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The dynamical quantum phase transitions (DQPTs) and the associated winding numbers have been extensively
studied in the context Hermitian system. We consider the non-Hermitian analog of p-wave superconductor,
supporting Hermitian gapless phase with complex hopping, in presence of on-site or superconducting loss
term. This allows us to investigate the effect of non-Hermitian gapless phases on the DQPTs in addition
to the Hermitian gapless phases. Our findings indicate that contour analysis of the underlying Hamiltonian,
enclosing the origin and/or exceptional points, can predict the occurrences of DQPTs except the quench within
the gapless phases. For the Hermitian case with initial and final Hamiltonians both being Hermitian, we find
nonmonotonic integer jump for the winding number as the hallmark signature of the gapless phase there. For
the hybrid case with initial and final Hamiltonians being Hermitian and non-Hermitian respectively, winding
number exhibits integer spike in addition to the nonmonotonic integer jumps. For the non-Hermitian case with
initial and final Hamiltonians both being non-Hermitian, the winding number show half-integer jumps for lossy
superconductivity that does not have any Hermitian analog. On the other hand, the integer jumps in winding
number is observed for lossy chemical potential. We understand our findings by connecting them with the profile
of Fisher zeros and number of exceptional points and/or origin.
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I. INTRODUCTION

The thermodynamic limit is necessary to examine the
equilibrium phase transitions when the underlying system
is well described by microscopic Hamiltonian without any
singular interactions [1]. The nonanalyticities in the free-
energy density, marked by the zeros of the partition function
namely, Fisher zeros in complex temperature (magnetic field)
plane, lead to temperature (magnetic field) driven liquid-gas
(paramagnet-ferromagnet) transition [1–3]. The above idea
is then generalized to dynamic quantum system where the
nonanalyticities in the dynamical free-energy density turns
up to be instrumental in predicting the dynamical quantum
phase transitions (DQPTs) in complex time plane [4–12].
The DQPTs are considered to be the dynamical analogs to
equilibrium quantum phase transitions when the initial state is
orthogonal to the time evolved state under a sudden quench.
Interestingly, the DQPTs are not always intimately connected
to the sudden quench across the quantum critical point (QCP)
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[13–22]. The slow quench is also found to exhibit DQPTs
[23–26]. Importantly, analogous to order parameters for the
conventional phase transitions, the dynamical topological or-
der parameter is introduced to characterize the topological
properties of the real-time dynamics through winding number
[27,28]. The realm of DQPTs is extended from free fermion
models [13] to interacting [15,29–31] as well as bosonic
systems [32–34]. In the context of Floquet driving, Fisher
zeros exhibit intriguing profile [35–37]. The DQPTs are ex-
perimentally observed in trapped-ion [38], nuclear magnetic
resonance [39], and optical lattice [40] systems. Notice that
DQPT is essentially related to Loschmidt amplitude (LA),
which is extensively studied in the context of quantum in-
formation theoretic measures namely, decoherence [41–47].
Notice that DQPTs are investigated in the context of time
crystals [48,49], and Floquet driving [35–37,50]. Importantly,
nondecaying nature of LA in the Floquet DQPT enables a
better handle to probe the phenomena experimentally [51,52].

Very recently, non-Hermitian analog of the underlying Her-
mitian quantum systems have received enormous attention
due to their vast applicability in open quantum system [53,54],
quasiparticles system with finite lifetime [55–57] as well as
their practical realizations in metamaterials such as cold atom
[58,59], photonic [60,61], and acoustic [62,63] systems. The
non-Hermitian system is found to host exceptional points
(EPs) where eigenstates, corresponding to degenerate bands,
coalesce [57,64–67]. The time evolution becomes nonunitary
for the non-Hermitian case that can nontrivially modify the
emergence of DQPT [68–71]. As a result, the time-dependent
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FIG. 1. The phase diagram of the model Hamiltonian Eq. (1) for
H (0, 0, φ) in [(a),(b)], H (0, γ2, φ) in [(c),(d)], and H (γ1, 0, φ) in
[(e),(f)]. We consider φ = 0 [π/4] in (a), (c), and (e) [(b), (d), and
(f)]. The yellow region represents the gapped phase I, II, and III while
green regions are gapless. We consider γ1 = γ2 = 1.

winding number is expected to show intriguing jump profile
for quenching across the EPs. Given the fact that the non-
Hermitian system is far more less explored in the context
of DQPT for gapless systems [14,72], we seek answers for
the following questions: what are the roles of gapless re-
gions in Hermitian and non-Hermitian systems, bounded by
Hermitian critical lines and EPs respectively, for DQPT and
correspondingly in the subsequent evolution for the winding
number? How does the profile of Fisher zeros change with
non-Hermiticities?

Considering a variant of one-dimensional (1D) p-wave
superconductor Kitaev chain with complex hopping and
non-Hermitian terms, we examine the emergence of DQPT
through various paths for sudden quenching from gap to
gap and gapless as well as gapless to gapless regions (see
Fig. 1). We find that contour analysis, based on the inclu-
sion of origin (EPs) for underlying Hermitian (non-Hermitian)
Hamiltonians and their chiralities, can correctly indicate the
nonanalyticities in the rate function in all the above quench
protocol except the quenching within the gapless phase (see
Figs. 2, 5, 7, 11). In the Hermitian case, the nonmonotonic
behavior of winding number, associated with the DQPTs, is
a marked signature for this gapless phase (see Fig. 6). For
hybrid case with initial Hermitian and final non-Hermitian
Hamiltonians, the contour analysis can predict DQPTs ex-
pect when the final Hamiltonian resides in the gapless
non-Hermitian phase. The winding number demonstrates an

FIG. 2. The parametric profiles of hy
k and hz

k for Hamiltonian (1)
Hk (0, 0, π/4) following the sudden quench across the QCP from
initial (marked by black-dashed line) gapped phase to final (marked
by red-dashed line) gapless (a) and gapped (b) phases. The arrows
indicate the chirality of the contours as k increases from 0 to 2π . The
hollow square at the origin, designating QCP with hy

k = hz
k = 0 such

that �hk = h+
k − h−

k = 0, is only enclosed when the Hamiltonian
supports topological phase. The set of parameters considered for
(a) [(b)] is (�i, � f , μi, μ f ) = (0.2, 0.2, −3, 0) [(0.8, 0.8, −1, 1)],
suggesting the fact that only final [both initial and final] phase
[phases] is [are] topological.

integer spike in addition to the nonmonotonic jumps for the
quench discussed above (see Fig. 10). For the non-Hermitian
case, we remarkably find DQPTs, associated with half-integer
jumps besides the nonmonotonic integer jumps in the winding
number, exist only for quenching within the gapless phases
in presence of lossy superconductivity (see Fig. 14). Under
lossy chemical potential, the DQPTs are observed as well.
We understand the behavior of winding number by analyzing
the number of enclosed EPs and origin within the appropriate
contours as well as the structure of Fisher zeros. The critical
momentum and time, causing the DQPTs, are estimated from
the closed form expressions for both the Hermitian and non-
Hermitian Hamiltonians.

