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Left-handed optical torque on dipolar plasmonic nanoparticles induced by Fano-like resonance
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We theoretically and numerically demonstrate that Fano-like resonance can induce a left-handed optical torque
on a dipolar plasmonic core-shell nanoparticle in the interference optical field composed of two linearly polarized
plane waves. It is shown that the optical torque on the dipolar plasmonic nanoparticle is significantly enhanced
at the Fano-like resonance, and its direction is opposite to that of the angular momentum of the incident field,
termed Fano-like resonance-induced left-handed optical torque. The extinction spectra exhibit that the Fano-like
resonance stems from the coupling between a narrow electric quadrupole dark mode and a broad electric dipole
bright mode. In addition, such Fano-like resonance-induced left-handed optical torque can flexibly be tailored
by the particle morphology. To further trace the physical origin of the left-handed optical torque, we derive an
analytical expression of optical torques up to electric quadrupole in generic monochromatic optical fields based
on the multipole expansion theory. The results obtained from our analytical expression show that the left-handed
optical torque comes completely from the electric quadrupole terms while other terms from the electric dipole
make no contribution. Our results may open a new avenue for tailoring optical torques on plasmonic structures.
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I. INTRODUCTION

Light carries both linear and angular momenta, and as such
it can exert an optical force and torque on matter due to the
momenta exchange between light and matter [1–4]. Optical
force is an excellent tool for manipulating microscopic par-
ticles, since it can push particles forward along the direction
of light propagation [5–7], trap particles to the extremum of
light intensity (now well-known as optical tweezers) [8–10],
and even, pull particles toward light source, known as the
concept of negative optical force [11–13]. Optical torque,
the angular analog of optical force, which can spin or ro-
tate trapped particles, add the degrees of freedom to particle
manipulation, has attracted considerable attention in recent
decades [14–22]. Intriguingly, similar to the counterintuitive
phenomenon of negative optical force, negative optical torque
can cause the rotation of objects opposite to the direction of
the incident angular momentum [23,24], usually termed also
as left-handed optical torque. Such left-handed optical torque
was, both theoretically and experimentally, demonstrated via
birefringent nanostructures immersed in circularly polarized
Gaussian beams [25,26]. It was also proposed that the left-
handed optical torque can rotate the bounded nanoparticle
dimers in the direction reversed with respect to that of the
incident circular polarization [27]. Left-handed optical torque
was found on arrays of metal nanoparticles, and which is
dependent on the number, separation and configuration of
the arrays [28]. It was reported recently that chiral particles
can also induce a left-handed optical torque illuminated by
circularly polarized optical beams [18,29,30]. It is noted that
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the occurrence of the left-handed optical torque rely on size
in the Mie regime, configuration, or constituent material of
the particles, but little attention is focused on a single small
particle such as a dipolar sphere. In addition, most of the
above researches are based on the analytical theories within
the dipole approximation to trace the underlying physics
of optical torques [14–22,27–30]. However, these analytical
methods may be invalid for some special cases where higher
order multipoles excited in the particles make a significant
contribution to the optical torques. Here we show that, a
simple optical field composed of two interfering plane waves
can exert a left-handed optical torque on a dipolar spherical
nanoparticle by taking advantage of the so-called Fano-like
resonance due to the coupling between multiple multipoles
excited in the particle.

Fano resonance describes the coupling of a discrete atomic
state with a continuum in the original work of Fano [31], while
nowadays it is generally extended to a broader definition in
which a narrow resonance is coupled to a broad resonant mode
[32,33]. Such asymmetric Fano-like line shapes have been ob-
served in a wide variety of systems, such as photonic crystals
[34,35], metamaterials [32,36], and plasmonics [32,37]. Their
unique properties can find extensive applications, including
optical switching [38,39], surface enhanced Raman scatter-
ing [40,41], plasmon-induced transparency [42,43], and many
others [44–46]. In particular, the effect of the Fano resonance
on optical forces have been extensively explored in recent
years [47–54]. However, its effect on tailoring the optical
torque that plays a crucial role in optical manipulation, has
yet to be explored.

In this paper, we show that a left-handed optical torque can
be achieved for a dipolar Ag-Au core-shell sphere via exciting
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FIG. 1. Schematic illustration of an Ag-Au nanoparticle illumi-
nated by the incident optical field composed of two interference plane
waves symmetric with respect to z axis with the same incident angle
α = 55◦ on the xoz plane. Two plane waves share the same polarized
vector (p, q) = (1, 0), denoted by the double-headed arrows the ori-
entations along which the electric fields are polarized. The particle
has core radius R1 = 35 nm and shell radius R2 = 43 nm, which is
supposed to be immersed in water and located at x = 52 nm.

its Fano-like resonance in two interfering plane waves with the
same linear polarization. Such Fano-like resonance-induced
left-handed optical torque can rotate the nanoparticle around
its axis opposite to the direction of the incident angular mo-
mentum. Also, the left-handed optical torque can flexibly be
tuned by adjusting the core and shell radii of the nanoparticle
as well as the incident wavelength. The extinction spectra
based on the Mie scattering theory reveal that Fano-like res-
onance arises from the interaction between a broad electric
dipole mode and a narrow electric quadrupole one. It is noted
that the electric quadrupole mode is usually difficult to be
excited on a dipolar spherical particle. To further reveal the
physical mechanism of the left-handed optical torque, the an-
alytical expression of optical torques up to electric quadrupole
in arbitrary free-space monochromatic optical fields is derived
based on the multipole expansion theory. The analytical re-
sults exhibit that the left-handed optical torque is dominated
by the electric quadrupole term while other terms from the
electric dipole with their signs are always same with the one
of the incident angular momentum. As a result, the analytical
theory based on the dipole approximation generally used for
dipolar particles is unavailable for our case. These findings
provide an alternative way to realize the left-handed optical
torque as well as deepen the physical understanding of light-
matter interaction.

