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Driving-induced multiple PT -symmetry breaking transitions and reentrant localization
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The cooperation between time-periodic driving fields and non-Hermitian effects could endow systems with
distinctive spectral and transport properties. In this paper, we uncover an intriguing class of non-Hermitian
Floquet matter in one-dimensional quasicrystals, which is characterized by the emergence of multiple driving-
induced PT -symmetry breaking/restoring transitions, mobility edges, and reentrant localization transitions.
These findings are demonstrated by investigating the spectra, level statistics, inverse participation ratios, and
wave-packet dynamics of a periodically quenched nonreciprocal Harper model. Our results not only unveil the
richness of localization phenomena in driven non-Hermitian quasicrystals but also highlight the advantage of the
Floquet approach in generating unique types of nonequilibrium phases in open systems.
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I. INTRODUCTION

Periodic driving fields could create dynamical states of
matter that are absent in equilibrium settings, with Floquet
topological phases [1–5] and discrete time crystals [6–10]
being two representative examples. The discovery of these
unique phases not only extends the classification of quantum
matter to nonequilibrium situations [11–19] but has also led to
breakthroughs in the experimental characterization of quan-
tum dynamics in complex systems [20–33].

In recent years, possible new phases that could emerge due
to the interplay between Floquet drivings and non-Hermitian
effects have been considered. Theoretical progress has been
made in the discovery of non-Hermitian Floquet topological
insulators [34–44], second-order topological phases [45,46],
topological superconductors [47,48], and semimetals [49–52].
Intriguing features such as non-Hermiticity induced Floquet
topological edge states [45] and their coexistence with Floquet
non-Hermitian skin effects [41] have also been uncovered.
In experiments, setups like cold atoms [53] and photon-
ics [54–58] have been demonstrated as efficient platforms to
explore phases and transitions in driven non-Hermitian sys-
tems. Beyond the clean limit, high-frequency driving fields
have been found as a flexible knob to control the spec-
tral, localization, and topological transitions in non-Hermitian
quasicrystals (NHQCs) [59]. However, the main power of Flo-
quet engineering in generating unique nonequilibrium phases,
which usually displays itself at resonant driving frequencies
and amplitudes, has yet to be unveiled for non-Hermitian
disordered systems.

A non-Hermitian static system described by a PT -
symmetric Hamiltonian H can undergo a PT transition when
the energy spectrum of H switches from real to complex (or
vice versa) with the change of system parameters. On one
side of the transition point, all the eigenvalues of H are real
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and the system is in a PT -invariant (unbroken) phase with
all eigenstates being PT symmetric. On the other side of
the transition point, certain eigenenergies have nonvanishing
imaginary parts and the system is in a PT -broken phase,
in which certain eigenstates are not PT symmetric. Com-
paratively, a Floquet system can undergo a PT transition
when the quasienergy spectrum of the system’s Floquet op-
erator U goes from real to complex (or vice versa) with the
change of system parameters. On one side of the transition,
all the quasienergies E of U obtained from the eigenvalue
equation U |ψ〉 = e−iE |ψ〉 are real and the system is in a
PT -invariant (unbroken) phase with all Floquet eigenstates
|ψ〉 being PT symmetric. On the other side of the transition,
certain quasienergies of U have nonvanishing imaginary parts
and the system is in a PT broken phase with certain non-PT -
symmetric Floquet eigenstates. The PT transition now shows
up in the quasienergy spectrum of a Floquet operator instead
of the energy spectrum of a Hamiltonian.

In the present paper, we show that going beyond high-
frequency modulations, periodic driving fields could endow
NHQCs with multiple PT spectral transitions, reentrant
localization transitions, richer phase diagrams, and unique
dynamical properties. These facts are demonstrated explic-
itly in a periodically quenched nonreciprocal Harper model
(NRHM), as introduced in Sec. II. In Sec. III, we provide
a theoretical framework to study the spectrum and transport
properties of one-dimensional (1D) non-Hermitian Floquet
quasicrystals. These methods are then applied to characterize
the extended, critical, localized phases and the sequence of
PT and localization transitions among them in the periodi-
cally quenched NRHM in Sec. IV. Wave-packet dynamics is
further employed as a probe to signify non-Hermitian Floquet
quasicrystals with different transport natures. The physical
origins of rich non-Hermitian Floquet quasicrystal phases
and transitions are discussed in Sec. V. We summarize our
results and discuss potential future directions in Sec. VI.
Some other numerical details are presented in Appendices A
and B.
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II. MODEL

NHQCs form a class of matter with a unique spectral,
transport, and topological nature due to the interplay between
lattice quasiperiodicity and non-Hermitian effects [60–74]. In
this section, the setting of a periodically quenched NRHM is
introduced, which is originated from a prototypical model in
the study of NHQC.

