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Resonant energy scales and local observables in the many-body localized phase
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We formulate a theory for resonances in the many-body localized (MBL) phase of disordered quantum spin
chains in terms of local observables. A key result is to show that there are universal correlations between
the matrix elements of local observables and the many-body level spectrum. This reveals how the matrix
elements encode the energy scales associated with resonance, thereby allowing us to show that these energies are
power-law-distributed. Using these results, we calculate analytically the distributions of local polarizations and
of eigenstate fidelity susceptibilities. The first of these quantities characterizes the proximity of MBL systems to
noninteracting ones, while the second highlights their extreme sensitivity to local perturbations. Our theoretical
approach is to consider the effect of varying a local field, which induces a parametric dynamics of spectral
properties. We corroborate our results numerically using exact diagonalization in finite systems.
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I. INTRODUCTION

If a many-body quantum system is isolated from its envi-
ronment, it does not necessarily thermalize. In systems that do
thermalize, observables are at late times insensitive to the ini-
tial conditions [1–5], which is to say that their fluctuations are
small. This behavior is reflected in the resemblance between
many-body eigenstates and high-dimensional random vectors,
which appear featureless to any local probe. The alternative
to this ergodic behavior, arising in the presence of strong
disorder, is many-body localization [6–10]. In the many-body
localized (MBL) phase, there is memory of local observables
even at infinite times. In MBL quantum spin chains, for ex-
ample, eigenstates feature large local polarizations, and these
polarizations vary dramatically both in space and over the
ensemble of disorder realizations.

Large fluctuations are also found in dynamics. For this
reason, averages often fail to represent accurately the behavior
of individual MBL systems. A striking example is found in
temporal correlations of local observables, and the associated
spectral functions [11]. To characterize the MBL phase, it is
therefore necessary to develop a theory for the statistical prop-
erties of these quantities. In quantum-mechanical systems, it
is natural to do so in the spectral representation, and there
the question is whether and how the matrix elements of local
observables are related to the level spectrum.

In this work, we show that there are universal correlations
between these quantities, and that these correlations are char-
acterized by a power-law distribution of energy scales. From
these correlations we determine the statistics of local polar-
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izations, and we find that these too are broadly distributed.
The fluctuations of physical properties are reflected in the
extreme sensitivity of eigenstates to local perturbations, and
to investigate this we analytically determine the distribution
of eigenstate fidelity susceptibilities in the MBL phase. This
quantity has recently been investigated extensively as a probe
of integrability breaking and of the onset of quantum chaos
[12–18].

The calculations described above are unified by the concept
of a many-body resonance [15,19–22]. Many-body reso-
nances are generalizations of the Mott resonances that arise in
Anderson insulators [23–25], and their presence demarcates
MBL systems from their noninteracting counterparts. These
resonances control the low-frequency dynamics in the MBL
phase [15,19,22,26], and their local structure is central in our
understanding of both its stability [15,27] and its breakdown
[21,28,29]. One possibility is to describe resonances in terms
of local integrals of motion (LIOM) [30,31], a hypothesized
set of quasilocal operators that commute with one another and
with the evolution operator. However, this approach creates
a barrier to quantitative investigations because LIOM cannot
be defined uniquely [32–36]. Additionally, schemes intended
to construct them inevitably break down in the vicinity of
the transition to the ergodic phase. It is therefore essential
to develop a more complete understanding of resonances that
does not rely on LIOM, and is instead based on quantities that
are both computationally accessible and unambiguous. With
this motivation, in this work we instead formulate our theory
in terms of the matrix elements of local observables. These
matrix elements can be calculated using standard numerical
techniques.

This paper is organized as follows. In Sec. II we de-
scribe the idea of a many-body resonance. Following this, in
Sec. III we discuss how their local structure can be captured
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analytically. This leads us to the central result of this work
in Sec. IV. There we show how the matrix elements of ob-
servables are related to energy splittings, and we calculate the
distribution of energy scales governing dynamics in the MBL
phase. The form of this distribution is elucidated through a
resonance counting argument in Sec. V. Using these results,
in Sec. VI we calculate the distribution of polarizations, and
in Sec. VII that of fidelity susceptibilities. We summarize our
results in Sec. VIII.

II. LOCAL RESONANCES

Before discussing resonances in MBL spin chains, it is
helpful to first outline the origins and structure of Mott
resonances in noninteracting Anderson insulators. We can
imagine starting from a set of perfectly localized single-
particle eigenstates on a lattice whose sites have random
energies. Introducing weak hopping between neighboring
sites, typical eigenstates acquire exponentially decaying tails
in real space, but they remain well-localized. However, some
pairs of sites will be sufficiently close in energy that they are
strongly hybridized by the hopping, and the resulting eigen-
states will have significant weight on each of the two sites
involved. These resonances can be described approximately
as two-level systems [23,25].

