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Persistent homology analysis of a generalized Aubry-André-Harper model
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Observing critical phases in lattice models is challenging due to the need to analyze the finite time or size
scaling of observables. We study how the computational topology technique of persistent homology can be used
to characterize phases of a generalized Aubry-André-Harper model. The persistent entropy and mean squared
lifetime of features obtained using persistent homology behave similarly to conventional measures (Shannon
entropy and inverse participation ratio) and can distinguish localized, extended, and critical phases. However,
we find that the persistent entropy also clearly distinguishes ordered from disordered regimes of the model. The
persistent homology approach can be applied to both the energy eigenstates and the wave packet propagation
dynamics.
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I. INTRODUCTION

Wave propagation in low dimensional systems reveals
many surprises thanks to wave coherence and interference
effects [1–10]. Disorder gives rise to Anderson localization
and a complete suppression of transport; on the other hand,
quasiperiodic potentials can exhibit localization transitions
and critical phases supporting self-similar or fractal behavior.
Adding quantum or nonlinear interactions leads to even richer
phenomena including subdiffusive spreading, many-body lo-
calization, and quantum scars [11–13]. While distinguishing
localized from delocalized phases is relatively straightfor-
ward, the identification of critical and nonergodic phases
remains challenging, particularly when the relevant order pa-
rameters are unknown. Standard approaches involve studying
the finite size or time scaling of simple observables over a
huge range of scales [14,15].

An alternative to finite size scaling is to identify relevant
order parameters directly using machine learning [16], and
in particular topological machine learning approaches are at-
tracting growing interest as a means of identifying nonlocal
order parameters [17–21]. Specifically, the technique of per-
sistent homology computes topological features over a range
of scales, recording the scales at which features appear and are
destroyed. This information is typically summarized using a
persistence diagram, which forms a topological “fingerprint”
of the data. Persistent homology has been applied to various
physical systems, including the characterization of amorphous
phases of matter and the detection of quantum phase transi-
tions [22–31].

Existing studies have largely used persistent homology as
part of a larger machine learning pipeline, in which persistent
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homology identifies a large set of potentially relevant order
parameters, which are fed into clustering or dimensional re-
duction algorithms to learn the system’s phase diagram. One
drawback of this approach is that it is harder to understand
than conventional methods, raising the question of whether
persistent homology-based machine learning can be trusted
to unveil new phenomena and not merely reproduce known
phases. More case studies are needed to better understand
the strengths and limitations of persistent homology-based
methods for identifying phase transitions.

In this article we apply persistent homology to study
phase transitions in the Aubry-André-Harper (AAH) model,
a prototypical model of localization and criticality [32–38].
We use persistent homology to obtain a compact encoding
of the shape of the eigenfunctions across a range of wave
function intensity scales in the form of persistence diagrams.
To distinguish the different phases of the model we com-
pute two summary statistics of the persistence diagrams: the
root-mean-square feature lifetime and the persistent entropy.
We find that while these summary statistics generally behave
similarly to the conventional statistic measures (inverse par-
ticipation ratio and Shannon entropy of the full eigenstate
profiles), they can be better at distinguishing the localized,
extended, and critical phases, especially for the propagation
dynamics.

Surprisingly, we find that persistent homology also dis-
tinguishes ordered from disordered states, revealing hidden
order of the low energy eigenstates that is not detected by
the inverse participation ratio or Shannon entropy. We show
how this hidden order arises by performing a long wavelength
expansion of the tight-binding Hamiltonian, demonstrating
that the quasiperiodic potential becomes transparent to low
energy modes. Finally, we carry out numerical simulations of
wave packet propagation to show how the persistent homol-
ogy approach can also distinguish the different phases using
wave packet dynamics.
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FIG. 1. (a) Schematic of the generalized AAH model [Eq. (1)]
in which both the site energies and nearest neighbor couplings are
quasiperiodically modulated, with modulation strengths V1 and V2,
respectively. (b) and (c) Phase diagrams of the AAH model obtained
using its ground state’s inverse participation ratio (IPR) (b) and
persistent entropy E (c), revealing extended (E), critical (C), and lo-
calized (L) phases. The dark straight line in (c) reveals the emergence
of order in the low energy eigenstates, as explained in the text.