The Hamiltonian of the static NRHM takes the form Ĥ =
K̂ + V̂ , where in the lattice basis {|n〉} we have

K̂ = J
∑

n

(eγ |n〉〈n + 1| + e−γ |n + 1〉〈n|), (1)

V̂ = V
∑

n

cos(2παn)|n〉〈n|. (2)

Here n ∈ Z is the lattice index. Je±γ are the nearest-neighbor
hopping amplitudes. V is the amplitude of the on-site po-
tential Vn = V cos(2παn). We assume J,V > 0 without loss
of generality. When γ �= 0, the hoppings from the right to
left and from the left to right neighboring sites become
asymmetric, yielding a non-Hermitian Hamiltonian (Ĥ �=
Ĥ†). Meanwhile, an irrational α makes the on-site poten-
tial quasiperiodic, leading to a 1D NHQC [75,76]. The
spectrum of Ĥ , obtained by solving the eigenvalue equa-
tion Ĥ |ψ〉 = E |ψ〉 can be real in certain parameter regions
due to the PT symmetry. To see this, we first take the
periodic boundary condition (PBC) for Ĥ and the rational
approximation α � p/q for α. For example, if we set α =
(
√

5 − 1)/2, p and q can take two adjacent numbers in the
Fibonacci sequence (with p < q) to form the rational approxi-
mation α � p/q. Applying the discrete Fourier transformation
|n〉 = 1√

L

∑L
l=1 |l〉ei2παln to Ĥ [63], we obtain its representa-

tion in momentum space as Ĥ ′ = V
2

∑
l (|l〉〈l + 1| + H.c.) +

2J
∑

l cos(2παl + iγ )|l〉〈l|. Note that the quasimomentum
here is 2παl and the length of lattice is L = q. We can
now identify in momentum representation the P symmetry
of the system as P = ∑

l | − l〉〈l| and the T symmetry as
the complex conjugate K. The off-diagonal part of Ĥ ′ is
Hermitian and clearly symmetric under the combined PT
operation. The diagonal elements Wn = 2J cos(2παl + iγ )
satisfy Wn = W ∗

−n, which guarantees the invariance of the di-
agonal part of Ĥ ′ under the PT operation. Putting together,
we have [PT , Ĥ ′] = 0. The momentum-space representa-
tion of the system Hamiltonian Ĥ is thus symmetric under
PT = ∑

l | − l〉〈l|K. Going back to the lattice representa-
tion, we may express the PT symmetry operator as PT =
(
∑

n | − n〉〈n|)(KUFT), where the Fourier transformation UFT

has the matrix elements (UFT)n,l = 1√
L

e−i2παnl . In fact, as Ĥ

and Ĥ ′ only differ by a unitary Fourier transformation that is
independent of the system parameters (J,V, γ ), their spectra
are identical under the PBC. The PT -breaking transitions
in the spectrum of Ĥ ′ are thus coincident with the real-to-
complex spectrum transitions in Ĥ . For example, with the
increase of γ , the non-Hermitian effects become stronger and
complex eigenenergies of Ĥ start to appear after the system
undergoes the PT -breaking transition. Under the PBC, such
a transition was found to occur at γ = γc = − ln(2J/V ) for
V > 2J > 0 [75]. Interestingly, when γ changes from γc +
0+ to γc − 0+, the energies of all eigenstates change from

= + = + 1

FIG. 1. Schematic plot of the periodically quenched nonrecip-
rocal Harper model. In the upper chain, Vn = V cos(2παn) is the
potential on the nth lattice site, which is spatially quasiperiodic
for an irrational α. Je∓γ couple nearest sites of the lower chain
in an asymmetric manner when γ �= 0. Within each driving period
T = T1 + T2, the configuration of the system is switched between
the upper and lower chains following the quench protocol described
by Eq. (3). � ∈ Z counts the number of driving periods.

complex to real and their spatial profiles switch from extended
to localized with the common Lyapunov exponent (inverse
localization length) λ = ln[Ve−γ /(2J )] [75]. Therefore, we
obtain a PT transition in conjunction with a localization
transition for all eigenstates at a finite amount of hopping
asymmetry γ = γc in the NRHM. With Floquet periodic driv-
ings, the PT transition points in the NRHM can be flexibly
controlled [59]. Alternating transitions between extended and
localized phases with distinct topological nature can be further
induced via changing the driving field parameters. However,
no mobility edges and intermediate phases are found in the
presence of high-frequency driving fields [59].

In this paper, we focus on a periodically quenched variant
of the NRHM, which goes beyond the fast modulation proto-
col considered in previous studies [59]. The time-dependent
Hamiltonian of the periodically quenched NRHM takes the
form

Ĥ (t ) =
{

K̂ t ∈ [�T, �T + T1)

V̂ t ∈ [�T + T1, �T + T1 + T2).
(3)

Here T = T1 + T2 is the driving period. � ∈ Z counts the num-
ber of periods in the evolution. K̂ and V̂ are given by Eqs. (1)
and (2), respectively. An illustration of this time-dependent
lattice and the driving protocol is given in Fig. 1. The Floquet
operator of the system, which corresponds to its evolution
operator over a complete driving period reads

Û = e−iV
∑

n cos(2παn)|n〉〈n|e−iJ
∑

n(eγ |n〉〈n+1|+e−γ |n+1〉〈n|). (4)

Here we have introduced the dimensionless parameters V =
V T2/h̄ and J = JT1/h̄, with h̄ being the Planck’s constant.
As an advantage of Floquet engineering, the amplitudes of
hopping and onsite potential can be easily and separately
tuned by varying the time durations T1 and T2 of the piece-
wise quench protocol, making it more flexible to control
spectral and localization transitions in the system. Note that
such a Floquet operator can also be realized by making
the hopping amplitudes asymmetric in the kicked Harper
model (KHM) [77–79]. The latter has been found to possess
rich Floquet topological insulating phases in the Hermitian
regime [80–82]. We can thus regard the Floquet operator
in Eq. (4) equivalently as describing a nonreciprocal KHM,
or NRKHM, in short. Interestingly, Anderson transitions in
quasiperiodic KHM (with irrational α) was also investigated
in early studies [77–79]. While non-Hermitian effects on the
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spectral and localization transitions in the KHM have yet to
be revealed. Throughout this paper, we will choose α to be
the inverse golden ratio, i.e., α =

√
5−1
2 , to endow the lattice

with spatial quasiperiodicity. We will also perform all our
numerical studies of the Û in Eq. (4) under the PBC, such that
the possible influence non-Hermitian skin effect is absent.