The MBL systems of interest here are spin chains in ran-
dom local fields, and with weak short-range interactions on
energy scale J . For J = 0, these are systems of decoupled
spins, and we denote by (h j/2)σ j the random local field oper-
ators, where j = 1, . . . , L labels the sites. The field strengths
h j > 0 are of order unity, and the local operators σ j have
eigenvalues ±1. For J = 0, the eigenstates |n〉 of the evo-
lution operator satisfy σ j |n〉 = sn, j |n〉 with sn, j = ±1, and
here the LIOM are simply the operators σ j . For small J �= 0
it is expected that the LIOM are dressed by the interaction,
and thereby develop exponentially-decaying tails in real space
[30,31]. Their eigenvalues could then be used to label the
eigenstates. In this sense, the eigenstates locally resemble
those in the decoupled system. On the other hand, we know
that if a pair of eigenstates are for J = 0 sufficiently close in
energy, then when switching on the interaction J �= 0 these
states will be strongly hybridized. We refer to this situation as
a many-body resonance.

The stability of the MBL phase relies on the fact that
resonances are not simple two-level systems. Where there
are two-dimensional resonant subspaces, these are embedded
locally within pairs of many-body eigenstates. Previously this
feature has been captured by appealing directly to pictures
based on LIOM [15,19], and by considering the spectral
properties of evolution operators defined on finite subregions
[22,27], although each of those approaches suffers from a
degree of ambiguity (this problem can of course be avoided by
studying resonances on the scale of the system size [20,21]).
Accounting for locality is essential because, even deep within
the MBL phase, eigenstates are involved in an extensive num-
ber of local resonances. Here we describe local resonances in
terms of the matrix elements of local observables, thereby iso-
lating the participating degrees of freedom. This will allow us
to describe the two-dimensional resonant subspaces in terms
of local properties of many-body eigenstates.

FIG. 1. Parametric dynamics induced by varying a local field
hj (λ) = hj + λ, which couples to the local operator σ j at site j.
The parameter λ can be viewed as a fictitious time, and in the
case of Floquet dynamics we denote by eiθn the eigenvalues of the
Floquet operator. Left: Three levels at a particular λ, with the θ

axis horizontal. The diagonal matrix elements z j,nn of σ j determine
level velocities ∂λθn, and off-diagonal matrix elements z j,nm increase
in magnitude as levels approach resonance. Right: Thin lines show
the level dynamics for a system with decoupled degrees of freedom,
where an exact level crossing occurs as λ is varied, and thick lines
correspond to the interacting case, where the crossing is avoided and
corresponds to a resonance.

III. PARAMETRIC DYNAMICS

Our theoretical considerations are based on the effect of
parametric variations of the disorder, which can be viewed
as inducing dynamics of the spectral properties in a fictitious
time; see Fig. 1 for a schematic visual. The idea is particu-
larly powerful in this setting because the avoided crossings
that arise under parametric dynamics can be identified with
many-body resonances [22]. The parametric approach has a
long history in studies of random matrices [37], semiclassical
chaos [38–40], and disordered conductors [41–44], and more
recently it has been applied in the context of MBL [13,45–
49]. A common approximation is to decouple the parametric
dynamics of eigenvalues from that of eigenstates, which is
reasonable when eigenstates are almost featureless (such as
in the ergodic phase). As in Ref. [22], we do not make this
approximation. To understand the structure of resonances, it
is essential to understand how eigenvalues and eigenstates are
coupled with one another.

Using this idea, we will show how a two-dimensional res-
onant subspace can be described in terms of local properties
of many-body eigenstates |n〉. First observe that for J = 0 the
eigenstates are tensor products of eigenstates of each of the
σ j , so they are perfectly polarized along the field directions:
z j,nn ≡ 〈n|σ j |n〉 = sn, j . Additionally, the off-diagonal matrix
elements z j,nm ≡ 〈n|σ j |m〉 = 0. Since the eigenvalues of the
time evolution operator are for J = 0 determined by signed
sums of local fields

∑
j sn, jh j , there is no level repulsion. If we

consider a smooth variation of a single local field hj , then for
J = 0 there are many exact level crossings. For small J �= 0,
all of these exact level crossings are replaced by avoided
crossings, as illustrated in Fig. 1. Moreover, in the vicinity of
an avoided crossing between |n〉 and |m〉 induced by varying
hj , the off-diagonal matrix element z j,nm is of order unity [22].
Since

∑
m |z j,nm|2 = ∑

n |z j,nm|2 = 1, this implies that z j,nn

and z j,mm are suppressed to well below unity, and therefore
that near j the states |n〉 and |m〉 do not resemble the J = 0
eigenstates.
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There are two classes of variations that must be dis-
tinguished. For J = 0 and focusing a particular level pair,
varying the field h j (λ) = h j + λ will either lead to an exact
crossing of levels in the case sn, j = −sm, j , or otherwise cause
them to move parallel to one another in the case sn, j = sm, j .
While for small J �= 0 the exact crossings are replaced by
avoided ones, we do not expect a dramatic difference in be-
havior in the other case. Focus now on |n〉, |m〉, and a variation
hj that leads to an avoided crossing. We denote by ω∗

j,nm
the minimum level separation, which occurs at fictitious time
λ = λ∗

j,nm. With perturbation (λ/2)σ j we find

∂λωnm = y j,nm ≡ (z j,nn − z j,mm)/2,

∂λ |n〉 = 1

2

∑
p�=n

ω−1
np z j,pn |p〉 . (1)

For Floquet systems, the factor ω−1
np should be replaced by

i[1 − e−iωnp]−1, but these coincide for |ωnp| � π . We find for
the matrix elements of σ j ,

∂λz j,nm = −ω−1
nm z j,nmy j,nm + · · · ,

∂λy j,nm = ω−1
nm |z j,nm|2 + · · · , (2)

where the ellipses represent contributions depending on z j,np

and z j,mp for p �= m, n. These contributions are significant
only for states |p〉 that resonate with |n〉 or |m〉 at the site j,
and in order to make analytic progress we neglect them in the
first instance. This approximation that resonances are locally
rare will be shown to be self-consistent below.