The paper is organized as follows. Section II describes
the model and the framework of DQPTs. We analyze the
phase diagrams under non-Hermiticities. We examine the
results in Sec. III where we explore the contour profiles,
Fisher zeros, DQPTs, geometric phases, and winding num-
bers. The Hermitian (Sec. III A), hybrid (Sec. III B), and
non-Hermitian (Sec. III C) cases are demonstrated when the
underlying Hamiltonians are both Hermitian, Hermitian as
well as non-Hermitian and both non-Hermitian, respectively.
We conclude in Sec. IV.

II. MODEL AND DYNAMICAL QUANTUM PHASE
TRANSITIONS

We consider 1D p-wave superconductor with complex
hopping as follows H (γ1, γ2, φ) = ∑

k ψkHk (γ1, γ2, φ)ψ†
k

[73–75],

Hk (γ1, γ2, φ) = 2w0 sin φ sin k I +
(

2� sin k + iγ2

2

)
σy

−
(

2w0 cos φ cos k + μ + iγ1

2

)
σz = hk · σ,

(1)

where w0, φ ∈ [0, π/2], μ, and � are the nearest-neighbor
hopping amplitude, phase of the hopping amplitude, chem-
ical potential, and superconducting gap respectively, with
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hk = {h0
k , hy

k, hz
k} and σ = {σ0, σy, σz}. The Hamiltonian is

written in the basis of ψk = (ck, c†
−k ) using pseudospin

degrees of freedom formed by the fermion particle-hole sub-
space. The energy of the Hamiltonian Hk is found to be h±

k =
h0

k ±
√

(hy
k )2 + (hz

k )2. Here, γ1,2 represent the non-Hermitian
factors. γ1 is associated with the on-site gain and loss terms
that can be caused by the imaginary part of the self-energy
for open and/or interacting quantum systems. We refer to the
above instance as the lossy chemical potential. On the other
hand, γ2 is modeled like a nonreciprocal effects in the gap
function, which does not have any practical analog so far to
the best of our knowledge. We indicate this situation as the
lossy superconductivity.

The Hermitian analog of the model preserves particle-
hole symmetry (PHS) PHk (0, 0, φ)P−1 = −H−k (0,

0, φ) with P = σxK (K denotes the complex conjugation)
while time-reversal symmetry (TRS) T = K and chiral
symmetry (CS) C = T P are preserved only for real hopping:
T Hk (0, 0, 0)T −1 = H−k (0, 0, 0) and CHk (0, 0, 0)C−1 =
−Hk (0, 0, 0). On the other hand, for non-Hermitian case
γ1 �= 0, γ2 = 0, only PHS continues to be preserved P−HT

k

(γ1, 0, φ)P−1
− = −H−k (0, 0, φ) with P− = σx while

Hk (γ1, 0, 0) respects TRS† T+ = σ0 and CS C− = σx: T+HT
k

(γ1, 0, 0)T −1
+ = H−k (γ1, 0, 0) and C−Hk (γ1, 0, 0)C−1

− =
−Hk (γ1, 0, 0). Interestingly, we find �Hk (γ1, 0, 0)�−1 =
H−k (γ1, 0, 0) where the inversion symmetry is denoted by
� = σz. In the other non-Hermitian case γ1 = 0, γ2 �= 0, the
CS is only respected for Hk (0, γ2, 0) while TRS, PHS and
IS are broken for Hk (0, γ2, 0) and Hk (0, γ2, φ). Therefore,
Hk (0, γ2, φ) is maximally symmetry broken where PHS is
only preserved for Hk (γ1, 0, φ).

Notice that the Hamiltonian (1) reduces to Kitaev model
for 1D p-wave superconductor, supporting two topological
phases for |μ| < 2w0 trivial phases for |μ| > 2w0, when φ =
γ1,2 = 0 [76]. The Hamiltonian Eq. (1) becomes gapless for
critical momentum k∗ when the real part satisfies the following
condition:

(2w0 cos φ cos k∗ + μ)2 − γ 2
1

4
+ 4�2 sin2 k∗ − γ 2

2

4

= 4w2
0 sin2 φ sin2 k∗ (2)

Starting with the simple Hermitian case H (0, 0, 0 < φ <

π/2), one can find a rectangular gapless region, bounded ver-
tically (horizontally) by � = ±w0 sin φ (μ = ±2w0 cos φ),
that separates topological I phase from topological II phase
(topological I and II phases from nontopological III phase).
This is shown in Figs. 1(a) and 1(b) for H (0, 0, φ = 0) and
H (0, 0, φ = π/4), respectively. Two elliptical arcs both in
left and right sides of the rectangle region appear for in-
finitesimal value of φ. Importantly, within the whole gapless
green region, there exist a set of values for kc satisfying the
above gapless condition in Eq. (2) with γ1 = γ2 = 0. For the
non-Hermitian case, we refer to the yellow (green) region as
the gapped I, II and III (gapless) instead of topological and
nontopological phases without loss of generality. We consider
two distinct situations γ1 �= 0, γ2 = 0 and γ1 = 0, γ2 �= 0 for
the non-Hermitian case and γ1 = γ2 = 0 for the Hermitian
case.

