i4

22−i4∑
n5=24−i5

×
(

n1

5

)(
n2

4

)(
n3

3

)(
n4

2

)(
n5

1

)
+ n6 − n5. (E1)

In addition, the twisted boundary condition should also
be satisfied. To achieve this boundary condition, the creation
operators should satisfy c†

mb
|vac〉 = eiθx c†

0|vac〉 and c†
nb

|vac〉 =
eiθy c†

0|vac〉, where nb and mb are positions outside the zone
in Fig. 6. Based on the twisted boundary condition, we map
the tunneling out of this region back into the region of inter-
est. We write out the many-body Hamiltonian based on this
enumeration rule. To visualize the Hamiltonian, we mark the
states connected by NN, NNN, NNNN, and NNNNN hopping
terms, respectively, in Fig. 7.
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