Within the approximation of decoupled local resonances,
we find a closed system of differential equations that describe
variations of ωnm and of the matrix elements in Eq. (2). This
set of equations simply describes an avoided crossing in a
two-dimensional resonant subspace, but crucially is expressed
only in terms of properties of the eigenstates |n〉 and |m〉
that are local to the site j. The solutions, which we discuss
in Appendix B, are parametrized by three constants of in-
tegration. Two of these are λ∗

j,nm and ω∗
j,nm, and the third

R2
j,nm ≡ y2

j,nm + |z j,nm|2 sets the scale of the variation of the
matrix elements as the level pair passes through resonance.
Since for J = 0 we have R2

j,nm = 1, it is natural to expect that
for J �= 0 the constant R2

j,nm is reduced only by an amount of
order J . It is straightforward to show that ∂λ(ωnmz j,nm) = 0
and

|z j,nmωnm| = |Rj,nmω∗
j,nm|. (3)

As the splitting ωnm passes through a minimum, the magni-
tude of the matrix element z j,nm passes through its maximum
value of Rj,nm, and these two effects cancel with one another.
For small J we expect the above to provide an approximate
description of avoided crossings between essentially all level
pairs, regardless of their separation in the spectrum. For exam-
ple, the highest energy resonances correspond to |z j,nm| ∼ 1
for ωnm that is exponentially larger in L than the mean level
separation.

The conservation of z j,nmωnm under variations of h j within
the approximation of decoupled resonances hints at inter-
esting features in the spectral properties. Before discussing
these, it is important to bear in mind that even within this

approximation, each of z j,nmωnm and ωnm depends on hk �= j .
We will additionally assume that any variations of z j,nmωnm

and ωnm that are induced by those of hk �= j are uncorrelated.
Crucially, we are not assuming that variations of z j,nm and ωnm

are uncorrelated; a change in the field hk that brings |n〉 and
|m〉 closer to a resonance that involves the site j will cause
ωnm to decrease and |z j,nm| to increase. Of course, outside
of the approximation of decoupled resonances, there are also
small variations of z j,nmωnm with h j , and we discuss these in
Appendix C. In summary, within the above approximations,
z j,nmωnm and ωnm are only weakly correlated with one another.

IV. ENERGY SCALES

An important feature of the MBL phase is that the en-
ergy scales associated with resonances have an extremely
broad distribution [21,22]. Our arguments in the previous sec-
tion show how these energy scales are encoded in the matrix
elements z j,nm and in the level separations ωnm. If we write

|z j,nm| = � j,nm

|ωnm| , (4)

then the ensemble-averaged distribution p�(� j,nm) of “reso-
nant energy scales” � j,nm is independent of ωnm for � j,nm <

|ωnm|. Given this distribution, one would have access to
the correlations between z j,nm and ωnm, and therefore the
real-time dynamics of the local observable σ j . For exam-
ple, the infinite temperature autocorrelation function C(t ) =
2−LTr[σ j (t )σ j] = 2−L

∑
nm |z j,nm|2e−iωnmt . The increase of

z j,nm with decreasing ωnm in Eq. (4) indicates that low-
frequency oscillations have large amplitudes. On the other
hand, the slow decrease of z j,nm with increasing ωnm indicates
that the potential for resonance is felt even for |ωnm| 	 � j,nm.

The correlations in Eq. (4) do not provide a prediction
for p�(�), but they do provide a prescription for calculating
it. Through exact diagonalization (ED) it is straightforward
to obtain the eigenstates and eigenvalues of the evolution
operator, compute z j,nm and ωnm, and subsequently calculate
the distribution of their product. We perform this analysis
for a Floquet model for the MBL phase [50–52] that was
used previously in Refs. [22,53]. This model appears to be
MBL for J � 0.07, and we provide details in Appendix A. In
Figs. 2(a) and 2(b), we show for small J that p�(�) decays as
a power of �, and that for fixed � the distribution scales as
p�(�) ∝ 2−L. The exponential dependence on L is necessary
for the system to be MBL at large L, as we discuss in Sec. VI.
In Sec. V we rationalize the observed behavior of p�(�) using
a heuristic resonance counting argument.