The EPs arising in the hy − hz plane for the non-
Hermitian case are given by Im[hy

k] = ±Re[hz
k] and Im[hz

k] =
∓Re[hy

k]. The rectangle-like region is bounded by hori-

zontal lines � = ±
√

w2
0 sin2 φ + γ 2

2 /16 [convex lines � =
±

√
w2

0 sin2 φ + γ 2
1 /16 − μ2/4] for γ1 = 0, γ2 �= 0 [γ1 �=

0, γ2 = 0] with k∗ = ±π/2. On the other hand, the vertical
gapless region, bounded by μ = ±2w0 cos φ ± γ2/2 [μ =
±2w0 cos φ ± γ1/2] with k∗ = 0, π for γ1 = 0, γ2 �= 0 [γ1 �=
0, γ2 = 0]. Therefore, the vertical gapless region of width
γ , enclosed between 2w0 cos φ − γ /2 < μ < 2w0 cos φ +
γ /2 [−2w0 cos φ − γ /2 < μ < −2w0 cos φ + γ /2] for μ >

0 [μ < 0] is an intriguing outcome of non-Hermiticity. The
above features are demonstrated in Figs. 1(c), 1(d), and 1(e),
1(f) for H (0, γ , φ = 0, π/4), and H (γ , 0, φ = 0, π/4), re-
spectively. This is contrast to the Hermitian case where the
rectangular region gets modified due to non-Hermiticity irre-
spective of the any particular choice discussed in the present
case. Interestingly, for φ = π/2, the topological phases dis-
appear completely and the gapless region is bounded by an
ellipse 4�2 + μ2 = 4w2

0 + γ 2/4 with γ1 = 0, γ2 = γ �= 0 or
γ2 = 0, γ1 = γ �= 0.

The LA accounts for the overlap between the initial state
|	i〉 and the time-evolved state |	(t )〉 = e−iHf t |	i〉 is found
to be G(t ) = 〈	i|e−iHf t |	i〉 when the system undergoes a
sudden quench from initial Hamiltonian Hi to final Hf [4,28].
The LA can be expressed as G(t ) = 
kgk (t ) [68]

gk (t ) = cos(hk, f t ) − i sin(hk, f t )〈ψk,i|Hk, f

hk, f
|ψk,i〉, (3)

where initial and final Hamiltonian are expressed in
terms of individual momentum modes, Hk,i( f )|ψk,i( f )〉 =
hk,i( f )|ψk,i( f )〉. In the thermodynamic limit the rate function,
associated with LA, is given by

I (t ) = − 1

2π

∫ 2π

0
dk ln |gk (t )|2. (4)

Interestingly, when the argument of “ln” in Eq. (4) becomes
zero, the DQPTs occur. The above criterion leads to the Fisher
zeros [1–3]. This happens at a few imaginary times z = it as
follows:

zn,k = i
π

hk, f

(
n + 1

2

)
+ 1

hk, f
arctanh〈ψk,i|Hk, f

hk, f
|ψk,i〉, (5)

with certain momenta k referred to as the critical mo-
menta kc. Here n denotes the integer numbers. Note that
the identity term in Hamiltonian (1) does not change
the LA qualitatively under nonequilibrium dynamics and
hence we consider Hk,i( f ) = hy

k,i( f )σy + hz
k,i( f )σz and h±

k,i( f ) =
±

√
(hy

k,i( f ) )
2 + (hz

k,i( f ) )
2

for further calculations.
For general non-Hermitian case with γ1,2 �= 0, hk, f and

arctanh〈ψk,i|Hk, f

hk, f
|ψk,i〉 both can in general be complex. No-

tice that |ψk,i( f )〉 and 〈ψk,i( f )| represent the right and left
eigenvectors of Hk,i( f ) with

∑
n |ψn

k,i( f )〉〈ψn
k,i( f )| = I and

〈ψn
k,i( f )|ψm

k,i( f )〉 = δmn owing to biorthogonalization. As a re-
sult, zn,k receives finite real contribution from both the above
terms. A careful analysis suggests that, provided Re[zn,kc ] = 0,
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the critical momenta kc satisfies the following condition:

π
(
n + 1

2

)
Im[hkc, f ] + Re[hkc, f ]Re[Akc ] + Im[hkc, f ]Im[Akc ] = 0

(6)
with Akc = arctanh〈ψkc,i|Hkc , f

hkc , f
|ψkc,i〉. Interestingly, one can

find multiple critical momenta in the non-Hermitian case in
contrast to the Hermitian case as discussed below. The critical
time tc corresponding to the above kc is given by the imaginary
part of zn,k as follows:

tc = π

(
n + 1

2

)
Re[hkc, f ]

|hkc, f |2

+ Re[hkc, f ]Im[Akc ] − Im[hkc, f ]Re[Akc ]

|hkc, f |2 . (7)

The time-dependent winding number further characterizes
the nonanalytic behavior in the rate-function (4) at real critical
time tc

ν(t ) = 1

2π

∫ 2π

0
dk

[
∂kφ

G
k (t )

]
. (8)

Here the geometric phase of the return amplitude is
given by φG

k (t ) = φ̃k (t ) − φ
dyn
k (t ), with total phase φ̃k (t ) =

−i ln[ gk (t )
|gk (t )| ] and the dynamical phase is found to be [68,77]

φ
dyn
k (t ) = −

∫ t

0
ds

〈ψk,i(s)|Hk, f |ψk,i(s)〉
〈ψk,i(s)|ψk,i(s)〉

+ i

2
ln

[ 〈ψk,i(t )|ψk,i(t )〉
〈ψk,i(0)|ψk,i(0)〉

]
, (9)

where |ψk,i(t )〉 = e−iHk, f t |ψk,i〉 and 〈ψk,i(t )| = 〈ψk,i|eiH†
k, f t

are the time-evolved right and left eigenvectors of Hk,i re-
spectively. Note that the upper limits of the integration in
Eq. (4) and Eq. (8) can be π instead of 2π , once the eigenvalue
spectrum of Hk,i( f ) becomes π periodic with respect to k.

Having discussed the DQPT in the context of non-
Hermitian Hamiltonian, we now briefly mention the Her-
mitian analog i.e., γ1,2 = 0. To this end, one can con-
sider 〈ψk,i( f )| = ( cos(θk,i( f )/2), sin(θk,i( f )/2)) and |ψk,i( f )〉 =
〈ψk,i( f )|T without loss of generality as the ground state
for 2-level system Hk,i( f ), corresponding to energy hk,i( f ) =
−

√
[hy

k,i( f )]
2 + [hz

k,i( f )]
2 where θk,i( f ) = arctan[hy

k,i( f )/hz
k,i( f )].