The NRKHM considered here is closely related to exper-
imentally realizable physical systems. Recently, a quasiperi-
odic KHM was realized by applying apodized Floquet
engineering techniques to ultracold 84Sr atoms [83]. In the
Hermitian limit (γ = 0), the Floquet operator of our model
is exactly equivalent to the one realized in Ref. [83]. The
direct realization of finite nonreciprocal hopping is challeng-
ing for cold-atom setups. Recently, techniques to effectively
engineer nonreciprocal hopping for cold atoms have been con-
sidered in both theory and experiments by introducing atomic
losses [53,84–86]. Cold-atom systems are thus good candi-
dates to realize our model and probe its physical properties
in near-term experiments. On the other hand, PT and local-
ization transitions in a temporally driven (Floquet) dissipative
quasicrystal were recently observed [58]. The experiment
there is implemented by photonic quantum walks in coupled
optical fiber loops. The model realized in Ref. [58] may be
viewed as a dynamical variant of the NRHM, which contains
two key elements for the realization of our model, i.e., the
piecewise periodic quench and the nonreciprocal hopping.
Meanwhile, only a transition between localized and delocal-
ized phases accompanied by the breaking of PT symmetry is
observed in Ref. [58] due to the short-range nature of the real-
ized hopping amplitudes. By implementing long-range steps
to the walker in modified versions of the system in Ref. [58],
the evolution operator for the hopping part of our model may
be realized. Therefore, photonic quantum walks can also serve
as a candidate to realize our system and detect the multiple
PT and reentrant localization transitions there.

III. METHOD

In this section, we outline essential tools that will be
employed to characterize various non-Hermitian Floquet qua-
sicrystalline phases and the transitions among them in the
NRKHM.

The spectral and state properties of the NRKHM can
be addressed by solving the eigenvalue equation Û |ψ j〉 =
e−iE j |ψ j〉 for the Floquet operator Û in Eq. (4). Here Ej

is the quasienergy of the jth right eigenvector |ψ j〉, which
can take complex values as Û is nonunitary. For a lattice of
length L, there are L such eigenstates indexed by j = 1, ..., L.
To check whether PT -breaking transitions could happen, we
consider the maximal imaginary parts of E and the density of
states (DOS) ρ with nonreal quasienergies [87–89], which are
defined as

max |ImE | = max
j∈{1,...,L}

(|ImEj |), (5)

ρ = N (ImE �= 0)/L. (6)

Here N (ImE �= 0) means the number of states whose
quasienergies have nonvanishing imaginary parts. It is clear
that once the max |ImE | switches from zero to a finite value,

eigenstates with complex quasienergies would appear in the
Floquet spectrum. A PT -breaking transition then happens in
the NRKHM, which is further accompanied by the deviation
of ρ from zero. Moreover, we would have ρ � 1 when almost
all eigenstates of Û possess nonreal quasienergies. We can
thus use max |ImE | and ρ to distinguish phases with different
spectral nature.

The localization properties of Floquet eigenstates in the
NRKHM can be characterized by their level-spacing statis-
tics and inverse participation ratios (IPRs) [87–89]. If the
set of quasienergies E = {Ej | j = 1, ..., L} has been sorted
by their real parts, we can identify the real level-spacing
between the jth and the ( j − 1)th element in the set E as
ε j = ReEj − ReEj−1. The ratio between adjacent level spac-
ings can be defined as gj = min(ε j, ε j+1)/ max(ε j, ε j+1) for
j = 2, ..., L − 1, where min(ε, ε′) and max(ε, ε′) yield the
minimum and maximum of ε and ε′. The statistical feature
of adjacent gap ratios (AGRs) g j can be determined by the
average of AGRs over all states [90–94], i.e.,

g = 1

L

∑
j

g j . (7)

If all bulk states are extended in the thermodynamic limit
L → ∞, we would have g → 0. For a phase in which all
bulk states are localized, g would instead approach a finite
constant gmax > 0. If there is a critical region in which ex-
tended and localized eigenstates coexist and are separated
by a mobility edge, g is nonuniversal and takes values in a
range g ∈ (0, gmax). The behavior of g can thus be employed
to distinguish phases with different localization natures in
the NRKHM. The IPR is another direct measure of the state
profiles in the system. For a given normalized right eigen-
vector |ψ j〉 = ∑L

n=1 ψ
j

n |n〉 of Û with quasienergy Ej in the
lattice basis, we define its IPR as IPR j = ∑L

n=1 |ψ j
n |4. A

conjugate quantity, called the normalized participation ra-
tio (NPR) can be constructed for the state |ψ j〉 as NPR j =
(
∑L

n=1 |ψ j
n |4)−1/L. If |ψ j〉 happens to be a localized state (an

extended state), we would have IPR j → λ j (IPR j → 0) and
NPR j → 0 (NPR j → 1), where the Lyapunov exponent λ j

can be a function of the quasienergy Ej . The global localiza-
tion property of the system can then be inspected by averaging
the IPRs and NPRs over all bulk states, yielding