Equation (4) has predictive power because, as argued in
Sec. III, the distribution of � is approximately independent
of ω in the regime �0 < � < |ω|. Note that the lower cutoff
�0 must be exponentially small in L because p� is pro-
portional to 2−L and decays as a power of �. To confirm
the weak correlations between � and ω, in Figs. 2(c)–2(f)
we compute the ensemble-averaged conditional distributions
p�|ω(�) for various ω. The collapse of p�|ω(�) over several
decades in both � and ω provides strong evidence that, when
exploring the ensemble of MBL systems at a given J , vari-
ations of z j,nmωnm and ωnm are only weakly correlated. Since
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FIG. 2. (a),(b) Distribution p� of � [Eq. (4)] for L =
8, 10, 12, 14 (increasing from light to dark) with (a) J = 0.02 and
(b) J = 0.04. Dashed lines indicate power-law fits to p� for L =
14, with exponents set by ζ/ζc = 0.39(1) for J = 0.02 and ζ/ζc =
0.61(4) for J = 0.04 [see Eq. (5)]. (c)–(f) Conditional distribution
p�|ω(�) of � < |ω| within various windows of |ω|. Windows are
|ω| < 10−4 and 10−(n+1) < |ω| < 10−n for n = 0, 1, 2, 3, with |ω|
increasing from light to dark.

p�|ω(�) is normalized,
∫ ω

0 d�p�|ω(�) = 1, small ω of course
implies more weight at small �, and this effect is clear in
Figs. 2(c)–2(f).

Comparing Eqs. (3) and (4), it is clear that � j,nm has a
rough interpretation as the minimum splitting between a pair
of levels passing through an avoided crossing. The statistics of
these splittings have been studied in chaotic systems for some
time [54–56], although an important contrast is that in our
case the pairs of levels passing through avoided crossings are
not necessarily nearest neighbors; it is clear from Fig. 2 that
there are resonant energy scales � that are much larger than
the mean level spacing. We note that the energies associated
with resonances on the scale of the system size L (“end-to-
end” resonances) were determined in Ref. [21] by working
with the many-body eigenstates themselves, as opposed to
the matrix elements of local observables. There the approach
is appropriate since for end-to-end resonances the appropri-
ate two-dimensional subspaces are not locally embedded in
many-body eigenstates, but are simply spanned by pairs of
them.

V. RESONANCE COUNTING

Here we provide a rationalization of the behavior in Fig. 2.
Starting from a system of decoupled qubits, for small J we
suppose that it is possible to perform perturbation theory.
Since this is a perturbation theory in a short-range interaction,
we expect that each resonance can be associated with a length
r, and that the corresponding energy scales ∼e−r/ζ , where the
emergent quantity ζ is defined below (at small J , we expect
e−1/ζ ∝ J). If we choose to identify these energy scales with
� defined in Eq. (4), we can estimate p�(�) via resonance
counting. Note that for a given eigenstate and location in
space, the number of possible resonances with length r grows
as 2r . Assuming that, for a given r < L, the various � are
distributed between the respective lower and upper cutoffs

�0 ∼ e−L/ζ and e−r/ζ , we find a power-law distribution

p�(�) = ζ

ζc
�

ζ/ζc
0 �−(1+ζ/ζc ) ∼ 2−L�−(1+ζ/ζc ), (5)

which follows from weighting contributions from resonances
with length r by 2r . Here ζc ≡ [ln 2]−1, �0 < � < e−1/ζ , and
p�(�) → δ(�) as J → 0. Note that the factor 2−L here arose
from the choice �0 ∼ e−L/ζ .

There is evident agreement between the counting argument
leading to Eq. (5) and the exact numerics used for Fig. 2,
so it is convenient to view Eq. (5) as the definition of ζ .
Both approaches lead to a power-law decay of p�(�) with
�, with the exponent corresponding to 0 < ζ/ζc < 1, and an
exponential decay with L. Moreover, the values of ζ extracted
from Figs. 2(a) and 2(b) (see the caption) are consistent with
the results of Ref. [22]. From these estimates for ζ it can be
verified that the power laws in Figs. 2(a) and 2(b) persist only
down to � � �0, where the anticipated finite-size effects set
in.

VI. LOCAL POLARIZATIONS

Having established the behavior in Eqs. (4) and (5), we
now discuss the statistical properties of the matrix elements
z j,nm without any energy resolution. First, we calculate the
distribution of Zj,nm = |z j,nm|2, which will allow us to check
whether our initial assumption, that Zj,nm is typically much
smaller than unity, is consistent with the results in the previ-
ous sections. Following this we investigate the distribution of
polarisations |z j,nn|2 = 1 − Dj,n, where we have defined the
depolarisation Dj,n of |n〉 at site j. Because σ j squares to the
identity, we have

Dj,n ≡ 1 − Zj,nn =
∑
m �=n

Z j,nm. (6)

Since a resonance between |n〉 and |m〉 at site j is character-
ized by a matrix element z j,nm of order unity, the number of
such contributions to the sum in Eq. (6) is at most of order
unity. For the MBL phase with J �= 0 to resemble the J = 0
limit we expect that typically Dj,n � 1, which is a far more
stringent condition than Zj,nm � 1.