II. RESULTS AND DISCUSSION

To illustrate the Fano-like resonance-induced left-handed
optical torque, we consider that a plasmonic Ag-Au core-
shell spherical nanoparticle is illuminated by an optical
field composed of two linearly polarized plane waves, as is
schematically shown in Fig. 1. In experiment, the Ag-Au core-
shell spherical nanoparticle can be synthesized by a simple
chemical reduction technique [55]. The dielectric constants of

Ag and Au can be theoretically derived by the Drude’s dielec-
tric function [56,57] ε(ω) = ε∞ − ω2

p/(ω2 + iω�), where ε∞
is the high-frequency-limit dielectric constant, ωp is the plas-
mon resonance frequency, and � is the damping constant. In
our calculations, we use the best experimental fit parameters
as ε∞ = 4.039, ωp = 9.1721 eV, and � = 0.0207 eV for Ag,
while ε∞ = 8.7499, ωp = 9.0146 eV, and � = 0.0691 eV for
Au to obtain the dielectric constants [55]. The electric field of
the incident optical field is given by

Einc = E1 + E2, with E j = E0 E j e i k k̂ j ·r, (1)

where k is the wave number in the background and k̂ j =
cos α ẑ ± sin α x̂ for j = 1, 2 denotes the propagation direc-
tion of the jth plane wave. The complex polarization vectors
E j are

E j = p θ̂k j + q φ̂k j
for j = 1, 2, (2)

where θ̂ki and φ̂ki
denote, respectively, the directions of

increasing polar angle and azimuthal angle in spherical coor-
dinate system for the jth wave vector. In our case, two waves
share the same polarized vector (p, q) = (1, 0), perpendicular
to both the wave vector of the jth plane wave as well as y
axis. The time dependence e−iωt is assumed and suppressed
throughout the paper. The magnetic field Hinc can be derived
through Maxwell’s equations. In our calculations, the back-
ground is water with refractive index n = 1.33, the incident
angle is α = 55◦, and the nanoparticle with the inner and outer
radii R1 = 35 nm and R2 = 43 nm is located at the x axis with
x = 52 nm except otherwise stated.

The Fano-like resonance-induced left-handed optical
torque can be demonstrated by the optical torque as a function
of the incident wavelength λ based on the full-wave calcu-
lation, which combines the generalized Lorenz-Mie theory
with the Maxwell stress tensor approach (see Appendix A).
Left-handed optical torque refers to a torque whose direc-
tion is opposite with that of the incident angular momentum.
The calculated optical torque and incident angular momentum
density (given in Appendix B) are presented in Fig. 2 together
with the total and partial extinction efficiency Qext. Particle in
the interference optical field is only subjected to the optical
torque in y direction, viz. Ty discussed in this paper. As the
incident frequency increases, the Fano-like resonance comes
into play, resulting in the left-handed optical torque near the
Fano dip around λ = 463 nm. The Fano-like resonance is
visualized in Fig. 2(b) the total as well as partial extinction
efficiency spectra with respect to the incident wavelength λ.
For a general isotropic spherical particle, the extinction effi-
ciency can be calculated according to [58,59]

Qext =
N∑

n=1

(Qan + Qbn), (3)

with

Qan = 4

(kR)2

n∑
m=−n

Re(|pm,n|2an),

Qbn = 4

(kR)2

n∑
m=−n

Re(|qm,n|2bn), (4)
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FIG. 2. (a) The y component of the optical torque T FWS
y (solid

blue line) and corresponding angular momentum density Jy with
details given in Appendix B (solid red line with triangle symbol) as
functions of the incident wavelength λ. Left-handed optical torque
with direction opposite to that of the angular momentum is induced
when an appropriate incident optical wave with λ = 441 nm to
λ = 463 nm is adopted. (b) The total extinction efficiency Qext as
well as partial extinction efficiencies Qan and Qbn, suggesting that the
left-handed optical torque is strongly associated with the Fano-like
resonance. The overlap of the broad electric dipole mode with the
narrow electric quadrupole mode leads to the appearance of a narrow
asymmetric Fano dip at λ = 463 nm, around which the left-handed
optical torque is induced. All other parameters are the same as those
in Fig. 1.

where an and bn are Mie coefficients associated with, respec-
tively, the electric and magnetic multipolar modes [58], (pm,n,
qm,n) are the expansion coefficients of the incident optical field
in terms of vector spherical wave function [60], while R = R2

is the particle radius. For small particle with R � λ in the
range from 463 to 800 nm, the total extinction spectra, as
shown in Fig. 2(b) by solid blue line, is dominant by the con-
tribution from the electric dipole mode denoted by the dashed
green line. The corresponding optical torque in this range
is right-handed sharing the same direction with the incident
angular momentum density, as presented in Fig. 2(a). With
the decrease of the wavelength, the contribution from electric
quadrupole mode is brought into play, as shown by the dotted
red line. The Fano-like resonance between the broad electric
dipole mode (bright mode) and the narrow electric quadrupole
mode (dark mode) is therefore enhanced around the electric
quadrupole resonance, which gives rise to the left-handed
optical torque. As the incident wavelength decreases further to
smaller than λ = 441 nm, the Fano-like resonance disappears
due to the vanishing narrow electric quadrupole mode, and
then right-handed optical torque is induced instead of the left-
handed one. Therefore, when an appropriate incident beam
is adopted, viz. with the incident wavelength in the range of
441 to 463 nm in our case, the left-handed optical torque
will occur, which stems from the electric dipole-quadrupole
Fano-like resonance.

FIG. 3. Phase diagrams of the optical torque T FWS
y in units of

ε0|E0|2R3
2 with respect to the incident wavelength λ as well as the

core radius R1 (a) and shell radius R2 (b) of the Ag-Au core-shell
particle with fixed R2 = 43 nm (a) and R1 = 35 nm (b), respectively.
All other parameters are the same as those in Fig. 1. Gray regions in-
dicate the parameter space for the right-handed optical torque phase,
while colored regions denote the parameter space to achieve the
left-handed optical torque phase. The white line denotes the positions
of the Fano dip arising from the interference between the electric
dipole and quadrupole modes, which may serve roughly as a guide
to the eyes for the onset of the left-handed optical torque phase.