IPRave = 1

L

L∑
j=1

IPR j, (8)

NPRave = 1

L

L∑
j=1

NPR j . (9)

Moreover, we introduce the minimum/maximum of IPRs and
an extra quantity ζ to capture the transitions between different
phases in the system and the presence of critical phase with
mobility edge. These quantities are explicitly defined as

IPRmax = max
j∈{1,...,L}

(IPR j ), (10)

IPRmin = min
j∈{1,...,L}

(IPR j ), (11)

ζ = log10(IPRave · NPRave). (12)
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It is clear that once the first (last) localized (extended) bulk
state appears (vanishes) in the system, the IPRmax (IPRmin)
will be found to deviate from zero in the limit L → ∞. More-
over, the value of ζ can be finite only when IPRave · NPRave �=
0, which means that finite amounts of extended and localized
states could survive together in the system. Therefore, the
NRKHM described by Û resides in the extended, localized,
or critical mobility edge phase if IPRmax → 0, IPRmin > 0, or
ζ being finite in the thermodynamic limit, respectively.

To probe the transport nature of different phases in the
NRKHM, we consider the dynamics of wave packets [76].
The stroboscopic evolution of an initial state |ψ (0)〉 over
� driving periods yields the state |ψ̃ (t = �T )〉 = Û �|ψ (0)〉,
which is not normalized in the lattice representation for
a nonunitary Û . Using the normalization convention of
right eigenvectors, the normalized state after an evolu-
tion over t = �T driving periods takes the form |ψ (t )〉 =
|ψ̃ (t )〉/

√
〈ψ̃ (t )|ψ̃ (t )〉. Expanding |ψ (t )〉 in the lattice basis

produces the probability amplitude ψn(t ) = 〈n|ψ (t )〉 of the
evolved state at different locations of the lattice, i.e., |ψ (t )〉 =∑

n ψn(t )|n〉. To characterize the stroboscopic dynamics of the
wave packet, we investigate the time dependence of its center
x(t ), standard deviation xsd(t ), and averaged spreading speed
v(t ) in the lattice, which are defined as

x(t ) =
∑

n

n|ψn(t )|2, (13)

xsd(t ) =
√∑

n

n2|ψn(t )|2 − x2(t ), (14)

v(t ) = 1

t

√∑
n

n2|ψn(t )|2. (15)

Here t = �T refers to the stroboscopic time with � ∈ Z. For
a localized initial state in the lattice, we expect x(t ) [xsd(t ) ]
to stay close to its initial value in the localized phase, x(t ) ∝ t
[xsd(t ) ∝ √

t ] in the extended phase due to the nonreciprocal
hopping in the system, and x(t ) [xsd(t )] to show an intervening
behavior in the critical phase with mobility edge. For the
same initial state and over a long evolution time (� � 1),
the average speed v(t ) should tend to vanish in the localized
phase, become finite in the intermediate phase with a mobility
edge due to the presence of hopping asymmetry, and taking
maximal values in the extended phase. We can thus employ
x(t ), xsd(t ), and v(t ) to dynamically distinguish phases with
different transport properties in the NRKHM.

IV. RESULTS

We are now ready to uncover the spectral and local-
ization nature of the quasiperiodic NRKHM with the help
of the tools introduced in the last section. In Fig. 2, we
present the maximal imaginary parts of E [Eq. (5)], the
DOS with nonreal quasienergies [Eq. (6)], the minimum
of IPRs [Eq. (11)], and the spreading speed of an initially
localized excitation [Eq. (15)] versus the on-site potential
V for a typical set of system parameters. Interestingly, we
observe complex and highly monotonous behaviors for all
these quantities, which are drastically different from the cases
observed in the nondriven [75,76] or high-frequency

0 1 2 3
0

0.5

1

1.5

FIG. 2. Maximal imaginary parts of quasienergy (blue solid
line), DOS with nonreal quasienergies (red dashed line), minimum
of IPRs (yellow dash-dotted line), and averaged spreading velocity
of a wave packet (purple dotted line) versus the on-site potential
amplitude V under the PBC. Other system parameters are (J, γ ) =
(π/6, 0.8). The lattice size is L = 4181. The initial state in the calcu-
lation of v = v(t ) is chosen to be |ψ (0)〉 = ∑

n δn0|n〉. The average
in Eq. (15) is taken over 1000 driving periods.