The article is structured as follows: Sec. II presents the
phase diagram of the generalized Aubry-André-Harper model
and analyzes its low energy continuum limit. Section III
briefly reviews persistent homology and shows how it can
be applied to study the shape of eigenfunctions. Section IV
applies persistent homology to study wave packet propagation
dynamics. The article concludes with Sec. V.

II. GENERALIZED AAH MODEL

We consider a generalized Aubry-André-Harper model in-
troduced in Ref. [37], corresponding to a one-dimensional
tight-binding chain with quasiperiodically modulated on-site
energies and couplings illustrated in Fig. 1(a). The lattice
Hamiltonian is

Ĥψn = V1 cos(nQ + k)ψn

+ {
t + V2 cos

[(
n + 1

2

)
Q + k

]}
ψn+1

+ {
t + V2 cos

[(
n − 1

2

)
Q + k

]}
ψn−1, (1)

where V1 and V2 are the on-site and coupling quasiperiodic
modulation strengths, respectively, t is the coupling in the
absence of modulation, and the modulation has a frequency Q
and phase k. We consider the same parameters as in Ref. [37]:
Q = (1 + √

5)π , t = 1, 0 � V1 � 4, 0 � V2 � 2, k = 0, and
a lattice size of N = 300 sites. We apply periodic boundary
conditions to the wave function ψn+N = ψn. Note that when
N and Q are incommensurate, the periodic boundary condi-
tions result in an effective defect in the modulation between
sites 1 and N . Similar to the original AAH model, there are
no mobility edges and all eigenstates of Eq. (1) are either
localized, extended, or critical depending on the choice of
parameters [37].

First we will analyze the eigenstates of Eq. (1) with energy
E , Ĥφn = Eφn, focusing on the properties of their probability
density distribution |φn|2. Later, we will consider the propaga-
tion dynamics generated by Eq. (1), i.e., i∂zψn(z) = Ĥnψn(z),
focusing on the case of light propagation in optical waveguide
arrays, where one prepares an initial state ψn(0) whose propa-

gation along the longitudinal (z) direction is analogous to time
evolution in the Schrödinger equation. We will apply a similar
approach to analyze z-dependent intensity profiles |ψn(z)|2;
we will use probability density and intensity interchangeably
in the following.

The localization of the normalized eigenstates (
∑

n |φn|2 =
1) is typically studied using the inverse participation
ratio (IPR),

IPR =
∑

n

|φn|4, (2)

which measures the reciprocal of the number of strongly ex-
cited sites [14,15]. In the large N limit we have IPR ∝ N−d ,
where d is the fractal dimension of the eigenstate. d = 0 for
localized eigenstates, e.g., exponential localization |φn|2 ∝
exp(−|n|/ξ ) yields IPR ∼ 1/ξ ; d = 1 for extended eigen-
states, e.g., Gaussian random matrix ensemble eigenstates
satisfy |φn|2 = O(1/N ), with IPR = 3/N . On the other hand,
critical eigenstates have 0 < d < 1.

Another measure of an eigenstate’s localization is the
Shannon entropy of its probability distribution [39–41],

S = −
∑

n

|φn|2 ln |φn|2, (3)

which vanishes (S = 0) when the probability density is con-
centrated at a single site, and attains its maximal value (S =
ln N) for delocalized states with modes distributed over all N
sites. For these simple profiles, one can obtain S ∼ − ln(IPR).

Figure 1(b) plots the inverse participation ratio of the
ground state of Ĥ as a function of V1 and V2. IPR clearly
distinguishes the extended and localized phases, but shows
a poor contrast between the extended and critical phases, re-
quiring finite size scaling to unambiguously distinguish them.
This is because IPR is mainly sensitive to the number of
strongly excited sites, but misses information contained in
the weak tails of the eigenstates. This can be addressed by
considering other moments of the probability distribution, i.e.,
the generalized inverse participation ratios IPRq = ∑

n |φn|2q,
corresponding to the qth moment of the probability distri-
bution, to obtain a spectrum of fractal exponents dq (the
multifractal spectrum [14,15]). We note that the Shannon
entropy provides similar information to IPR1, and that the
relation S ∼ − ln(IPR) can be violated for eigenstates exhibit-
ing multifractality.