The Fano-like resonance-induced left-handed optical
torque presents the flexible adjustability as the same as cor-
responding Fano resonance-induced negative optical force
[49,52], which originates from the flexible tailored Fano-like
resonance by particle properties such as particle size, shape
and composition. A typical example is shown in Fig. 3 by
demonstrating the phase diagrams of optical torque T FWS

y
versus incident wavelength λ and core radius R1 (a) as well as
shell radius R2 (b) for an Ag-Au particle with fixed shell radius
R2 = 43 nm (a) and core radius R1 = 35 nm (b), respectively.
The parameter spaces corresponding to left- and right-handed
optical torques can be discerned by the colored and gray
regions in Fig. 3. The Fano dip corresponding to the Ag-Au
core-shell particle with different parameter configuration is
marked by the white line closed to the low-frequency side of
the colored left-handed optical torque phase. The crucial role
of Fano-like resonance in inducing left-handed optical torque
is therefore suggested, in good agreement with Fig. 2. It can
also be observed in Fig. 3 that the left-handed optical torque
phase shrinks and exhibits a blue shift as the core Ag radius
increases, while the increasing of the Au shell radius leads to
a red shift of the left-handed optical torque phase, consistent
with the tendency of the Fano dip. These size-induced shifts
originate physically from the hybridized coupling plasmon
resonances between the Ag core and the Au shell, as it will
be discussed in later text.

To understand the essential mechanism of the left-handed
optical torque, we first derive an analytical expression of
optical torque based on the multipole expansion theory up to
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electric quadrupole (detailed in Appendix C)

〈T〉 = Te + Tee + Tm + Tmm + TQe + TQeQe , (5)

with

Te = 1

2
Re (p × E∗

inc),

Tee = k3

12πε0
Im (p × p ∗),

Tm = 1

2
Re (m × B∗

inc),

Tmm = μ0k3

12π
Im (m × m∗),

TQe = 1

4
Re[(∇E∗

inc) ·
↔
Q −

↔
Q · (∇E∗

inc)] (2)
:

↔
ε ,

TQeQe = − k5

80πε0
Im[

↔
Q ·

↔
Q*] (2)

:
↔
ε , (6)

where ε0 and μ0 denote the permittivity and permeability
in background, Einc and Binc are the incident fields given in

Eq. (1), p, m, and
↔
Q represent, respectively, electric dipole,

magnetic dipole, and electric quadrupole moments excited in
the particle. The (2)

: is the double contraction between two

tensors of ranks, and
↔
ε denotes the Levi-Civita tensor. Te,

Tm, and TQe all originate from the interaction between the
incident optical field and multipoles excited in the particle,
which can be physically understood from the procedure that
light is intercepted by the particle. Tee, Tmm, and TQeQe come
from the coupling between various multipoles with the same
type, interpreted from the process that light is re-emitted by
the multipoles excited in the particle. The reliability of an-
alytical formulation derived within the multipole expansion
theory can be examined by the full-wave calculation result due
to its high precision. As shown in Fig. 4, the T FWS

y presented
in Fig. 2(a) is reproduced by Ty calculated with Eqs. (5) and
(6), verifying the accuracy of analytical expressions of optical
torque.

To reveal the underlying physics behind the left-handed
optical torque more specifically, the optical torque Ty is fur-
ther decomposed into terms depicting interaction between
incident field and multipoles as well as coupling between var-
ious multipoles, collectively referred to as different coupling
channels here. For clarity, T y

m and T y
mm arising from coupling

channels associated with magnetic dipole are neglected in
Fig. 4 since they have no contribution to the total optical
torque. In the Rayleigh regime where particle size is much
smaller than the illuminating wavelength, no optical torque is
induced, since the T y

e and T y
ee from the lowest two coupling

channels regarding electric dipole almost have the identical
amplitude but opposite direction, canceling each other. As
the wavelength decreases, the amplitude of T y

e coming from
electric dipole-incident electric field coupling channel gradu-
ally surpasses T y

ee arising from electric dipole-electric dipole
coupling channel, giving rise to a finite but still relatively
insignificant right-handed optical torque. A further decrease
of the incident wavelength brings about the excitation of the
electric quadrupole mode, thus opening the coupling channel
between the electric quadrupole and the incident electric field

FIG. 4. The optical torque calculated by the multipole expansion
theory is denoted by Ty, while T FWS

y computed by the full-wave calcu-
lation given in Fig. 2 is also reproduced here. The perfect agreement
between Ty and T FWS

y verify the reliability of the multipolar expan-
sion theory of optical torque. Also shown are constituent terms of
Ty originating from different coupling channels, specifically, T y

e and
T y

ee from the lowest two coupling channels regarding electric dipole
while T y

Qe and T y
QeQe from interaction concerning electric quadrupole.

Both T y
m and T y

mm give no contribution to the Ty and thus are not
demonstrated here for clarity. All the parameters are the same as
those in Fig. 2.

which contributes to Ty
Qe , leading to a reversal of the optical

torque from right-hand to left-hand in the visible light spec-
trum ranging from 441 to 463 nm. The physical origin of the
left-handed optical torque can be therefore thoroughly traced
to the interaction between the electric quadrupole and the
incident electric field, which is associated with the Fano-like
resonance presented in Fig. 2(b).