To understand the structure of Eq. (6) we compute the
distributions pZ (Zj,nm) of Zj,nm and pD(Dj,n) of Dj,n. The
former is

pZ (Z ) = 〈δ(Z − �2/ω2)〉, (7)

where the angular brackets denote an average over ω and �.
There is level repulsion on scales |ω| ∼ �, but for |ω| 	 �

we can neglect correlations between ω and �. Treating ω as
uniformly distributed in this regime, we find from the Jacobian
∂ω/∂Z ∼ �Z−3/2 [see Eq. (4)] that for ζ < ζc [22],

pZ (Z ) ∼ 2−Lg(ζ )Z−3/2, �0 � Z � 1, (8)

up to a prefactor of order unity. The function
g(ζ ) = [ζc − ζ ]−1e[ζ−1

c −ζ−1] increases with ζ and diverges
as ζ → ζc. From Eq. (8) it is clear that Z is typically much
smaller than unity, as required for the approximation of
decoupled resonances in Sec. III to be appropriate. For
example, the mean 〈Z〉 ∼ g(ζ )2−L. As an aside, we note that
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FIG. 3. Distributions of modulus-squared off-diagonal matrix el-
ements Zj,nm = |z j,nm|2 (oranges) and depolarizations Dj,n (greens)
for (a) J = 0.02 and (b) J = 0.04, and L = 8, 10, 12 (light to dark).
Dashed lines indicate the power-law decay Z−3/2 expected from
Eq. (8).

the distribution of the matrix elements of σ j has previously
been characterized using an inverse participation ratio (IPR),
which with exponent q is defined as

∑
m Zq

j,nm [11,57]. From
the distribution Eq. (8) we see that the average IPRs are
L-independent for q > 1/2.

Equation (8) shows that the average depolarization 〈D〉 ∼
g(ζ ). Crucially, because p�(�) ∝ 2−L and ζ < ζc, 〈D〉 is fi-
nite in the thermodynamic limit. This is of course essential
for the existence of a MBL phase. Neglecting correlations be-
tween the different terms Zj,nm in Eq. (6), we can additionally
calculate the distribution of depolarizations pD(D). When Dj,n

is dominated by just one term in the sum, we have

pD(D) � 2L pZ (D) ∼ g(ζ )D−3/2. (9)

In Fig. 3 we compute pD(D) and pZ (Z ) numerically, and we
find excellent support for Eqs. (8) and (9) for sufficiently large
Z and D. The result for pD(D) in Fig. 3 shows that the smallest
polarizations are due to resonances, an O(1) number of which
dominate the sum in Eq. (6).

Interestingly, there is a “knee” in pZ (Z ) in Fig. 3, below
which pZ (Z ) is larger than would be expected from Eq. (8).
The origin of the knee can be understood by noting that,
in calculating pZ (Z ), there were two cases we should have
distinguished. For half of the level pairs, the maximum Z
on resonance is of order unity, and for the other half the
maximum Z on resonance should vanish as J → 0, so for
small J we expect in the second case that the maximum Z ∼ J .
Another way to describe these two cases is to say that whereas
in the first level repulsion restricts us to |ω| � �, in the second
we are restricted to |ω| � �/J . Taking this into account in
the calculation leading to Eq. (8) gives rise to the observed
enhancement of pZ (Z ) for Z � J relative to J � Z � 1.

VII. RESPONSE TO PERTURBATIONS

Alongside the physical quantities discussed in the previous
sections, another way to investigate resonances is by asking
how many-body eigenstates respond to local perturbations.
Here we focus on the fidelity susceptibility χ . This quantity
was introduced as a probe of singular behavior at quantum

quantum transitions [58–60], and has more recently been in-
vestigated in the context of instabilities of the MBL phase
and the onset of quantum chaos [12–18]. Following this, we
revisit the level curvatures κ discussed in Refs. [13,22,46].
In each case, we will see that the statistical properties follow
straightforwardly from the correlations in Eq. (4).

The fidelity susceptibility is defined here as
χ j,n ≡ 4|∂λ |n〉 |2, where the additional factor of 4 will
be convenient below. From perturbation theory, we have

χ j,n =
∑
m �=n

x j,nm, x j,nm ≡ |z j,nm|2
ω2

nm

. (10)

The distribution pχ (χ j,n) of χ j,n is extremely broad, and
consequently it is often more instructive to investigate this
directly instead of computing its moments. We will first de-
termine the distribution px(x j,nm) of x j,nm, which is given by

px(x) = 〈δ(x − �2ω−4)〉, (11)

where the angular brackets denote an average over � and
ω, and we have used Eq. (4). This average is evaluated as
a double integral over ω and � < |ω|, which proceeds as
follows. For resonances on energy scale �, the contribution
to px(x)dx from frequencies within dω of ω = �1/2x−1/4 is
∼�1/2x−5/4dx, where we have used the fact that the ω distri-
bution is approximately uniform for |ω| > �. The restriction
� < |ω| corresponds to � < x−1/2, and integrating over reso-
nances on all scales, we have for x 	 1,

px(x) ∼ 2−Lx−5/4
∫ x−1/2

�0

d��−(1/2+ζ/ζc ) (12)

from Eq. (5). This expression highlights a change in behavior
at ζ/ζc = 1/2. Deep within the MBL phase with ζ/ζc < 1/2
the integral over � is dominated by resonances with � ∼
x−1/2, and this leads to

px(x) ∼ 2−Lx−(3−ζ/ζc )/2. (13)

For ζ/ζc < 1/2, the distribution is controlled by pairs of levels
close to resonance at j, in the sense that the off-diagonal
matrix elements of σ j are large. For ζ/ζc > 1/2, on the other
hand, the integral is dominated by contributions from reso-
nances on the finest energy scales � ∼ �0 throughout the
entire window 1 � x � �−2

0 . Note that this implies contribu-
tions from pairs of levels that may be very far from resonance
at j, having |ω| 	 �0. In this regime, there is also a change in
the scaling with L, and from Eqs. (4) and (5) we find px(x) ∼
e−L/(2ζ )x−5/4. Note, however, that Fig. 2 as well as Ref. [21]
indicate that finite-size effects modify the distribution p�(�)
relative to Eq. (5) for � � �0, so in the following we restrict
our analytic considerations to ζ/ζc < 1/2.