Another limitation of the inverse participation ratio and
Shannon entropy is that they are not strongly sensitive to
the shape of the eigenstates. For example, both measures are
invariant under permutations of the site positions and fail
to distinguish a mode with a single, broad peak from one
with multiple narrower peaks. While similarity measures for
pairs of wave functions including the overlap correlation func-
tion [42] and Kullback-Liebler divergence [43] are sensitive
to changes in shape such as permutations in site positions,
they cannot be applied to individual eigenstates and thus they
provide a relative rather than absolute measure of shape. This
motivates our investigation of whether persistent homology
can provide a useful and more efficient characterization of the
eigenstates.

Figure 1(c) illustrates the phase diagram obtained using
persistent homology analysis, which we will explain in the
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FIG. 2. Probability density profiles (unnormalized) of the
three lowest energy eigenstates on the ordered line shown in
Fig. 1(c) [V1 = 1 = 2V2 cos(Q/2)].

following section. In addition to clearly distinguishing the
three phases, Fig. 1(c) exhibits a local minimum in the eigen-
state measure (persistent entropy E) along the line V1 =
2V2 cos(Q/2), corresponding to the emergence of ordered
eigenstates. This order can be understood by transforming to
reciprocal (p) space ψn = ∑

p ψpeipn, which yields (assuming
k = 0)

Ĥψp = 2t cos p ψp

+
(V1

2
+ V2

[
cos p cos

Q

2
− sin p sin

Q

2

])
ψp+Q

+
(V1

2
+ V2

[
cos p cos

Q

2
+ sin p sin

Q

2

])
ψp−Q. (4)

When V1 = 2V2 cos(Q/2) the quasiperiodic potential becomes
transparent to the low-energy modes, e.g., the plane wave
φp = δp,π forms an exact eigenstate (the ground state).

To validate this intuition, Fig. 2 shows the three low-
est energy eigenstates obtained numerically for V1 = 1 =
2V2 cos(Q/2), revealing simple standing wave forms with in-
tensities ∼ sin2(n/N ), sin2(2n/N ), sin2(3n/N ). The standing
wave patterns can be understood by noting that the periodic
boundary conditions ψn+N = ψn are incommensurate with
the quasiperiodic modulation, thus there is a (weak) effective
defect potential in the vicinity of the N th lattice site; the
low energy modes form standing waves that have a minimal
overlap with this defect.

More generally, whenever some momentum p satisfies
V1 � −2V2 cos(p ± Q/2) there will be a decoupling of the
momentum space eigenvalue problem into different sectors,
which may explain the additional scarlike features seen in
Figs. 1(b) and 1(c).

In the extended phase the transparency of the quasiperiodic
potential for low energy modes is missed by the standard
eigenstate measures such as IPR and S, which only measure
the localization of the modes and not their degree of disorder.
This suggests that persistent homology may be sensitive to
different features of the eigenstates, providing an additional
tool for understanding complex lattice models. On the other

hand, in the critical phase scars are visible in both IPR and S,
since these measures can distinguish critical eigenstates from
the extended states for which the quasiperiodic potential is
transparent.

III. PERSISTENT HOMOLOGY OF EIGENFUNCTIONS

Most previous applications of persistent homology to
physics considered point cloud data equipped with a suitable
metric, such as atomic positions and Euclidean distance for
characterizing the structure of materials [22]. This is a natural
approach for dealing with sets of discrete objects. On the
other hand, for analyzing individual eigenfunctions it is less
straightforward to construct point clouds, requiring some way
to reduce the continuous data to a discrete set of points, for
example by choosing strong local maxima of the probability
density distribution using some threshold [27].

An approach better-suited to probability density or inten-
sity data is the sublevel set filtration, which characterizes the
local maxima and minima of an image or intensity profile [44].
Specifically, one considers the number of distinct low in-
tensity clusters of the profile, i.e., the number of connected
regions formed by sites with |φn|2 < ε as a function of ε.
As ε is continuously increased from zero, a new cluster will
emerge whenever ε is tuned through a local minimum of the
intensity. Neighboring clusters will merge when ε crosses the
local intensity maximum between them. Thus, the sublevel
set filtration provides a stable way to characterize the critical
points of an intensity or probability density profile. In effect,
this allows one to count the number of distinct peaks in a
profile over a range of intensity scales, with the lifetime (i.e.,
persistence) of each peak giving a measure of its significance.
This is complementary to other approaches for studying local-
ization in disordered systems such as fractal analysis, based on
indirectly varying a characteristic intensity scale (associated
with the eigenstate normalization) by changing the system
size N [14,15].