We next turn to the corresponding contribution of a naked
Ag core and an Au shell to left-handed optical torque on the
core-shell Ag-Au particle. Figures 5(a) and 5(c) present the
optical torques for the naked Ag core and the hollow Au
shell, respectively. The corresponding spectra of extinction
efficiencies are also shown, respectively, in Figs. 5(b) and
5(d). The radius of the naked Ag core is 35 nm and the inner
and outer radii of the hollow Au shell are 35 and 43 nm,
respectively, so that when the Ag core is put inside of the
Au shell, they form the Ag-Au core-shell particle discussed.
The results for the naked Ag core are quite similar to those
shown in Figs. 4 and 2(b), except for a larger left-handed
optical torque, which, however, occurs in the ultraviolet band,
beyond the conventional range of operating wavelength for
optical tweezers. By coating an Au shell that has the lower
frequencies of resonances, see, Figs. 5(c) and 5(d), the exci-
tation wavelength for the electric quadrupole can be moved to
the visible light band for the core-shell particle, see, Figs. 4
and 2(b), in favor of the experimental implementation. This is
because of the hybridization of the different modes from the
Ag core and the Au shell. The interaction between the two
different plasmon modes can be visually understood with the
plasmon hybridization method in Ref. [61].

The emergence of Fano-like resonance-induced left-
handed optical torque on core-shell nanoparticles due to
the high-order electric quadrupole coupling channels can be
once again confirmed by the phase diagrams of decomposed
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FIG. 5. The optical torque Ty for a naked Ag core with radius
R1 = 35 nm (a) and for a hollow Au shell particle with its empty
core radius R1 = 35 nm and shell radius R2 = 43 nm (c). Corre-
sponding total extinction efficiencies Qext as well as partial extinction
efficiencies Qan and Qbn are also shown in (b) and (d), respectively.
All parameters are the same as those in Fig. 1.

optical torques. The results are presented in Figs. 6(a), 6(c)
and 6(b), 6(d) respectively, corresponding to the contribu-
tion from low-order dipole coupling channels T y

dip = T y
e + T y

ee

and high-order electric quadrupole coupling channels T y
quad =

T y
Qe + T y

QeQe . One can observe that T y
dip always presents right-

handed contribution to the total optical torque in the whole
parameter spaces with the variant Ag-Au core-shell nanopar-
ticles as well as incident wavelength, while T y

quad, on the
contrary, always demonstrates left-handed contribution. It is
T y

quad arising from the high-order electric quadrupole cou-
pling channels that plays the crucial role to give rise to the
left-handed optical torque, while this term is dramatically en-
hanced at the Fano-like resonance, as shown by the solid white
line in Figs. 6(b) and 6(d), and thus finally induces the total

FIG. 6. The decomposed contribution from low-order dipole
coupling channels T y

dip = T y
e + T y

ee (a) (c) and high-order electric
quadrupole coupling channels T y

quad = T y
Qe + T y

QeQe (b) (d) for the
total optical torque T FWS

y as shown in Fig. 3. All parameters are the
same as those in Fig. 3.

left-handed optical torque, as shown by the colored region
in Figs. 3(a) and 3(b). As a result, the Fano-like resonance
due to the simultaneous excitation of multiple multipoles,
especially the high-order electric quadrupole, offers a great
chance to achieve a left-handed optical torque, adding an addi-
tional degree of freedom to optical manipulation of plasmonic
nanoparticles.

III. CONCLUSIONS

In summary, we demonstrate that Fano-like resonance can
provide an effective way to induce the left-handed optical
torque on plasmonic nanoparticles in a simple optical field
formed by two interfering plane waves, based on both the
numerical full-wave calculation and theoretical multipole ex-
pansion technique. The extinction spectra indicate that the
Fano-like resonance can be attributed to the coupling between
the electric broad dipole mode and narrow quadrupole mode,
which can be engineered by tuning the particle composition
and operating wavelength, finally giving rise to the flexibly
controlled left-handed optical torque. Based on the analyt-
ical expressions of optical torque up to electric quadrupole
term, the physical origin of the left-handed optical torque can
be thoroughly traced to the contribution from the coupling
channel of the high-order electric quadrupole, while the low-
order dipole coupling channels always give the right-handed
optical torque, destroying the scenery of the left-handed opti-
cal torque. It should be noted that two plane waves are the
simplest illumination to obtain a left-handed optical torque
in our situation, since the optical torque in a single plane
wave always share the same sign with the incident angular
momentum density. Our results may add an additional degree
of freedom to realize left-handed optical torque as well as
extend the applications of the Fano-like resonance existing
widely in many scientific fields.
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APPENDIX A: OPTICAL TORQUE BY FULL-WAVE
CALCULATION

Based on the generalized Mie scattering theory and the
Maxwell stress tensor [62–64], we can obtain the optical
torque exerted on a spherical particle by integrating the
time-averaged Maxwell stress tensor over a closed surface
surrounding the particle [65]

〈T〉 = −
∮

S
n · [ 〈

↔
T〉× r]dσ =

∮
S

r × [〈
↔
T〉 · n]dσ, (A1)

the time averaged Maxwell stress tensor 〈
↔
T〉 is given by

[1,62,63]

〈
↔
T〉 = 1

2
Re

[
ε0EE∗ + μ0HH∗ − 1

2
(ε0E · E∗ + μ0H · H∗)

↔
I
]
,

(A2)
where the permittivity and permeability of the background
medium represent as ε0 and μ0, respectively. The superscript
symbol ∗ denotes the complex conjugate, and the total electro-
magnetic fields E and H can be obtained from the generalized
Mie scattering theory. Due to the conservation of momentum,
the integral can be implemented at infinity for a particle in
the lossless background medium. After some complicated
mathematical derivation, three Cartesian components of the

optical torque can be expressed as [19]

Tx = Re [T1], Ty = Im [T1], Tz = Re [T2], (A3)

with

T1 = 2πε0E2
0

k3

∑
n,m

[
(n − m)(n + m + 1)

n2(n + 1)2

]1/2

t1,

T2 = −2πε0E2
0

k3

∑
n,m

m t2, (A4)

where k is the wave number in the background and

t1 = am,na∗
m+1,n + bm,nb∗

m+1,n − 1

2
(am,n p∗

m+1,n

+ pm,na∗
m+1,n + bm,nq∗

m+1,n + qm,nb∗
m+1,n),

t2 = am,na∗
m,n + bm,nb∗

m,n − 1

2
(am,n p∗

m,n

+ pm,na∗
m,n + bm,nq∗

m,n + qm,nb∗
m,n). (A5)