Since χ is a sum of ∼2L of the quantities x, it is straight-
forward to determine pχ (χ ) in the regime where a single term
dominates the sum. In that case, pχ (χ ) � 2L px(χ ). When
ζ/ζc < 1/2 this occurs for χ larger than an L-independent
threshold. We then find

pχ (χ ) ∼ χ−(3−ζ/ζc )/2. (14)

The slow decay of pχ (χ ) with increasing χ shows clearly
that the mean

∫
dχ pχ (χ )χ is controlled by resonances with

� ∼ �0 [12,14,15]. However, such resonances do not affect
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FIG. 4. Distributions 2L px (x) (oranges) and pχ (χ ) (greens) for
(a) J = 0.02 and (b) J = 0.04, and L = 8, 10, 12 (light to dark).
Dashed lines indicate the power-law decay χ−3/2 expected for sys-
tems with Poissonian spectra.

dynamics on physical timescales, highlighting the necessity
of focusing instead on the full distribution.

The result Eq. (14) illustrates the role of the correlations
between the matrix elements z j,nm and the level separations
ωnm. It should be contrasted with the distributions pχ (χ ) ∼
χ−(3+β )/2 obtained for systems with Poissonian spectra (β =
0) and random matrices drawn from the orthogonal (β = 1)
and unitary (β = 2) ensembles [12]. This dependence on the
level-repulsion exponent β can be seen to follow from (i)
treating z j,nm as independent of ωnm, and (ii) the distribu-
tion of level separations pω(ω) ∼ |ω|β for ω below the mean
level spacing. The results of this work, in particular those in
Sec. IV, clearly demonstrate that the first of these steps is in-
appropriate in MBL systems. Indeed, from Eq. (14) we expect
a decay of pχ (χ ) slower than χ−3/2, but comparing with the
random-matrix result pχ (χ ) ∼ χ−(3+β )/2 appears to indicate
an “effective” β < 0. Neglecting the correlations between
z j,nm and ωnm could then lead to the erroneous conclusion
pω(ω) ∼ |ω|−ζ/ζc at small ω, i.e., “level attraction” [14], the
absence of which is a central assumption in the proof of MBL
in one dimension [27]. Here we have shown that a decay of
pχ (χ ) slower than χ−3/2 arises in the case in which there is
only level repulsion, which becomes stronger for larger ζ/ζc

[22]. At the heart of this calculation is the fact that z j,nm and
ωnm are strongly correlated, and that these correlations are
characterized by the power-law distribution in Eq. (5).

In Fig. 4 we compute px(x) and pχ (χ ) numerically. Since
we perform these calculations for a Floquet model, the de-
nominator ω2

nm in Eq. (10) is replaced by (2 sin[ωnm/2])2,
which follows from perturbation theory for Floquet operators
as opposed to Hamiltonian ones. For large χ we find excellent
agreement between pχ (χ ) and 2L px(χ ), showing that the
sum χ j,n = ∑

m �=n x j,nm is dominated by the largest term. The
distributions determined numerically follow power laws over
many decades in χ , and the observed decay is marginally
slower than χ−3/2, as expected from Eq. (14).

Instead of discussing the overlaps of perturbed and unper-
turbed many-body eigenstates, we can also ask about changes
in the expectation values of local observables. In particular,
we can ask how z j,nn varies with the field h j . It is an exercise
in second-order perturbation theory to show that the result is

proportional to the level curvature κ j,n. For convenience we
define κ j,n = ∂λz j,nn, so that

κ j,n =
∑
m �=n

k j,nm, k j,nm ≡ |z j,nm|2
ωnm

, (15)

and it is important to note that these quantities can have either
sign. The calculation of pκ (κ ) is similar to that of pχ (χ ). For
ζ/ζc < 2/3, the distribution pk (k) of k is controlled by levels
with ω ∼ �, and so with � ∼ |k|−1. For ζ/ζc > 2/3 it is con-
trolled by � ∼ �0, and the L-dependence of the distribution
is altered. For ζ/ζc < 2/3, we find

pκ (κ ) ∼ |κ|−(2−ζ/ζc ), (16)

previously derived in Ref. [22]. The power law obtained there
follows simply from the correlations in Eq. (4) and the distri-
bution of resonant energy scales in Fig. 2 and Eq. (5).

Again we should contrast this distribution with the result
for random matrices. For matrix elements of σ j that are inde-
pendent of level separations, having pω(ω) ∼ |ω|β for small
ω, one instead finds pκ (κ ) ∼ |κ|−(2+β ) [61–64]. For each of
pχ (χ ) and pκ (κ ), increasing the level repulsion exponent
leads in the random-matrix setting to a faster power-law decay
of the distribution, whereas in MBL systems increasing ζ/ζc

(and hence the degree of level repulsion) leads to a slower
power-law decay. For large ζ/ζc, however, there is a distinct
change in the distributions pχ (χ ) and pκ (κ ), which merits
further investigation.