The LA, derived from Eq. (3), is thus found to be gk (t ) =
cos2 φk + sin2 φk exp[−2ihk, f t] where φk = (θk,i − θk, f )/2.
Following the same line of argument as presented in
Eq. (5), the Fisher zeros acquires the form zn,k = iπ (n +
1/2)/hk, f + ln(tan2 φk )/2hk, f . The DQPTs occurs at tc =
π (n + 1/2)/hkc, f corresponding to critical momentum kc for
which tan2 φkc = 1. Unlike the non-Hermitian case, the kc

is uniquely determined by | cos φkc | = | sin φkc | = 1/
√

2 such
that tan θkc,i = − cot θkc, f , i.e.,

hy
kc,i

× hy
kc, f

hz
kc,i

× hz
kc, f

= −1. (10)

The winding number for Hermitian case, as demon-
strated in Eq. (8), is determined by the geometric
phase φG

k (t ) = φ̃k (t ) − φ
dyn
k (t ) with the dynamical phase

φ
dyn
k (t ) = −2hk, f t sin2 φk and total phase [23,28],

φ̃k (t ) = arctan

[ − sin2 φk sin(2hk, f t )

cos2 φk + sin2 φk cos(2hk, f t )

]
. (11)

Note that for quench involving non-Hermitian Hamil-
tonian, we computed a renormalized rate function I (t ) ≡
− 1

2π

∫ 2π

0 dk ln[|gk (t )|2/|e−iH f
k t |ψ i−

k 〉|2] that allows us to show
the nonanalytic behavior of I (t ) more clearly. This renor-
malized rate function does not affect the behavior of DQPTs
qualitatively [68]. Here, |ψ i−

k 〉 is the ground state of the initial
Hamiltonian.

III. RESULTS

We here focus on the emergence of DQPTs for sudden
quench involving gapless phase in Hermitian, and non-
Hermitian cases. We consider φ = π/4 and w0 = 1 unless it
is specified otherwise.

A. Hermitian case

The topological (nontopological) phase for |μ| <

2w0 cos φ (|μ| > 2w0 cos φ) corresponds to a situation when
the contours, defined by the path going around the BZ, of the
gap terms hy,z

k do (do not) enclose the origin hk = {hy
k, hz

k} = 0
point. The interesting point to note is that the contour of hk

continues enclosing the origin irrespective of the gapless
nature of the phase as long as |μ| < 2w0 cos φ. Therefore, the
contours of hk is not sensitive to the gapless phase boundaries
� = ±w0 sin φ. The chirality of the contours is determined
by the flow of the momentum modes from 0 to 2π in the
hy

k − hz
k parameter space. The chirality changes sign when �

crosses zero from positive (negative) to negative (positive)
values. The contours for hk,i and hk, f are demonstrated in
Fig. 2 with black- and red-dashed lines, respectively.

First, we consider the quench μi → μ f keeping fixed
|�| < w0 sin φ (|�| > w0 sin φ) such that initial and final
states are respectively gapped and gapless (initial and final
states become both gapped). The DQPT occurs for μi <

−2w0 cos φ to −2w0 cos φ < μ f < 2w0 cos φ with |�| <

w0 sin φ when only hk, f encloses the origin while hk,i and
hk, f both have the same chirality [see Fig. 2(a) and Fig. 3].
The Fisher zeros exhibit single crossing on the imaginary
axis Re[zn,k] = 0 such that tc,n = −izn,kc [see Fig. 3(a)]. One
can clearly find critical momentum kc = 1.53, obtained from
Eq. (10), across which the geometric phase φG

k (t ) changes
abruptly its sign [see Fig. 3(c)]. The time profile of the
winding number exhibits sharp jumps between two quantized
plateau exactly at the corresponding critical time tc,n = (n +
1
2 )π/hkc, f [see Fig. 3(d)]. Interestingly, for −2w0 cos φ <

μi, f < 2w0 cos φ with |�| > w0 sin φ, hk,i and hk, f both en-
circle the origin and share identical chirality [see Fig. 2(b)].
We find no DQPT there as the Fisher zeros do not cross the
imaginary time axis [see Figs. 4(a) and 4(b)].

The encasement of origin for the contour profiles associ-
ated with underlying Hamiltonians can be considered to be the
necessary condition for DQPT; on the other hand, the opposite
chirality of their profiles can be regarded as the sufficient
condition. We can define a DQPT marker as η = ηi − η f with
ηi, f = ±qi, f . Here ql = 1 (ql = 0) refers to the situation when

054308-4



ANOMALY IN THE DYNAMICAL QUANTUM PHASE … PHYSICAL REVIEW B 106, 054308 (2022)

FIG. 3. (a) The lines of Fisher zeros zn,k with n = −4 (violet),
· · · , 3 (black), computed from Eq. (5) for the case discussed in
Fig. 2 (a), cross the imaginary axis suggesting the occurrence of
DQPT. (b) Nonanalytic behavior in the rate function I (t ), obtained
from Eq. (4), is clearly visible in time at t/tc = 1, 3, 5, 7, · · · where
tc ≈ 3.89. (c) The geometric phase φG

k (t ), following Eq. (11) and
φ

dyn
k (t ), changes abruptly around critical momentum kc ≈ 1.53 for

t/tc = 1, 3, 5, 7, · · · as shown in the k − t plane. (d) The mono-
tonic evolution of topological winding number ν(t ), estimated from
Eq. (8), exhibit unit jump at t/tc = 1, 3, 5, 7, · · · consistent with the
evolution of I (t ).

the contour of Hamiltonian Hl does (does not) enclose the
origin and + (−) sign denotes the positive (negative) chirality
of the corresponding contour. We investigate various instances
where we find that DQPT persists irrespective of the gapless
region as long as the system is quenched across or to the
QCP μ = ±2w0 cos φ. The DQPT is also observed when the
system is quenched from �i to � f across the line � = 0
keeping μ fixed. All the above observations are correctly ex-
plained by the analysis η = ηi − η f �= 0 whenever the DQPT
is observed. According to the above analysis, the DQPT is
accompanied by the crossing of the QCP, separating the two
different topological phases or a topological phase from a
nontopological phase. This analysis is found to hold true as
long as at least one of the Hamiltonian Hi and H f lies outside
the gapless phase.

We focus on situations |μ| > 2w0 cos φ (|μ| < 2w0 cos φ)
to investigate the emergence of DQPT inside the gapless
phase, separating the topological and nontopological phases

FIG. 4. We repeat Figs. 3(a) and 3(b) for the case demonstrated
in Fig. 2(b). (a) The Fisher zeros do not cross the imaginary axis.
(b) The rate function does not encounter any singularities. The
DQPTs are no longer observed even though the both initial and final
Hamiltonians both enclose the origin.