In Eq. (A5), am,n and bm,n are expansion coefficients of the
scattered field in terms of vector spherical wave functions,
which are associated with the expansion coefficients of the
incident field pm,n and qm,n [60],

am,n = an pm,n, bm,n = bnqm,n, (A6)

where Mie coefficients an and bn describe the scattering
property of a conventional isotropic spherical particle. For a
core-shell sphere, an and bn can be obtained by [58]

an = ψn(y)[ψ ′
n(m2y) − Anχ

′
n(m2y)] − m2ψ

′
n(y)[ψn(m2y) − Anχn(m2y)]

ξn(y)[ψ ′
n(m2y) − Anχ ′

n(m2y)] − m2ξ ′
n(y)[ψn(m2y) − Anχn(m2y)]

,

bn = m2ψn(y)[ψ ′
n(m2y) − Bnχ

′
n(m2y)] − ψ ′

n(y)[ψn(m2y) − Bnχn(m2y)]

m2ξn(y)[ψ ′
n(m2y) − Bnχ ′

n(m2y)] − ξ ′
n(y)[ψn(m2y) − Bnχn(m2y)]

, (A7)

with

An = m2ψn(m2x)ψ ′
n(m1x) − m1ψ

′
n(m2x)ψn(m1x)

m2χn(m2x)ψ ′
n(m1x) − m1χ ′

n(m2x)ψn(m1x)
,

Bn = m2ψn(m1x)ψ ′
n(m2x) − m1ψn(m2x)ψ ′

n(m1x)

m2ψn(m1x)χ ′
n(m2x) − m1χn(m2x)ψ ′

n(m1x)
,

where ψn(z) = z jn(z), χn(z) = zyn(z), and ξn(z) = −zh(1)
n (z)

denote Riccati-Bessel functions of the first, second and third
kinds, respectively, and x = kR1 and y = kR2 with R1 and R2

being the inner and outer radii of the particle. m1 and m2

are relative refractive indices of the core and shell relative
to the background medium. It should be noted that the Mie
coefficients in Eq. (A7) can reduce to those of a homogenous
sphere if m1 = m2.

APPENDIX B: ANGULAR MOMENTUM DENSITY

The total angular momentum density of a monochromatic
electromagnetic wave can be expressed as a sum of spin
angular momentum density S [66–69] and orbital angular
momentum density L [65,70]

J = S + L, (B1)

with

S = 1

4ω
Im [ε0E∗

inc × Einc + μ0H∗
inc × Hinc],

L = r × M, (B2)

and M being the orbital (canonical) linear momentum density

M = 1

4ω
Im [ε0(∇Einc) · E∗

inc + μ0(∇Hinc) · H∗
inc], (B3)

where ω denotes the angular frequency and r is position
vector.

APPENDIX C: OPTICAL TORQUE BY MULTIPOLE
EXPANSION TECHNIQUE

For a general particle, the optical torque can be obtained
from Eqs. (A1) and (A2). E and H in the time averaged
Maxwell stress tensor Eq. (A2) are total electromagnetic
fields, namely, the sum of the incident Einc (Hinc) and the
scattered fields Esca (Hsca), given by

E = Esca + Einc and H = Hsca + Hinc. (C1)
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Based on the angular spectrum representation [71], any
monochromatic incident fields in source-free region can be
expanded in terms of plane waves as

Einc =
∮

4π

eu eiku·r d�u,

Hinc = 1

Z0

∮
4π

hu eiku·r d�u, (C2)

where Z0 is the wave impedance in the background, u is the
real unit vector denoting local direction, while eu and hu
denote the complex vectors amplitudes of plane wave com-
ponents. It follows from the Maxwell equations that

u · eu = 0, u · hu = 0, hu = u × eu,

eu = hu × u, eu · hu = 0. (C3)

The scattered fields at large distance from the scatterer read
[72]

Esca =
(

an + n αn

kr

)eikr

kr
,

Hsca = 1

Z0

(
bn + n βn

kr

)
eikr

kr
, (C4)

where n = r/r, the scalars αn and βn depict the longitudinal
scattered field components while the vectors an and bn char-
acterize the transverse amplitudes of the fields. The Maxwell
equations yield

n · an = 0, n · bn = 0, bn = n × an,

an = bn × n, an · bn = 0. (C5)

Decomposition of the total fields Eq. (C1) suggests that the

time averaged Maxwell stress tensor 〈
↔
T〉 can be cast into

〈
↔
T〉 = 〈

↔
Tinc〉 + 〈

↔
Tmix〉 + 〈

↔
Tsca〉, (C6)

where 〈
↔
Tinc〉 involves the incident fields only, 〈

↔
Tsca〉 depends

solely on the scattered fields, while 〈
↔
Tmix〉 includes all the rest

(mixed) terms. Correspondingly, the optical torque reads

〈T〉 = 〈Tinc〉 + 〈Tmix〉 + 〈Tsca〉, (C7)

where

〈Tinc〉 = −
∮

S∞
n · [ 〈

↔
Tinc〉× r ]dσ,

〈Tmix〉 = −
∮

S∞
n · [ 〈

↔
Tmix〉× r ]dσ,

〈Tsca〉 = −
∮

S∞
n · [ 〈

↔
Tsca〉× r]dσ. (C8)

According to the angular momentum conservation law [72],

〈
↔
Tinc〉 related integration should make no net contribution to

the optical torque, viz.

〈Tinc〉 = −
∮

S∞
n · [ 〈

↔
Tinc〉× r]dσ

=
∮

S∞
r × [〈

↔
Tinc〉 · n]dσ = 0. (C9)

The mixed term is, with the use of Re[EincE ∗
sca]= Re[E ∗

incEsca].