driven [59] NRHM. Specially, the PT symmetry is bro-
ken and the Floquet spectrum of the system is complex at
V = 0 (i.e., the clean lattice limit). With the increase of V ,
the quasienergy spectrum could first undergo a PT -restoring
transition from complex to real. But later it becomes complex
again after a PT -breaking transition with the further increase
of V . In the second complex-spectrum phase, the ratio of
states with nonreal quasienergies ρ is finite but smaller than 1,
which means that states with real and complex quasienergies
coexist in this phase. With the further increase of V , the
NRKHM encounters a sequence of PT -restoring and PT -
breaking transitions, while its quasienergy spectrum alternates
between purely real and partially complex in different pa-
rameter regions. More interestingly, the IPRmin is pinned to
zero in the phases with complex quasienergies and deviates
from zero whenever the spectra become real. This suggests
that all eigenstates in real-spectrum phases of the NRKHM
are localized, whereas extended eigenstates emerge whenever
nonreal quasienergies appear in the Floquet spectrum. The
connection between the realness of the Floquet spectrum and
the localization nature of states is further confirmed by investi-
gating the spreading of a localized initial wave packet, whose
average speed is finite in the regions with max |ImE | > 0,
IPRmin � 0 but vanishes in the domains with max |ImE | = 0,
IPRmin > 0, yielding the phenomenon of dynamical localiza-
tion in real-spectrum phases of the NRKHM.

To further clarify the relationship between the structure of
spectrum and the states’ localization property in the NRKHM,
we pick out a set of typical parameters from Fig. 2 and
show the corresponding quasienergy spectra on the complex
plane together with the IPRs of all Floquet eigenstates in
Fig. 3. With a weak quasiperiodic potential (V = 0.2π ), all
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FIG. 3. Floquet spectrum E = ReE + iImE on the complex plane (in circles) and IPRs (in color scale) of the NRKHM under PBC for
eight typical cases. The amplitude V of on-site quasiperiodic potential is shown in the caption of each figure panel. Other system parameters
are set as (J, γ ) = (π/6, 0.8). The length of lattice is chosen to be L = 4181 for all panels.

states are found to be extended (IPR � 0) and taking nonreal
quasienergies with the hopping asymmetry γ �= 0, as shown
in Fig. 3(a). For parameters chosen within the real-spectrum
phases of Fig. 2 (V = 0.7π, 1.7π, 2.7π, 3.6π ), we instead
observe localization for all Floquet eigenstates (IPR > 0) as
shown in Figs. 3(b), 3(d), 3(f), and 3(h). For parameters
taken in the second (V = 1.2π ), third (V = 2.2π ), and fourth
(V = 3.1π ) mixed-spectrum phases of Fig. 2, we find the
coexistence of real and nonreal quasienergies in different
regions of the spectrum. Moreover, eigenstates with real (non-
real) quasienergies are found to be localized (extended) in all
the three cases, as shown in Figs. 3(c), 3(e), and 3(g). The
mixed-spectrum phases appearing at larger V thus coincide
with the critical phases of NRKHM, in which localized real-
quasienergy eigenstates and extended nonreal-quasienergy
eigenstates are separated by mobility edges on the complex
plane. Therefore, as a result of the competition among driv-
ing, non-Hermiticity and disorder, the quasiperiodic NRKHM
possesses at least three distinct phases, i.e., an extended phase
with a purely complex spectrum, a localized phase with a real
spectrum, and a critical phase wherein states with real and
nonreal quasienergies coexist and are separated by mobility
edges.

To consolidate the presence of the three possible phases
in the thermodynamic limit, we show in Fig. 4 the scaling
of IPRs versus the lattice size L for the eight representative
cases of Fig. 3 under the PBC. As expected, we find that the
IPRmax [Eq. (10)], IPRave [Eq. (8)], and IPRmin [Eq. (11)]
are all ∝ L−1 with the increase of L in Fig. 4(a), implying
that all eigenstates are extended in the phase with purely
complex spectrum. Comparatively, for parameters taken in
the real-spectrum phases, we find almost no changes in
IPRmax, IPRave and IPRmin with the increase of L as shown
in Figs. 4(b), 4(d), 4(f), and 4(h), meaning that all states in
these cases are localized. For parameters taken in the mixed-
spectrum phases, the IPRmax is found to be independent of L,
whereas the IPRmin is inversely proportional to L as shown in
Figs. 4(c), 4(e), and 4(g), verifying that localized and extended

states coexist in the system in these cases. The real-spectrum
localized, complex-spectrum extended and mixed-spectrum
critical mobility edge phases of the NRKHM are thus ex-
pected to survive in the thermodynamic limit L → ∞.

To acquire a more complete understanding of the phases
and transitions in the NRKHM, we present the DOS [Eq. (6)],
the averaged AGRs [Eq. (7)], the minimum of IPRs [Eq. (11)],
and the measure of critical mobility edge phase ζ [Eq. (12)]
versus the amount of hopping asymmetry γ and the on-
site potential V in Fig. 5. The consistency of the results
among the four panels of Fig. 5 clearly suggests the pres-
ence of an extended phase (with ρ � 1, g � 0, IPRmin �
0, and ζ → −∞), a localized phase (with ρ � 0, g � 0.6,
IPRmin > 0, and ζ → −∞) and a critical mobility edge
phase (with 0 < ρ < 1, 0 � g � 0.6, IPRmin > 0, and ζ fi-
nite) in the NRKHM. When the non-Hermitian parameter
γ is small, the change of the quasiperiodic potential am-
plitude V can only cause a transition of the system from a
complex-spectrum extended phase to a real-spectrum local-
ized phase, which is similar to what happens in the nondriven
NRHM [75,76]. When the hopping asymmetry γ is large
enough, non-Hermitian effects are dominant. In this region,
we only find the transition from a complex-spectrum extended
phase to a mixed-spectrum critical phase in Fig. 5. This ob-
servation suggests that real-quasienergy extended states could
persist in the NRKHM over a broad range of quasiperiodic
potential amplitudes V at strong non-Hermiticity. In the in-
termediate range of γ , however, we find reentrant spectral
and localization transitions between real-spectrum localized
and mixed-spectrum critical phases with the increase of V .
This observation demonstrates unambiguously that the rich
phase and transition patterns in the NRKHM indeed originate
from the interplay among three nontrivial effects when they
are comparable, i.e., the non-Hermiticity, Floquet driving, and
spatial quasiperiodicity. The original phase diagram of the
NRHM [75,76] gets most strongly modified when both the
hopping nonreciprocity and the driving field reach sufficient
strengths.
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FIG. 4. Scaling of the IPRs of right eigenvectors versus system size L under the PBC, shown in log-log plot. In all panels, the
dotted lines, circles, stars, and squares denote the values of 1/L, IPRmax, IPRave and IPRmin at different lattice sizes L for L =
89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765. The amplitude V of the on-site potential is given in the caption of each figure panel.
Other system parameters are set as (J, γ ) = (π/6, 0.8).