FIG. 5. We repeat Figs. 2(a) and 2(b) for (�i, � f , μi, μ f ) =
(0.3, 0.3, −1.0, 1.0) and (−0.55, 0.55, −1.5, −1.5) in (a) and (b),
respectively, following μ- and � quench without crossing the QCP
μ = ±2w0 cos φ inside the gapless phase. The initial and final con-
tours both include [exclude] origin in hy

k − hz
k plane in (a) [(b)]

resulting in no change in topology.

(two topological phases). According to the above analysis,
we find ηi = η f = +1 (ηi = η f = 0) for μi = −1 → μ f =
1, � = 0.3 (�i = −0.55 → � f = 0.55, μ = −1.5) referring
to the fact that DQPT is not expected to occur [see Figs. 5(a)
and 5(b)]. By contrast, the rate function displays nonanalytic
behavior as the Fisher zeros cross the Re[zn,k] = 0 axis [see
Figs. 6(a) and 6(b)]. Importantly, we find two critical momen-
tum, derived from Eq. (10), as follows:

4�i� f sin2 kc

(μi + 2 cos φ cos kc)(μ f + 2 cos φ cos kc)
= −1 (12)

yielding kc0 ≈ 0.89, tc0 ≈ 0.81 and kcπ ≈ 2.24, tcπ ≈ 3.27.
The profile of the geometric phase can be explained by the
above analysis [see Figs. 6(c)]. Remarkably, the winding num-
ber shows nonmonotonic behavior is due to the re-entrant
nature of the Fisher zeros where zn,k intersects the imaginary
axis twice. The winding number rises (falls) by unity at certain
integer multiples of tc0 (tcπ ) [see Figs. 6(d)]. Notice that even

FIG. 6. We repeat Fig. 3 for the case discussed in Fig. 5(a).
(a) The lines of Fisher zeros zn,k with n = −4 (violet), · · · , 4 (black)
cross twice the imaginary axis suggesting the occurrence of DQPT.
(b) We find critical times t = tc0, 3tc0, tcπ , 5tc0, 7tc0 at which I (t )
diverges with tc0 ≈ 0.81 and tcπ ≈ 3.27. (c) The geometric phase
exhibit discontinuous profile at critical momenta kc0 ≈ 0.89 and
kcπ ≈ 2.24 for the above critical times. (d) The nonmonotonic jumps
in winding number ν(t ) suggests the existence of two critical time
scales tc0 and tcπ consistent with the rate function. We find qualita-
tively similar feature for the case of Fig. 5(b).
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though the contour analysis fails to indicate the occurrence
of DQPTs that is caused by the vanishing ln(tan2 φk )-term
with | sin φk| = | cos φk| = 1/

√
2. This signals the infinite

temperature state when both levels of the two-level system are
equally populated. This is what is exactly observed in DQPT,
mediated by slow quenching across the QCP for transverse
Ising model, with Landau-Zener transition probability being
half [23].

Combining all these, we find that contour analysis fails
inside the green gapless region when both Hk,i and Hk, f reside
in the above region. By contrast, inside the gapped region, the
contour analysis can successfully predict the occurrences of
DQPTs al least when �,μ, and w0 are comparable. Therefore,
the effect of the gapless region is visible in the DQPTs. How-
ever, the DQPT is unable capture any details of the underlying
phase. It is noteworthy that as long as Eq. (10) is satisfied the
DQPT is bound to happen irrespective of the specific details of
the phase. Interestingly, the re-entrant behavior of Fisher zeros
lead to nonmonotonic behavior of winding number, which
might be another hallmark signature of the gapless phase.
In general, such re-entrant behavior of Fisher zeros is not
expected to observe inside the gapped phase.

B. Hybrid case

We now explore the situation where the initial and final
Hamiltonians are respectively Hermitian and non-Hermitian:
Hk, f = Hk,i + iγ σy/2 keeping all the remaining parameters
unaltered. Note that the initial and final contour are same
except the fact that the final contour can only enclose EPs
while the initial contour can only encircle the origin, i.e,
QCP. Note that for −2w0 cos φ + γ /2 < μ < 2w0 cos φ −
γ /2, Hk, f encloses two EPs at (hy

k, f , hz
k, f ) = (0,±γ /2) si-

multaneously irrespective of the horizontal gapless phase

boundaries � = ±
√

w2
0 sin2 φ + γ 2/16. A single EP, appear-

ing at (0,−γ /2) [(0, γ /2)], is enclosed by the Hamilto-
nian Hk, f for −2w0 cos φ − γ /2 < μ < −2w0 cos φ + γ /2
[2w0 cos φ − γ /2 < μ < 2w0 cos φ + γ /2]. On the other
hand, the Hamiltonian Hk, f does not enclose any of the
EPs for |μ| > |2w0 cos φ + γ /2|. We consider η f = ±∑

l ql

where l and ± denote the number of EPs and chirality for
the contour of Hk, f , respectively; ql = 1(0) for one (no)
EP inside the contour. On the other hand, ηi = ±1(0) when
Hk,i includes (excludes) origin as already described previ-
ously. Therefore, DQPT is expected to occur as long as the
final contour encloses EPs even if initial contour does not
enclose the origin. The chirality of the contour remains unal-
tered for Hk,i and Hk, f . We find η = ηi − η f = −1 for |μ| >

2w0 cos φ [|μ| < 2w0 cos φ] with |�| < w0 sin φ as evident
from Fig. 7(a) [(b)].