〈Tmix〉 = −
∮

S∞
n · [ 〈

↔
Tmix〉× r]dσ =

∮
S∞

r × [〈
↔
Tmix〉 · n]dσ = T1 + T2, (C10a)

T1 = ε0

2
Re

∮
S∞

RS n × [(E ∗
incEsca + EscaE ∗

inc) · n]dσ, (C10b)

T2 = μ0

2
Re

∮
S∞

RS n × [(H ∗
incHsca + HscaH ∗

inc) · n]dσ, (C10c)

where use has been of n × (
↔
I · n) = n × n = 0 [73], and RS → ∞ is the radius of a spherical surface S∞ enclosing the scatterer.

With Eqs. (C2)–(C5), it follows that

T1 = T(a)
1 + T(b)

1 , T2 = T(a)
2 + T(b)

2 , (C11a)

T(a)
1 = ε0

2k2
Re

∮
4π

d�u
eikRS

RS

∮
S∞

(n × e ∗
u )αn e−ikRS (u · n) dσn, (C11b)

T(b)
1 = ε0

2k
Re

∮
4π

d�u eikRS

∮
S∞

(n × an)(e ∗
u · n) e−ikRS (u · n) dσn, (C11c)

T(a)
2 = ε0

2k2
Re

∮
4π

d�u
eikRS

RS

∮
S∞

(n × h∗
u )βn e−ikRS (u · n) dσn, (C11d)

T(b)
2 = ε0

2k
Re

∮
4π

d�u eikRS

∮
S∞

(n × bn)(h ∗
u · n) e−ikRS (u · n) dσn. (C11e)

Here n and u denote the local outward unit normal of the area element dσn and the solid angle element d�u, respectively. Based
on the direct application of Jones Lemma [72], viz.

1

RS

∮
S∞

G(n)e−ikRS (u·n) dσn ∼ 2π i

k
[G(u)e−ikRS − G(−u)eikRS ], (C12)
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where G(n) is an arbitrary function of n, whereas u is an arbitrary real unit vector, and n is a unit vector in the local outward radial
direction of the spherical surface S∞ with large radius RS → ∞. By setting G(n) = αn (n × e ∗

u ) and βn (n × h∗
u), respectively,

T(a)
1 and T(a)

2 are given by [1,72]

T(a)
1 = πε0

k3
Re

∮
4π

i (αu + e2ikRS α−u)(u × e ∗
u )d�u, T(a)

2 = πε0

k3
Re

∮
4π

i (βu + e2ikRS β−u)(u × h ∗
u )d�u. (C13)

Due to the absence of 1/RS factor in T(b)
1 , one should take into account the higher order terms in the asymptotic expansions of

the integration (C11c) [74,75]. Based on the method of stationary phase, it can be derived [74,75] that, instead of Jones’s lemma
Eq. (C12), we have ∮

S∞
G(n)e−ikRS (u·n) dσn ∼ π

k2
[e−ikRS L̂

2
G(u) + eikRS L̂

2
G(−u)], (C14)

if G(u) = G(−u) = 0, where L̂ is the angular momentum operator, so that

L̂
2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
, (C15)

with the Cartesian components of n given by (sin θ cos φ, sin θ sin φ, cos θ ), and

L̂
2
G(±u) = [L̂

2
G(n)]|n=±u. (C16)

By the use of Eq. (C4), the last term is expressed as

〈Tsca〉 = T3 = 1

2
Re

∮
S∞

r [ε0n × (EscaE ∗
sca · n) + μ0n × (HscaH ∗

sca · n)]dσn

= ε0

2k3
Re

∮
4π

(α∗
n bn − β∗

n an)d�n, (C17)

then, the optical torque can be represented as

〈T〉 = 〈Tmix〉 + 〈Tsca〉 = T1 + T2 + T3, (C18)

where 〈Tsca〉 and 〈Tmix〉 characterize the recoil torque and the scattering torque, respectively.

We next derive the analytical expression of optical torque
up to electric quadrupole shown in Eqs. (5) and (6) in the
main text. If the scatterer can be approximated by an electric
dipole moment p, a magnetic dipole moment m and an electric

quadrupole moment
↔
Q, then the scattered fields are given by

[76]

Esca(r) = G1(r) p + 1

c
G2(r) m + F1(r) Qn,

Hsca(r) = 1

Z0

[
−G2(r) p + 1

c
G1(r) m + F2(r) Qn

]
,

(C19)

where n = r/r and Qn =
↔
Q · n = n ·

↔
Q for a symmetric and

traceless electric quadrupole moment. The operators G1, G2,
F1, and F2 are given by

G1(r) = eikr

4πε0r

[
k2(

↔
I − n n) + 1 − ikr

r2
(3 n n −

↔
I )

]
•,

G2(r) = eikr

4πε0r

ik (ikr − 1)

r
n × ,

F1(r) = eikr

8πε0r

[
6 − 6ikr − 3k2r2 + ik3r3

r3
(n n −

↔
I )

+9 − 9ikr − 3k2r2

r3
n n

]
•,

F2(r) = eikr

8πε0r

ik(3 − 3ikr − k2r2)

r2
n × , (C20)

where Eqs. (C19) and (C20) are valid anywhere outside of the
scatterer. The complex amplitudes an, bn, αn, and βn for the
scattered field Eq. (C4) at large distance from the scatterer are
therefore given by

an = k3

4πε0

[
n × (p × n) − 1

c
(n × m)

− ik

2
n × (Qn × n)

]
= a (p)

n + a (m)
n + a (q)

n ,

bn = k3

4πε0

[
n × p + 1

c
n × (m × n) − ik

2
n × Qn

]