The presence of extended, localized, and critical phases in
the NRKHM has immediate dynamical implications, which
could help us to detect and differentiate them in experiments.
To achieve this goal, we consider the dynamics of a single-site
excitation in the lattice under the PBC, which is described
by the theory introduced in Sec. III. The spatial distribution
of probability amplitude |ψn(t )| = |〈n|ψ (t )〉| of at different
stroboscopic times t = �T (� ∈ Z) in the system are shown
in Fig. 6 for the eight exemplary cases reported in previous
spectrum and localization studies. In Fig. 6(a), the system
is in an extended phase and the wave packet shows a uni-
directional transport with a limited width of spreading. The
former is due to the asymmetric hopping of the lattice, i.e.,

FIG. 5. The DOSs ρ, averaged AGRs g, minimum of IPRs IPRmin

and probe of critical mobility edge phase ζ versus the hopping
asymmetry parameter γ and on-site potential amplitude V under the
PBC. The uniform part of hopping amplitude is J = π/6 and the
length of the lattice is L = 2584 for all calculations.

tunneling from the right to left lattice sites is stronger then the
opposite for a positive γ . In Figs. 6(b), 6(d), 6(f), and 6(h),
the system is set in real-spectrum localized phases and the
excitation tends to be localized around its initial position up
to small oscillations. All states in the system in these cases
are thus not only spatially but also dynamically localized. For
systems prepared in the critical mobility edge phase, the initial
excitation is still found to be able to propagate unidirectionally
with a well-localized profile during the evolution, as shown
in Figs. 6(c), 6(e), and 6(g). However, two differences are
observed compared with the case shown in Fig. 6(a). First,
the distance between the final and initial locations of the
wave packet in the critical phase is smaller then that in the
extended phase. This means that the excitation has a smaller
propagation speed on average when evolving in the critical
phase, which is due to the presence of localized Floquet
eigenmodes that could hinder its transport there. Second, the
location of the wave packet shows a smooth and linear growth
with time in the extended phase, whereas in the critical phase,
the location of excitation could be pinned in space for some
time during the evolution, and then grows through tunneling
to farther sites within a relatively short time window, which is
a unique phenomenon in non-Hermitian transport.

For completeness, we present the time dependence of the
center [Eq. (13)] and standard deviation [Eq. (14)] of the
same initial excitation for the eight parameter sets in Fig. 7.
The results confirm our observations of the wave-packet dy-
namics for the corresponding cases in Fig. 6. Put together,
the markedly different dynamical behaviors of wave packets
in distinct parameter regions of the NRKHM could indeed
provide us with a means to probe and distinguish the extended,
localized, and critical phases therein.

V. DISCUSSION

We now discuss more about the physical origin of the
rich phase patterns and multiple reentrant transitions in the
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FIG. 6. Propagation of an initially localized wave packet |ψ (0)〉 = ∑
n δn0|n〉 in the NRKHM under the PBC. The color scale denotes

the absolute amplitude of the evolving state in the lattice at the time t = �T for � = 1, 2, ..., 999, 1000. All panels share the same color bar.
The values of on-site potential amplitude V are given in corresponding figure captions. Other system parameters are (J, γ ) = (π/6, 0.8). The
length of the lattice is L = 4181 and the lattice site index (vertical axis) takes values from n = −2090 to n = 2090.

NRKHM. In general, PT transitions in nNHQCs could
appear due to the competition between Hermitian and non-
Hermitian effects. Without Floquet driving fields, the impacts
of Hermitian terms (the on-site potential in our case) or non-
Hermitian terms (the asymmetric hopping in our case) usually
change monotonically with the increase of their control pa-
rameters (V for the Hermitian and γ for the non-Hermitian
term in our model). In this case, there is only a single PT
transition when the strengths of the control parameters of Her-
mitian (or non-Hermitian) terms dominate (exceptions exist in
systems with dimerized lattice structures [89]). With Floquet
driving fields, the impacts of Hermitian and non-Hermitian
terms may not change monotonically with the increase of their
control parameters. Their competitions in the presence of this
nonmonotonicity could then result in the multiple PT and
reentrant localization transitions in NHQCs.