A single EP plays the role of origin, as observed for the
Hermitian case, leading to a single crossing of the imaginary
axis for Fisher zeros [see Fig. 8(a)]. The critical momentum
and time can be estimated using the Eqs. (6) and (7), that
are clearly depicted in the geometric phase [see Fig. 8(c)].
The nonanalyticities in rate function and monotonic jumps in
winding number are clearly observed [see Figs. 8(b) and 8(d)].
Interestingly, the Fisher zeros cross the imaginary axis four
times among which twice due to two EPs enclosed by Hk, f

FIG. 7. The parametric profiles of hy
k and hz

k for final Hamiltonian
Hk, f = Hk,i + iγ σy/2 with (�i, μi, γ ) = (0.2,−1.7, 3.0),
(0.2, −0.5, 1.0), (0.2, −1.2, 3), and (0.2, −1.8, 0.5) in (a),
(b), (c), and (d), respectively. The solid-green [empty] rectangles
at (hy

k, hz
k ) = (0, ±γ /2) [(0,0)] represent the EPs [origin] for H f ,k

[Hi,k].

and twice for the origin encircled by Hk,i and Hk, f both [see
Fig. 9(a)]. The profile of geometric phase, shown in Fig. 9(c),
exhibits distinct signature at certain critical momentum kc as
estimated from Eq. (6). The winding number displays positive
and negative jumps between two quantized plateau at certain
critical time t ′

cs, corresponding to two EPs. Interestingly, the
kink structure in the winding number is caused by the origin
[see Fig. 9(d)].

We find that DQPTs exist even when the marker η van-
ishes. For example, we adopt a quench with −2w0 cos φ <

μi < −2w0 cos φ + γ /2 and �i <

√
w2

0 sin2 φ + γ 2/16 such
that ηi = η f = 1. This corresponds to a situation when the

FIG. 8. We investigate the DQPTs for the case discussed in
Fig. 7(a). (a) The Fisher zeros zn,k for n = 1 (blue), · · · , n = 5
(red) cross the imaginary axis just once. (b) The rate function I (t )
diverges at t ≈ 2.1, 3.45, 4.6, 5.7, 6.8, · · · �= mtc with a fixed value
of tc. (c) The geometric phase φG

k (t ) exhibits clear discontinuity at
several k′

cs yielding above time instants. (d) The winding number
ν(t ) decreases monotonically by unit jump at the above time instants
as time increases.
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FIG. 9. We investigate the DQPTs for the case discussed in
Fig. 7(b). (a) The Fisher zeros zn,k with n = 1 (blue), · · · , n = 5
(red) cross real axis four times out of which two distantly (closely)
spaced crossing are caused by two EPs (origin) corresponding
to only final Hamiltonian (both final and initial Hamiltonians).
(b) The rate function I (t ) shows nonanalytic behavior at t ≈
4.2, 5.2, 5.9, 6.8, 8.8, 9.3, · · · . (c) The geometric phase exhibits
three distinct regions where the discontinuities are observed; two
of them are corresponding to two EPs and remaining one is for the
origin. (d) The decrease and increase of winding number is related
to the EPs while the spike-like behavior at t ≈ 5.9 is the signature of
the origin.

initial and final contours include origin and one of the EPs,
respectively. The Fisher zeros cross the imaginary axis thrice
leading to the DQPTs [see Figs. 10(a) and 10(b)]. Notice
that here the final Hamiltonian hosts non-Hermitian gapless
phase that was absent for the initial Hermitian Hamiltonian.
Therefore, the contour analysis apparently breaks down for
the non-Hermitian gapless phase in the present hybrid case.
One can further demonstrate an instance with ηi = η f = 0
where DQPT is observed [see Figs. 10(c) and 10(d)]. The

FIG. 10. The Fisher zeros, corresponding to the cases as dis-
cussed in Figs. 7(c) and 7(d), are depicted in (a) and (c),
respectively. The Fisher zeros cross thrice [twice] the imaginary
axis in (a) [(c)]. The corresponding rate functions are displayed in
(b) and (d) with tc ≈ 2.2, 3.75, 5.15, 6.55, 7.95, 8.1, · · · and tc ≈
17.5, 19.6, 21.2, 30.1, · · · , respectively.

FIG. 11. The parametric profiles of hy
k and hz

k for
Hk,i(0, γ , π/4) (black-dashed line) and Hk, f (0, γ , π/4)
(red-dashed line) with γ = 1.0. We consider (�i, � f , μi, μ f ) =
(0.2, 0.2, −3.0, −1.6), (0.2, 0.2, −3.0, 0.0), (0.2, 0.2, −1.0, 1.0),
and (1.2, 1.2, −1.8, −1.0) for quenching across one
non-Hermitian phase boundary μ = −2w0 cos φ − γ /2 in (a),
two non-Hermitian phase boundaries μ = −2w0 cos φ − γ /2 and
μ = −2w0 cos φ + γ /2 in (b), in between μ = −2w0 cos φ + γ /2
and μ = +2w0 cos φ − γ /2 in (c), and inside the non-Hermitian
phase boundaries −2w0 cos φ − γ /2 < μ < −2w0 cos φ + γ /2 in
(d), respectively. The initial black contour encloses no EPs in (a) and
(b) while one EP at (0, γ /2) in (c) and (d). The final red contour
encloses one EP at (0, γ /2) for (a) and (d), (0,−γ /2) for (c) and
two EPs at (0, ±γ /2) for (b).

DQPTs are ensured by Eq. (6) even though the contour anal-
ysis fails to predict them similar to the previous Hermitian
case. To make the discussion complete, we also investigate the
situation with lossy chemical potential Hk, f = Hk,i + iγ σz/2.
We find qualitatively similar results as compared to the lossy
superconductivity.

C. Non-Hermitian case

We now consider Hk,i(0, γ , φ) and Hk, f (0, γ , φ) both to
be non-Hermitian to explore the occurrence of DQPT under
various quench path. We consider μ quench i.e., μi → μ f

while � remains fixed, i.e, �i = � f . We only take into ac-
count iγ σy/2 as the non-Hermiticity while γ1 = 0 in Eq. (1).
The appearance of the EPs on the non-Hermitian phase dia-
gram is already described in the previous Sec. III B. Notice
that the quenching from gapped to the gapless phase across
the single [double] non-Hermitian phase boundary [bound-
aries] at μ = −2w0 cos φ − γ /2 [μ = −2w0 cos φ ± γ /2]
are shown in Fig. 11(a) [(b)] where Hk, f encircles one EP
[two EPs] and Hk,i does not enclose any EPs. The convention
chosen for the contour analysis is the following: ηl = ±∑

l ql

with l (±) denoting the number of EPs inside the contour
(chirality for the contour) associated with Hk,l ; ql = 1(0)
for one (no) EP inside the contour. Following the contour
analysis, η = ηi − η f = −1[−2] for Fig. 11(a) [(b)] resulting
in DQPTs. This yields Fisher zeros to cross once (twice) the
imaginary axis and consequently the winding number exhibit
monotonic (nonmonotonic) behavior [see Figs. 12(a), 12(d),
and Figs. 13(a), 13(d)]. One EP causes the increase in winding
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FIG. 12. We show the Fisher zeros zn,k in (a), rate function I (t )
in (b), geometric phase φG

k (t ) in (c), winding number ν(t ) in (d) for
the case as discussed in Fig. 11 (a).

number while the decrease is originated due to the other EP.
The profile of geometric phases are also markedly different for
encasing single and double EPs [see Fig. 12(c) and Fig. 13(c)].
The rate function diverges at certain times tc for the critical
momentum kc, being consistent with Eqs. (6) and (7), are
appropriately captured by geometric phases [see Fig. 12(b),
and Fig. 13(b)].