= b (p)
n + b (m)

n + b (q)
n = n × an,

αn = − i k3

2πε0
(n · p) − 3k4

8πε0
(n · Qn),

βn = − i k3

2πε0c
(n · m),

(C21)

where the electric dipole moment p, magnetic dipole moment

m, and electric quadrupole moment
↔
Q, respectively, can be

expressed as [52]

p = αeEinc, m = αmBinc,
↔
Q = βe

2

(∇Einc+ ∇ET
inc

)
, (C22)
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with Binc = μ0Hinc and the polarizabilities

αe = i6πε0

k3
a1, αm = i6π

μ0k3
b1, βe = i40πε0

k5
a2, (C23)

where a1, b1, and a2 denote the Mie coefficients [58]. With Eqs. (C17) and (C21), the recoil torque 〈Tsca〉 is given by

〈Tsca〉 = ε0

2k3
Re

∮
4π

(
α∗

u bu − β∗
u au

)
d�u

= k3

12πε0c2
Im[ m × m∗ + c2 p × p ∗] + k5

80πε0
Im[ Qx × Q∗

x + Qy × Q∗
y + Qz × Q∗

z ], (C24)

where Qx = ex ·
↔
Q, Qy = ey ·

↔
Q,

↔
Qz = ez ·

↔
Q.

Based on the method of stationary phase, the Eq. (C11) is further derived by first considering the contributions from an
electric dipole moment p,

T(a)
1(p) = 1

2
Re

∮
4π

(1 − e2ikRS ) (u · p)h∗
ud�u, T(a)

2(p) = 0,

T(b)
1(p) = 1

4
Re

∮
4π

(1 + e2ikRS ) (p × e ∗
u )d�u,

T(b)
2(p) = −1

4
Re

∮
4π

(1 − e2ikRS )[(p · h∗
u)u + (u · p)h∗

u]d�u, (C25)

where we have, for an electric dipole moment p, made use of

a(p)
n = − k3

4πε0
n × (n × p), b(p)

n = k3

4πε0
(n × p), α(p)

n = −i k3

2πε0
(n · p), β (p)

n = 0. (C26)

It then follows directly from Eqs. (C25) and (C13) that

〈
T(p)

mix

〉 = T(a)
1(p) + T(b)

1(p) + T(a)
2(p) + T(b)

2(p) = 1

2
Re

∮
(p × e ∗

u )d�u = 1

2
Re[ p × E∗

inc], (C27)

where T(a)
1(p) and T(a)

1(p) are given by plugging in Eqs. (C26) to (C13). Similar to electric dipoles, the magnetic dipolar term of the

scattering torque 〈T(m)
mix 〉 can be expressed as

〈
T(m)

mix

〉 = T(a)
1(m) + T(b)

1(m) + T(a)
2(m) + T(b)

2(m) = 1

2c
Re

∮
(m × h∗

u)d�u = 1

2
Re[ m × B∗

inc], (C28)

where use has been made of

a(m)
n = − k3

4πε0c
(n × m), b(m)

n = − k3

4πε0c
n × (n × m), α(m)

n = 0, β (m)
n = −i k3

2πε0c
(n · m), (C29)

for a magnetic dipole moment m. The terms T(a)
1(m) and T(a)

2(m) are obtained by plugging Eq. (C29) into Eq. (C13), while T(b)
1(m) and

T(b)
2(m) are given by

T(a)
1(m) = 0, T(a)

2(m) = − 1

2c
Re

∮
4π

(1 − e2ikRS ) (u · m)e ∗
u d�u,

T(b)
1(m) = 1

4c
Re

∮
4π

(1 − e2ikRS )[(m · e ∗
u )u + (u · m)e ∗

u ]d�u,

T(b)
2(m) = 1

4c
Re

∮
4π

(1 + e2ikRS ) (m × h∗
u)d�u. (C30)

For electric quadrupole moment
↔
Q, one has

a (q)
n = i k4

8πε0
n × (n × Qn), b (q)

n = −i c k4

8π
n × Qn, α

(q)
n = − 3k4

8πε0
(n · Qn), β

(q)
n = 0. (C31)

Substituting Eq. (C31) into Eqs. (C11) and (C13), we can arrive at

T(a)

1(
↔
Q)

= −3k

8
Re

∮
4π

i (1 + e2ikRS )(n · Qn)h∗
nd�n, T(a)

2(
↔
Q)

= 0, (C32a)

T(b)

1(
↔
Q)

= k

8
Re

∮
4π

i (1 − e2ikRS )[2 e ∗
n × (

↔
Q · n) + (e ∗

n × n) ·
↔
Q ]d�n (C32b)
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= k

8
Re

∮
4π

i (1 − e2ikRS )[2 n × (e ∗
n ·

↔
Q) + h ∗

n ·
↔
Q ]d�n, (C32c)

T(b)

2(
↔
Q)

= k

8
Re

∮
4π

i (1 + e2ikRS )[3(n · Qn)h∗
n + 2n × [(h∗

n × n) ·
↔
Q] + h∗

n ·
↔
Q]d�n. (C32d)

So one has, with
↔
ε denoting the Levi-Civita antisymmetric tensor of rank 3

〈
T(

↔
Q)

mix

〉 = T(a)

1(
↔
Q)

+ T(b)

1(
↔
Q)

+ T(a)

2(
↔
Q)

+ T(b)

2(
↔
Q)

= k

4
Re

∮
4π

i[ 2u × (e ∗
u ·

↔
Q) + h ∗

u ·
↔
Q]d�u (C33a)

= k

2
Re

∮
4π

i uα (e∗
βQβγ )εαγ δ d�n + k

4
Re

∮
4π

i h ∗
u d�u ·

↔
Q (C33b)

= 1

2
Re[(∇E∗

inc) ·
↔
Q] (2)

:
↔
ε − ω

4
Im[B∗

inc ·
↔
Q]. (C33c)

The double contraction between two tensors of ranks l and l ′, denoted by (m)
: , is defined below

↔
A(l ) (m)