For example, Fig. 3 presents a simple intensity profile and
its resulting persistence diagram. Each point in the persistence
diagram represents a distinct local minimum of the intensity
profile, with the horizontal (birth scale) and vertical (death
scale) coordinates corresponding to the intensity at the local
minimum and closest local maximum, respectively. All points
occur above the diagonal (indicated by the dashed line), be-
cause the intensity at the local minimum will always be less
than that at the nearest local maximum. The distance of a point
to the diagonal, i.e., the intensity contrast between the local
minima and maxima, provides a measure of the significance of
the feature. Here there are two long-lived features (prominent
peaks), and two short-lived features created by small fluctua-
tions of the profile at x ≈ 3.6.

We now construct persistence diagrams for the ground
states of Eq. (1) in each of its three phases. Figure 4 shows
the eigenstates and corresponding persistence diagrams. In the
extended phase the probability density of the ground state is
oscillatory with significant intensity throughout the entire lat-
tice, corresponding to all features (except one) being created
and destroyed within a small range of intensities.

With the increase of V1 the generalized AAH model enters
the localized phase, with the intensity localized to a very small
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FIG. 3. (a) A simple one-dimensional function f (x) and its corresponding sublevel set persistence diagram (b), which summarizes its
critical points (local maxima and minima).

interval, corresponding to only a single long-lived feature.
Other features (induced by fluctuations in the eigenstate tails)
have negligible lifetimes.

In the critical phase the probability density distribution
is not completely concentrated in a certain interval, with
multiple disconnected local maxima. This results in many
long-lived features with a range of birth scales, consistent with
the self-similar (fractal) nature of the critical phase.

The above sublevel set filtration approach of persistent
homology summarizes all the critical points of an intensity
profile, but cannot be directly used to quantify differences
between the three phases. For example, how do we identify the

transition from the extended and critical phases by inspecting
the persistence of their features? One solution is to introduce a
metric quantifying the distance between persistence diagrams,
such as the persistence landscape [45]. A simpler alternative
we will consider here is to compute summary statistics of the
feature lifetime, reducing each persistence diagram to a single,
more easily interpretable number.

We will consider two summary statistics. The first is the
p-norm of the feature lifetimes [25]

Pp(D) =
( ∑

(b,d )∈D

|d − b|p

)1/p

, (5)

FIG. 4. Probability density profiles (left) and feature lifetimes (right) of the lowest energy eigenstate of the AAH model in its three phases:
Extended (top/blue; V1 = 1.8, V2 = 0.5), localized (middle/orange; V1 = 2.2, V2 = 0.5), and critical (bottom/green; V1 = 1.0, V2 = 1.5).
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FIG. 5. Phase diagrams of the generalized AAH model obtained
using the persistent homology feature norms P2 (a) and Shannon
entropy S (b) of the ground state. (c) and (d) Comparison between
P2 and IPR (c) and between the persistent entropy E and Shannon
entropy S along a 1D cut of the phase diagram. Only E detects the
transition to order at V1 = 2V2 cos(Q/2).

where b is the intensity at which a feature appears (i.e., a local
minimum), d denotes the intensity at the local maximum at
which the feature is destroyed, and p is an integer exponent.
d − b is thus the feature lifetime. For example, P∞ measures
the lifetime of the longest-lived feature in the persistence
diagram D, P1 is the sum of feature lifetimes, and P2 is the
root mean squared lifetime. Thus, the p-norms resemble the
generalized inverse participation ratios.

The second summary is the persistent entropy [46],

E (D) = −
∑

(b,d )∈D

|d − b|
S (D)

log

( |d − b|
S (D)

)
, (6)

where S (D) = ∑
(b,d )∈D |d − b| is the sum of feature lifetimes

in the persistence diagram D. The persistent entropy quantifies
the non-uniformity of the feature lifetimes d − b; it is simply
the Shannon entropy of the feature lifetime fractions.