VIII. SUMMARY

To summarize, we have formulated a theory for resonances
in the MBL phase in terms of local observables. A contrast
between our study and previous ones is that we have described
resonances not in terms of LIOM [15,19,21,22], but instead
in terms of quantities that can be calculated using standard
techniques. This allows for approximate analytic calculations
that can be compared directly with numerics based on exact
diagonalization. A key ingredient in our theory is the relation
between matrix elements and the many-body level spectrum,
which we have argued can be understood based on parametric
dynamics. This relation highlights the fact that signatures
of resonance on energy scale � are evident even for level
pairs separated in the spectrum by |ω| 	 �. Using this, we
have shown how the resonant energy scales are encoded in
the statistics of matrix elements, and this has allowed us to
demonstrate numerically that they have a power-law distri-
bution. This distribution should be contrasted with the one
calculated in Ref. [21] for pairs of states that are nearby on the
scale of the mean level spacing. Our focus, as in Ref. [22], has
been on finite energy scales, which corresponds to dynamics
on finite time scales.

We have additionally determined the form of the tail in the
distribution of polarizations, which have been studied exten-
sively in MBL spin chains since Ref. [65]. A complementary
perspective comes from asking not about the statistical prop-
erties of individual systems, but instead asking how systems
respond to local perturbation [12,14,15]. To investigate this,
we have determined, both analytically and numerically, the
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distribution of eigenstate fidelity susceptibilities. Strikingly,
this has uncovered a regime in which essentially the entire
distribution is controlled by resonances on the finest energy
scales, which are generally expected to correspond to exten-
sive length scales. Our results also highlight an important
difference relative to the behavior of ergodic systems and
random matrices, namely that increasing the degree of level
repulsion in an MBL system leads to a slower power-law
decay of this distribution rather than a faster one. The origin
of this effect is in the extremely broad distributions of matrix
elements of local observables. A similar contrast with random
matrices is present when considering how eigenstate expecta-
tion values of local observables respond to perturbations. This
is quantified in part by the distribution of level curvatures, cal-
culated in MBL systems in Refs. [13,22,46]. In this work, we
have shown that this distribution, as well as the distribution of
fidelity susceptibilities, follows from the correlations between
matrix elements and the level spectrum in Eq. (4), and the
power-law distribution of resonant energy scales in Eq. (5)
and Fig. 2.

The observed power-law distribution is consistent with a
counting argument based on independent local resonances,
expected to be appropriate deep within the MBL phase. Since
we have shown how to calculate the resonant energy scales ex-
plicitly, our numerical approach can be immediately extended
to investigate resonances closer to the transition to ergodic be-
havior. An initial theoretical question in that regime concerns
the statistics of the energy scales when high-energy reso-
nances (corresponding to short lengthscales) can no longer
be treated as independent. One possibility is to approach this
problem by considering a hierarchical diagonalization proce-
dure, whereby one accounts for resonances at successively
lower energy scales. This idea has precedents in the study of
the critical Anderson problem [66–69], where it was shown
how the energy scales governing dynamics must flow, and it
underlies the demonstration of MBL behavior in Ref. [27].
Very recently, a procedure of this kind has been implemented
numerically [70]. Looking further afield, one might hope to
extend the approach to develop a theoretical understanding of
the percolation of resonances, which is expected to drive the
transition [21,28,29].

ACKNOWLEDGMENTS

We thank E. Altman, V. Bulchandani, D. A. Huse, and D.
E. Logan for helpful discussions, J. T. Chalker for guidance
and collaboration on related work [22], and A. Chandran, M.
Fava, and F. Machado for useful comments on the manuscript.
This work was supported in part by the Gordon and Betty
Moore Foundation (S.J.G.), an ICTS-Simons Early Career
Faculty Fellowship (S.R.) via a grant from the Simons Foun-
dation (Grant No. 677895, R.G.), and EPSRC Grant No.
EP/S020527/1 (S.R.).

APPENDIX A: FLOQUET MODEL

Here we describe the Floquet model for the MBL
phase used for numerical calculations. In our models

all points in the spectrum of the Floquet operator W
are statistically equivalent, and there are no conserved
densities. For integer time t the unitary evolution op-
erator is W t , and W |n〉 = eiθn |n〉, where the quasiener-
gies θn ∈ [−π, π ). The Floquet operators that we use
have the structure of brickwork quantum circuits, specif-
ically W = [

⊗
j odd w j, j+1][

⊗
j even w j, j+1], where w j, j+1 =

exp [iπJ� j, j+1][u j ⊗ v j+1]. Here � j, j+1 is the swap operator,
or equivalently a Heisenberg coupling, acting on qubits j
and j + 1, while J is the coupling strength. The independent
Haar-random 2 × 2 unitary matrices uj and v j describe the
random fields, and due to these fields our model does not
have time-reversal symmetry. Up to an overall phase, we can
write v ju j (u jv j) for j even (odd) as ei�h j ·�σ j/2 ≡ eih jσ j/2, where

�σ j is a vector of Pauli matrices and h j ≡ |�h j | so that σ j has
eigenvalues ±1. We restrict ourselves to behavior deep within
the MBL phase, and so with J well below 0.07 [53]. Note
that with periodic boundary conditions, the structure of the
evolution operator necessitates L even.