The contour analysis fails to work, i.e., η = 0 for quench-
ing inside the gapless phase bounded by non-Hermitian
phase boundaries −2w0 cos φ − γ /2 < μ < −2w0 cos φ +
γ /2 where the DQPT continues to exist. Here both the initial
and final Hamiltonian enclose the EPs with same chirality
[see Fig. 11(c)]. The Fisher zeros unveils remarkable struc-
ture as zn,k crosses imaginary axis in a discontinuous manner
[see Fig. 14(a)]. This behavior can be naively understood by
the imaginary values of kc = |kc|eiθ , which further leads to
multiple values of critical time tc under the variation of θ .
The critical momenta kc and the corresponding time tc can
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FIG. 13. We repeat Fig. 12 for the case as demonstrated in
Fig. 11(b). There exist two critical times tc1 ≈ 3.3, 6.0, 8.45, · · ·
and tc2 ≈ 3.5, 6.68, 9.95, · · · at which ν(t ) increases and decreases,
respectively.
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FIG. 14. We repeat Fig. 12 for the case discussed in Fig. 11(c).
(a) The Fisher zeros zn,k with n = 0 (blue), · · · , n = 4 (red) cross
imaginary axis continuously three times in addition to two dis-
continuous crossing. The rate function and geometric phase are
depicted in (b) and (c), respectively, where the critical time instants
tc ≈ 0.3, 0.62, 1.03, 1.48, 1.64, 2.27, 2.33, 2.36, · · · are mentioned.
(d) The winding number ν(t ) jumps by half-integer values (±0.5) at
tc ≈ 0.3, 1.03, 1.64, 2.36, · · · where the Fisher zeros show disconti-
nuities in as shown in the inset of (a). The unit jumps are observed at
tc ≈ 0.62, 1.48, 2.27, 2.33 corresponding to the continuous crossing
of Fisher zeros over the imaginary axis.

be obtained from Eqs. (6) and (7), respectively. Such variation
in θ can be qualitatively understood by the n dependent kc in
Eq. (6). The profile of the geometric phase is markedly differ-
ent from the previous cases as we find kc ≈ 0 + ε and 2π − ε

(ε → 0) correspond to tc ≈ 1.03 and 0.3 respectively [see
Fig. 14(c)]. There exist multiple values of time tc for a given
value of |kc| around which φG

k (t ) changes its sign abruptly.
This is intimately related to the jump profile of winding
number. Remarkably, we find half-integer jumps associated
with the discontinuity in the zn,k profile [see Fig. 14(d)]. This
is strikingly different as compared to all the previous cases
where the Fisher zeros, continuously crossing imaginary axis,
always lead to integer jumps. One can think of that a contin-
uous crossing of Fisher zeros is split into two discontinuous
touching of Fisher zeros on the imaginary axis.

We now consider the quench inside the non-Hermitian
gapless phase with −2w0 cos φ − γ /2 < μ < −2w0 cos φ +
γ /2 that lie above the horizontal gapless region |�| <√

(w0 sin φ)2 + (γ /2)2. According to the contour analysis,
the EP at (0, γ /2) is enclosed by Hk,i and Hk, f with the same
chirality. The DQPT is thus not expected to occur, however,
the Fisher zeros cross imaginary axis leading to nonanalytic
signature (jump profile) in rate function (winding number)
[see Figs. 15(a)–15(d)]. Importantly, half-integer jump is not
clearly observed when the Fisher zeros show quasicontinuous
profile unlike the previous case. However, the Fisher zeros
show clear discontinuity for φ = 0 referring to the fact that
winding number shows half-integer jump [see right inset in
Fig. 15(a) and inset in Fig. 15(d)]. Therefore, the gapless re-
gion, originated solely due to the non-Hermiticity, can induce
DQPT even though contour analysis fails. The half-integer
jumps in winding number is the hallmark signature for the
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FIG. 15. We repeat Fig. 12 for the case discussed in Fig. 11(d).
The Fisher zeros cross the imaginary axis once continuously while
they touch imaginary axis in a quasicontinuous manner as shown in
the inset for n = 0 (blue). The right inset shows the discontinuity in
Fisher zeros for φ = 0. The rate function and geometric phase are
shown in (b) and (c), respectively, where critical time instants tc ≈
0.8, 1.35, 2.87, 3.59, 4.3, · · · are mentioned. (d) The winding num-
ber show monotonic decrease (nonmonotonic increase) by unit jumps
when Fisher zeros continuously cross (quasicontinuously touch) the
imaginary axis at tc ≈ 1.35, 2.87, · · · [tc ≈ 0.8].

gapless phases in the non-Hermitian Hamiltonian with lossy
superconductivity.

Finally, we consider sudden quench from Hk,i(γ1, 0, φ)
to Hk, f (γ1, 0, φ) with γ = 1. We consider μ quench, i.e.,
μi → μ f while � remains fixed, i.e, �i = � f . The con-
tour plot in Fig. 16(a) [(b)] shows that only final [both final
and initial] Hamiltonian encloses [enclose] EP. As expected
from the contour analysis in Fig. 16(a), the quenching across
the non-Hermitian critical point μ = −2w0 cos φ − γ /2, the
DQPT is observed. The inclusion of one EP leads to a sin-
gle crossing over the imaginary axis in the Fisher zeros and
subsequent occurrence of DQPTs at the corresponding time
instants [see Figs. 17(a) and 17(b)]. On the other hand, for
Fig. 16(b), the contour analysis fails yielding η = 0 when
the system is quenched from one non-Hermitian gapless
phase −2w0 cos φ − γ /2 < μi < −2w0 cos φ + γ /2 to the