In our system, the Floquet operator in Eq. (4) can be equiv-
alently written as Û = e−iĤ2T/h̄e−iĤ1T/h̄ = e−iĤeff T/h̄, where
Ĥ1 = K̂T1/T and Ĥ2 = V̂ T2/T represent rescaled hopping
and on-site potential terms in the quenched Hamiltonian. Ac-
cording to the Baker-Campbell-Hausdorff formula [95], the
effective Hamiltonian Ĥeff can be expanded into a series as

Ĥeff = Ĥ1 + Ĥ2 + iT

2
[Ĥ1, Ĥ2] + T 2

12h̄2 [Ĥ2 − Ĥ1, [Ĥ1, Ĥ2]]

+ · · · (16)

The combination of the first two terms on the right-hand-side
(RHS) of Eq. (16) just yields the static NRHM, which does not
hold any signatures of critical mobility edge phases [75,76].
However, the third, fourth, and higher order terms in the
expansion on the RHS of Eq. (16) contain commutators
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FIG. 7. Time dependence of the mean position x(t ) and standard deviation xsd (t ) of a localized initial excitation |ψ (0)〉 = ∑
n δn0|n〉 at the

center of the NRKHM under the PBC. The lattice size and system parameters are the same as those used in Fig. 6.

054307-7



LONGWEN ZHOU AND WENQIAN HAN PHYSICAL REVIEW B 106, 054307 (2022)

between the on-site potential and nearest-neighbor hop-
ping terms, which can yield asymmetric hoppings beyond
nearest-neighbor sites in the driven lattice. With quasiperiodic
disorder, these long-range hopping terms made possible by
the driving field are the usual origin of mobility edges in
both tight-binding lattices and continuous models [96–98].
In Appendix A, we give a brief discussion of the system at
the level of Ĥeff in Eq. (16) by truncating the series at the
order T 2. The results indeed provide evidence for the presence
of reentrant localization transitions in the NRKHM. Second,
on each lattice site, the magnitude of V̂ in Ĥ2 is defined
modulus 2π . Therefore, the contribution of each on-site term
Vn = V T2 cos(2παn)/h̄ to the diagonal elements of e−iĤ2T/h̄

and thus to Û is 2π periodic. This fact, in combination with
other quasiperiodic terms generated by the commutators in
Eq. (16) allow the effective strength of correlated disorder
to depend on V in a nonmonotonic and oscillatory manner.
Such a quasiperiodic V dependence, which is also enabled
by the driving field, finally causes the reentrant transitions
between real-spectrum localized phases and mixed-spectrum
critical phases in the NRKHM. Notably, the range of on-site
potential V considered in our study clearly includes cases
of strong and resonant drivings. Our findings thus go be-
yond previous results focusing on high-frequency modulation
schemes [59,99].

Specially, in Ref. [59], a harmonic driving force of the
form

∑
n nK cos(ωt ) was applied to NHQCs and the high-

frequency limit was taken. The hopping amplitude J is dressed
by the Floquet field into the form Jeff = JJ0(K/ω), with
K (ω) the driving amplitude (frequency) and J0 the Bessel
function. Due to the nonmonotonic dependence of J0(K/ω)
on K/ω, Jeff can also change with the driving parameter K/ω

in a nonmonotonous way, and multiple PT transitions could
appear. Compared with the present work, a main difference is
that in Ref. [59], the possible number of NHQC phases is not
modified by the driving. The driving field mainly achieves the
control of the transition boundary between different phases.
However, in the present paper, the strong and near-resonant
driving field creates multiple critical phases with mobility
edges, which are absent when the driving field is switched off
or the high-frequency limit is taken. The driving field further
induces transitions between the newly formed critical phases
and other phases with different localization nature, which are
also absent in the nondriven setup. Therefore, the driving field
in the present paper plays a more nonperturbative and nontriv-
ial role compared with what it did in Ref. [59]. Besides, the
driving is introduced here as time-periodic quenches, whose
effect may be viewed as the superposition of many harmonic
drives with different frequencies and amplitudes [100]. The
hybrid nature of the drive and the long-range coupling it
induced allow us to have richer patterns of non-Hermitian
Floquet quasicrystal phases in the NRKHM.

VI. SUMMARY

In this paper, we found that the interplay among time-
periodic driving, hopping nonreciprocity, and correlated
disorder could induce critical phases with mobility edges,
multiple PT transitions, and reentrant localization transi-
tions in 1D lattices. The corresponding non-Hermitian Floquet

quasicrystals possess rich phase patterns with a distinct spec-
tral and transport nature, which are characterized by the
level-spacing statistics, IPRs, and wave-packet dynamics. The
reentrant transitions among localized and critical phases in
the system physically originate from the 2π periodicity in
the amplitude of the periodically modulated on-site potential
and the effective long-range hopping generated by high-order
commutators between kinetic and potential energy terms. Our
results thus establish in aperiodic systems a unique class of
non-Hermitian Floquet matter, which holds rich and highly
tunable spectral, dynamical, and localization properties.