:
↔
B(l ′ ) = A(l )

i1 i2 ··· il−m k1 k2 ··· km−1 km
B(l ′ )

km km−1 ··· k2 k1 jm+1 ··· jl′−1 jl′
, 0 � m � min [ l, l ′ ], (C34)

which yielding a tensor of rank l + l ′ − 2m. We can obtain a more symmetric form for the electric quadrupole term of the
scattering torque

〈
T(

↔
Q)

mix

〉 = 1

4
Re[(∇E∗

inc) ·
↔
Q −

↔
Q · (∇E∗

inc)] (2)
:

↔
ε . (C35)

With Eqs. (C24), (C27), (C28), and (C35), one finally arrives at the multipole expansion of optical torque up to electric
quadrupole

〈T〉 = Te + Tee + Tm + Tmm + TQe + TQeQe , (C36)

with

Te = 1

2
Re (p × E∗

inc), Tee = k3

12πε0
Im (p × p ∗),

Tm = 1

2
Re (m × B∗

inc), Tmm = μ0k3

12π
Im (m × m∗),

TQe = 1

4
Re[(∇E∗

inc) ·
↔
Q −

↔
Q · (∇E∗

inc)] (2)
:

↔
ε , TQeQe = − k5

80πε0
Im[

↔
Q ·

↔
Q*] (2)

:
↔
ε . (C37)
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[16] L. Tong, V. D. Miljković, and M. Käll, Nano Lett. 10, 268
(2010).

[17] M. Nieto-Vesperinas, Phys. Rev. A 92, 043843 (2015).
[18] M. Nieto-Vesperinas, Opt. Lett. 40, 3021 (2015).
[19] H. Chen, W. Lu, X. Yu, C. Xue, S. Liu, and Z. Lin, Opt. Express

25, 32867 (2017).
[20] Q. Zhang, J. Li, and X. Liu, Phys. Chem. Chem. Phys. 21, 1308

(2019).
[21] Y. E. Lee, K. H. Fung, D. Jin, and N. X. Fang, Nanophotonics

3, 343 (2014).
[22] R. Fukuhara, Y. Y. Tanaka, and T. Shimura, Phys. Rev. A 100,

023827 (2019).

054301-10

https://doi.org/10.1038/nature01935
https://doi.org/10.1038/nphoton.2011.81
https://doi.org/10.1038/lsa.2017.39
https://doi.org/10.1103/PhysRevLett.24.156
https://doi.org/10.1038/nphoton.2008.201
https://doi.org/10.1038/nphoton.2012.87
https://doi.org/10.1364/OL.11.000288
https://doi.org/10.1038/nphoton.2011.56
https://doi.org/10.1038/ncomms2786
https://doi.org/10.1038/nphoton.2011.153
https://doi.org/10.1038/nphoton.2012.315
https://doi.org/10.1364/AOP.378390
https://doi.org/10.1103/PhysRevA.76.043408
https://doi.org/10.1103/PhysRevLett.103.173602
https://doi.org/10.1021/nl9034434
https://doi.org/10.1103/PhysRevA.92.043843
https://doi.org/10.1364/OL.40.003021
https://doi.org/10.1364/OE.25.032867
https://doi.org/10.1039/C8CP06197A
https://doi.org/10.1515/nanoph-2014-0005
https://doi.org/10.1103/PhysRevA.100.023827


LEFT-HANDED OPTICAL TORQUE ON DIPOLAR … PHYSICAL REVIEW B 106, 054301 (2022)

[23] J. Chen, J. Ng, K. Ding, K. H. Fung, Z. Lin, and C. T. Chan,
Sci. Rep. 4, 3612 (2014).

[24] K. Diniz, R. Dutra, L. Pires, N. Viana, H. Nussenzveig, and
P. M. Neto, Opt. Express 27, 5905 (2019).

[25] D. Hakobyan and E. Brasselet, Nat. Photonics 8, 610 (2014).
[26] H. Magallanes and E. Brasselet, Nat. Photonics 12, 461 (2018).
[27] N. Sule, Y. Yifat, S. K. Gray, and N. F. Scherer, Nano Lett. 17,

6548 (2017).
[28] F. Han, J. A. Parker, Y. Yifat, C. Peterson, S. K. Gray, N. F.

Scherer, and Z. Yan, Nat. Commun. 9, 4897 (2018).
[29] A. Canaguier-Durand and C. Genet, Phys. Rev. A 92, 043823

(2015).
[30] Y.-X. Hu, R.-C. Jin, X.-R. Zhang, L.-L. Tang, J.-Q. Li, J. Wang,

and Z.-G. Dong, Opt. Commun. 482, 126560 (2021).
[31] U. Fano, Phys. Rev. 124, 1866 (1961).
[32] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P.

Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707
(2010).

[33] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod.
Phys. 82, 2257 (2010).

[34] M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J.
Steel, G. Yushin, and M. F. Limonov, Phys. Rev. Lett. 103,
023901 (2009).

[35] F. Bleckmann, E. Maibach, S. Cordes, T. E. Umbach, K.
Meerholz, and S. Linden, Adv. Opt. Mater. 2, 861 (2014).

[36] C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H.
Altug, and G. Shvets, Nat. Mater. 11, 69 (2012).

[37] Y. Francescato, V. Giannini, and S. A. Maier, ACS Nano 6, 1830
(2012).

[38] W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S.
Khatua, P. Nordlander, N. J. Halas, and S. Link, Nano Lett. 12,
4977 (2012).

[39] C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and
A. Alu, Phys. Rev. Lett. 108, 263905 (2012).

[40] F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J.
Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).

[41] V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil,
Plasmonics 5, 99 (2010).

[42] S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P.
Nordlander, and N. J. Halas, Nano Lett. 10, 2694 (2010).

[43] S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, Phys.
Rev. Lett. 101, 047401 (2008).

[44] A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, ACS Nano
5, 6578 (2011).

[45] Z. Li, T. Shegai, G. Haran, and H. Xu, ACS Nano 3, 637 (2009).
[46] T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson,
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