FIG. 16. We show the parametric plot for lossy chemical po-
tential case with Hk,i(γ , 0, φ) and Hk, f (γ , 0, φ) while quenching
across (a) one non-Hermitian phase boundary μ = −2w0 cos φ −
γ /2 from gapped to gapless phase with (�i, � f , μi, μ f ) =
(1.0, 1.0, −3.0, −1.0) and (b) two non-Hermitian phase bound-
aries μ = −2w0 cos φ + γ /2 and μ = 2w0 cos φ − γ /2 inside the
gapless phase with (�i, � f , μi, μ f ) = (0.4, 0.4, −1.0, 1.0). We
consider γ = 1.
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FIG. 17. We demonstrate the Fisher zeros and rate function
in (a) [(c)] and (b) [(d)], respectively, for the case discussed in
Fig. 16(a) [(b)].

other gapless phase 2w0 cos φ − γ /2 < μ f < 2w0 cos φ +
γ /2. However, the inclusion of two distinct EPs separately
by initial and final Hamiltonian results in double crossing of
Fisher zeros over the imaginary axis. This further ensures
the emergence of DQPTs [see Figs. 17(c) and 17(d)] that
in turn leads to the nonmonotonic profile of winding num-
ber. Importantly, the half-integer jumps are not observed due
to continuous profile of Fisher zeros for the non-Hermitian
Hamiltonian with lossy chemical potential iγ σz/2 only. One
can naively understand this by the fact that critical momentum
kc �= |kc|eiθ . As a result, multiple values of the critical time tc
are not expected to appear for a given value of |kc|.

Notice that irrespective of the choice of the non-
Hermiticity, the the width of gapless phase, bounded by
−2w0 cos φ + γ /2 < μ < 2w0 cos φ − γ /2, extends due to
non-Hermiticity. We always have two EPs between the
above two non-Hermitian phase boundaries irrespective
of the gapless phase. The contour analysis fails to in-

dicate the DQPTs for |�| <

√
w2

0 sin2 φ + γ 2/16 [|�| <√
w2

0 sin2 φ + γ 2/16 − μ2/4] when initial and final Hamil-
tonian both reside in the gapless region for lossy chemical
potential [superconductivity]. On the other hand, for |�| >√

w2
0 sin2 φ + γ 2/16 and |�| >

√
w2

0 sin2 φ + γ 2/16 − μ2/4
when initial and final Hamiltonian both reside in the gapped
region, the DQPT is not observed for lossy chemical potential
and superconductivity, respectively, as predicted by the con-
tour analysis. This feature is similar to that for the Hermitian
system. What is more interesting in the non-Hermitian cases is
that the gapless phases bounded by −2w0 cos φ − γ /2 < μ <

−2w0 cos φ + γ /2 and 2w0 cos φ − γ /2 < μ < 2w0 cos φ +
γ /2 only appears due to non-Hermiticity irrespective of their
specific types. The quenching inside or between these two
phases leads to DQPTs breaking the notion of the contour
analysis. The most interesting aspect is that lossy supercon-
ductivity can only result in half-integer jumps in the winding
number.
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TABLE I. Table demonstrates the global picture of DQPTs in Hermitian Sec. III A, hybrid Sec. III C, and non-Hermitian Sec. III C cases.

Case Quenching path Contour analysis Fisher zeros profile Winding number Example

Hermitian μ quench valid crossing imaginary axis once +1 or −1 Fig. 3
Hermitian Within gapless region invalid crossing imaginary axis twice ±1 Fig. 6
Hybrid (γ2) Most cases valid crossing imaginary axis once or twice or four times with spike ±1, unit spike Fig. 8,9
Hybrid (γ2) Within gapless region invalid crossing imaginary axis once or twice or thrice with spike ±1,unit spike Fig. 10
Non-Hermitian (γ2) μ quench valid crossing imaginary axis once or twice ±1 Fig. 12,13
Non-Hermitian (γ2) Within gapless region invalid discontinuous at imaginary axis ±1,± 1

2 Fig. 14,15
Non-Hermitian (γ1) μ quench valid crossing imaginary axis once or twice +1 or −1 Fig. 17
Non-Hermitian (γ1) Within gapless region invalid crossing imaginary axis once or twice or four times ±1 Fig. 17

IV. CONCLUSIONS

We consider p-wave superconductor with complex hop-
ping to investigate the effect of gapless phases on the DQPTs
that is defined by the logarithm of LA. The DQPTs are en-
sured when the Fisher zeros cross the imaginary axis. We
make use of the gap terms to designate the contours of the
initial and final Hamiltonian involved in the LA following the
sudden quench. We find that for Hermitian case, the contour
analysis is successful to predict the occurrences of DQPT,
associated with the vanishing real part of the Fisher zeros for
a given channel, inside the gapped phases except the gapless
phases (see Figs. 2, 3, and 5). Interestingly, re-entrant pro-
file of Fisher zeros in the gapless region further causes the
nonmonotonic profile of winding number that is exclusively
observed for the above region only (see Fig. 6). Having un-
derstood the effect of Hermitian gapless phase, we now extend
the analysis to the non-Hermitian gapless regions. For the hy-
brid case where initial and final Hamiltonians are respectively
Hermitian and non-Hermitian, the contour analysis fails when
the final Hamiltonian resides in the gapless phase (see Fig. 7).
The Fisher zeros cross the imaginary axis thrice in the above
case where the winding number shows integer spike-like
jumps in addition to staircase-like behavior (see Fig. 10). The
contour analysis again fails to predict DQPT when the initial
and final Hamiltonian both are non-Hermitian (see Fig. 11).

Remarkably, for lossy superconductivity, the Fisher zeros
show discontinuous profile resulting in half-integer jumps in
the winding number (see Figs. 14 and 15). Such a distinct
feature is exclusively observed for the non-Hermitian gapless
phase with lossy superconductivity while continuous Fisher
zeros with integer jumps are noticed for lossy chemical po-
tential. The different cases as demonstrated in Sec. III are
mentioned in a tabular form in Table I. Our paper thus extends
the notion of DQPTs in the context of the non-Hermitian
phases. In the future, it would be interesting to study the
long-range noninteracting models with different types of non-
Hermiticities. We also note that the determination of phase
by analyzing the DQPTs is yet to be fully explored. Given
the experimental advancement on lossy systems [58–63], we
believe that our paper can become experimentally relevant.
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