Two implications of our results deserve to be emphasized.
First, the multiple PT transitions and reentrant localization
transitions in our system emerge only when γ �= 0 and the
quasiperiodic quench strength V is relatively large. These
transitions are thus induced by the strong interplay between
Floquet driving fields and non-Hermitian effects in a disor-
dered system. To the best of our knowledge, the multiple
and reentrant transitions originating from the corporation be-
tween these two nonequilibrium knobs were not revealed
in previous studies of NHQCs or Floquet states of matter,
or largely overlooked in related work [58,99,101]. Second,
the multiple lobes appearing at finite hopping nonreciproc-
ity and quasiperiodic quench potential contain both extended
and localized states. These lobes represent critical phases
with quasienergy-dependent mobility edges (see Fig. 4) in
non-Hermitian Floquet quasicrystals, instead of describing
localized regimes. Notably, these critical phases are absent
when either the driving field or the non-Hermitian effect is
switched off. Therefore, the emergence of these critical phases
is a unique outcome of the nontrivial collaboration among
driving, disorder, and non-Hermitian effects in our system.
This discovery goes beyond the previous finding [59], in
which high-frequency drivings only modulate the hopping
amplitude and lead to the deformation of the phase diagram
without changing the number of possible phases that could
appear. Our discovery thus uncovered that exceeding the
high-frequency regime, the driving field could create unique
NHQCs beyond the underlying nondriven system.

In future work, it would be interesting to consider Floquet
quasicrystals with lattice dimerization [102–104] (one such
example is treated briefly in Appendix B), in higher spatial
dimensions, and in systems with other non-Hermitian effects
like on-site gain and loss. The impact of interactions and
the possible appearance of non-Hermitian Floquet many-body
localized phases in quasiperiodic systems also deserve more
thorough explorations.
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APPENDIX A: PHASE TRANSITIONS DESCRIBED BY Ĥeff

In this Appendix, we briefly discuss the transitions in the
system described by the Ĥeff in Eq. (16). We truncate the
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FIG. 8. Maximal imaginary parts of quasienergy (blue solid
line), DOS with nonreal quasienergies (red dashed line), minimum
and maximum of IPRs (yellow dash-dotted and purple dotted lines)
of the Ĥeff versus the on-site potential amplitude V under the PBC.
Other system parameters are (J, γ ) = (π/6, 0.8). The lattice size is
L = 4181

series at the order T 2, i.e., to include all the terms explicitly
shown in Eq. (16). In Fig. 8, we present the properties of
spectrum and IPR of the Ĥeff . The results demonstrate the
presence of reentrant transitions between extended and critical
mobility edge phases in the system at the level of Ĥeff . The is
consistent with our argument in the main text that the reentrant
localization transitions originate from long-range couplings
induced by the Floquet driving. However, no PT transitions
and localized phases are observed for the considered domain
of superlattice potential V . This is expected, as the driving
frequency  = 2π/T is equal to π in our calculation, which
is comparable with other parameters J and V of the system. In
such a storng and near-resonant driving regime, higher order
terms in Ĥeff may also have important contributions, and one
should not expect to capture the whole physics at the level
of Ĥeff by truncating the series in Eq. (16) at a finite order.
The problem is essentially nonperturbative. Moreover, the 2π

periodicity of Û in Vn is also lost at the level of Ĥeff , and the
second part of our argument in Sec. V does not work in this
case. Therefore, we emphasize that a full numerical treatment
of the Floquet operator Û is needed to capture the complete
physics of quasienergy spectrum and localization transitions
in the NRKHM (and also, in general, non-Hermitian Floquet
quasicrystals) in strong and near-resonant driving regimes.

APPENDIX B: PHASE TRANSITIONS
IN A DIMERIZED NRKHM

In this Appendix, we briefly consider the PT and localiza-
tion transitions in a dimerized variant of the NRKHM. Lattice
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FIG. 9. Maximal imaginary parts of quasienergy (blue solid
line), DOS with nonreal quasienergies (red dashed line), minimum
of IPRs (yellow dash-dotted line) and averaged spreading velocity
a of wave packet (purple dotted line) of the dimerized NRKHM
versus the on-site potential amplitude V under the PBC. Other system
parameters are (J, γ ) = (π/6, 0.8). The lattice size is L = 2584. The
initial state in the calculation of v = v(t ) is chosen to be |ψ (0)〉 =∑

n δn0|n〉. The average in Eq. (15) is taken over 1000 driving periods.

dimerization may be introduced to the on-site potential or
hopping amplitude. For simplicity, we consider a dimerized
hopping model by replacing K̂ in Eq. (1) with

K̂ ′ = J
∑

n

(eγ |2n − 1〉〈2n| + e−γ |2n〉〈2n − 1|)

+ J
∑

n

(|2n〉〈2n + 1| + H.c.). (B1)

Following the same quench protocol as given by Eq. (3) in
the main text, the resulting Floquet operator of the system
reads Û ′ = e−iV̂ T2/h̄e−iK̂ ′T1/h̄. In Fig. 9, we present the PT and
localization transitions of this dimerized NRKHM versus the
strength of on-site potential V with T1 = T2 = 1. The Floquet
spectrum, IPR and wave-packet velocity are computed by
the method sketched in Sec. II. We find again multiple PT
transitions, critical phases with mobility edges, and reentrant
localization transitions in this dimerized NRKHM. Neverthe-
less, the transition points and ranges of the critical phase
are different from the original model due to the effect of
dimerized hopping. Meanwhile, lattice dimerization may also
induce other interesting physics in non-Hermitian Floquet
quasicrystals, such as richer phase patterns, more localization
transitions, and new topological properties. We leave a thor-
ough investigation of this issue to potential future studies.
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