APPENDIX B: SOLUTION OF PARAMETRIC EQUATIONS

Here we outline the solution of the system of equations in
Eq. (2). For brevity we drop indices, e.g., z = z j,nm, and shift
the phase of z so that it is real. Then

∂λω = y, ∂λy = ω−1z2, ∂λz = −ω−1yz, (B1)

which describe an avoided crossing in a two-dimensional
resonant subspace. In contrast with Ref. [22], it has not been
necessary to introduce operators that describe the dynamics of
subsystems, although Eqs. (B1) can also be derived using that
approach. As discussed in the main text, solutions to Eqs. (B1)
are parametrized by three constants of integration. Two of
these are λ∗ and ω∗, which can be identified with the fictitious
time and splitting at the resonance, respectively. The third
constant of integration is R2 ≡ y2 + z2. Note that for J = 0 we
necessarily have z = 0, while y2 = 0 or 1, corresponding to
level pairs that have the same or opposite polarizations at the
site of the perturbation. For small J �= 0, we therefore expect
level pairs to have either R2 of order J , or R2 = 1 − O(J ).

To solve Eqs. (B1), it is convenient to write y(λ) =
−R cos ϕ(λ) and z(λ) = R sin ϕ(λ). This leads to

tan ϕ(λ) = ω∗

R(λ∗ − λ)
,

ω2(λ) = R2(λ − λ∗)2 + (ω∗)2, (B2)

which gives matrix elements of σ j set by

y(λ) = R(λ∗ − λ)

ω(λ)
, z(λ) = Rω∗

ω(λ)
. (B3)

Setting λ = 0 in the second of Eqs. (B3), we arrive at Eq. (4),
and we identify � = Rω∗. In the case R2 = 1 − O(J ), the
energy scale � that controls the off-diagonal matrix elements
of the local observable σ j is approximately equal to the mini-
mum level separation ω∗ that arises under variations in λ.
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FIG. 5. Left: Diagram of parametric dynamics with three levels,
with quasienergy θ vertical and fictitious time λ horizontal. The
exchange of labels at avoided crossings is described after Eq. (B3).
Right: Comparison of (greens) two-level 〈Zj,nm〉 and (oranges) three-
level 〈Zj,npZ j,pmZ j,mn〉 terms for L = 8, 10, 12 (increasing from light
to dark). Dashed lines indicate growth with J and with J2.

APPENDIX C: VARIATIONS OF �

Moving beyond a two-dimensional resonant subspace, here
we consider applying our theory to the full spectrum; aspects
of this are discussed elsewhere [22]. First, it is necessary to
adopt a convention for the relabeling of levels. The simplest
choice is to exchange the labels of levels at the centers of
avoided crossings, as illustrated in Fig. 5(a). In this way, the
polarizations z j,nn have the same signs on both sides of these
crossings. Second, we must ask how and whether � j,nm =
|ω j,nmz j,nm| varies with λ once we account for coupling to
levels |p〉 �= |n〉 , |m〉.

This coupling can be analyzed within perturbation
theory in λ. Variations of the energy scale � j,nm are

given by

∂λ�
2
j,nm =

∑
p�=n,m

f j,nmp(z j,npz j,pmz j,mn + c.c.),

f j,nmp = 1

2
ω2

j,nm

[
ω−1

j,mp + ω−1
j,np

]
. (C1)

For Eq. (4) to be appropriate even for |ωnm| 	 � j,nm, the net
variation in the resonant energy scale � j,nm from fictitious
time λ∗

j,nm to the random realization λ = 0 of interest must be
small. To understand how this can be the case, it is simplest to
consider a level |p〉 with R2

j,np of order unity. This scenario is
illustrated on the left in Fig. 5. Note that although the factor
ω−1

j,pn appearing in f j,nmp can be large, due to the above relabel-
ing scheme it has opposite signs for λ < λ∗

j,np and λ > λ∗
j,np.

This means that a decrease in �2
j,nm on one side of the res-

onance between |n〉 and |p〉 is (approximately) compensated
by an increase on the other side. The net variation in � j,nm is
therefore suppressed.

An interesting effect beyond our two-level approximation
appears in the quantity z j,npz j,pmz j,mn in Eq. (C1), and we
now briefly discuss its modulus square, Zj,npZ j,pmZ j,mn. In
particular, these three matrix elements are not independent of
one another. Suppose, as above, that R2

j,mn and R2
j,np are both

of order unity while R2
j,pm is of order J . For such a set of lev-

els we have 〈Zj,mn〉 , 〈Zj,np〉 ∼ 2−LJ , while 〈Zj,pm〉 ∼ 2−LJ2.
If we neglect correlations between these matrix elements,
the disorder-average 〈Zj,npZ j,pmZ j,mn〉 ∼ 2−3LJ4. However, if
there is a resonance between |n〉 and each of |m〉 and |p〉, this
causes Zj,pm to acquire a value of order unity. As a conse-
quence, we instead have 〈Zj,npZ j,pmZ j,mn〉 ∼ 2−2LJ2, and in
Fig. 5 we confirm this behavior numerically. The J2 scaling
nevertheless reflects the rarity of three-level relative to two-
level resonances.
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