Essentially, the standard approach for quantifying eigen-
state localization is to compute summary statistics of their
intensity distribution such as the inverse participation ratio
or Shannon entropy. On the other hand, persistent homology
computes and characterizes the eigenstates’ critical points
(local maxima and minima). In effect, we compress the
information contained in the eigenstate profiles. The point
summaries not only capture the localization properties of the
eigenstate, but also its level of disorder. Referring back to
Fig. 1, we see that the persistent homology measures not
only reproduce the known phase boundaries of the generalized
AAH model, but also identify model parameters for which
order is restored, i.e., along the line V1 = 2V2 cos(Q/2).

Figures 5(a) and 5(b) show the phase diagrams obtained
using feature lifetime norm P2 [Eq. (5)] and the ground state’s
Shannon entropy [Eq. (3)]. P2 is poor at distinguishing the
extended and critical phases, similar to IPR. On the other
hand, S provides similar contrast to the persistent entropy,

FIG. 6. Finite size scaling of the lowest energy eigenstate’s IPR
(a), Shannon entropy S (b), (P2)2 (c), and persistent entropy E (d) in
the three phases. The standard measures (a) and (b) and persistent
homology-based measures (c) and (d) exhibit the similar scaling
feature.

but does not detect the ordered line. This suggests that the
main advantage of the persistent homology approach may be
in distinguishing order from disorder. We illustrate this further
by plotting all four eigenstate measures along 1D cuts of the
full phase diagram in Figs. 5(c) and 5(d). While all measures
can reproduce the correct phase boundaries, the persistent
entropy provides stronger contrast between the critical and
extended phases and can also distinguish order from disorder
in the ground state, visible as a prominent dip in E in Fig. 5(d).

For a given eigenstate measure the contrast between the
different phases will depend on the system size N . For exam-
ple, the generalized inverse participation ratios will scale in
the large N limit as IPRq ∝ Ndq (1−q), where dq is the fractal
dimension of the qth eigenstate moment [14,15]. Thus, dq can
be obtained by studying the scaling of an eigenstate measure
with N . Figure 6 plots the finite size scaling of the measures
of the lowest energy eigenstate, taking the system size N to be
Fibonacci numbers and corresponding rational approximants
of Q to minimize finite size effects. We observe that IPR and
(P2)2 and S and E exhibit identical scaling exponents, up to
the accuracy of the obtained power-law fits.

Both the standard and persistent homology-based measures
give similarly faithful estimates for the fractal dimensions of
the eigenstates by taking the large N limit. On other hand,
based on the offsets between the fits obtained for the differ-
ent phases, it appears that, for fixed N , the IPR (persistent
entropy) performs better at distinguishing the extended and
critical phases than P2 (Shannon entropy). Since both ap-
proaches yield the same fractal dimensions d1,2 we anticipate
their multifractal spectra will also coincide. A more detailed
study of multifractal properties probed using persistent ho-
mology is an interesting direction for future research.

IV. PROPAGATION DYNAMICS

Next we study how persistent homology analysis can
be used to characterize the propagation dynamics. For this
we consider the evolution of a localized (single waveguide)
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FIG. 7. IPR (a), Shannon entropy (b), P2 (c), and persistent
entropy E (d) as a function of the propagation distance z in the
three phases (blue - extended [V1 = 1.8, V2 = 0.5]; orange - localized
[V1 = 2.2, V2 = 0.5]; green - critical [V1 = 1.0, V2 = 1.5]). Solid
lines indicate mean values over an ensemble of k values, shaded
regions one standard deviation.

excitation, described by Schrödinger equation i∂zψn(z) =
Ĥψn(z), with ψn(0) = δn,N/2, where N is the total number of
lattice sites. We compute IPR, S, P2, and E of the z-dependent
intensity profiles |ψn(z)|2 in Fig. 7. To obtain statistics and
uncertainty estimates, we construct an ensemble by varying
the parameter k appearing in Eq. (1), which is equivalent to
spatial translations of the input beam.

The standard approach towards distinguishing the phases
of Ĥ using the propagation dynamics is to consider the scaling
of IPR, i.e., using a power-law fit IPR ∝ z−α , where the fitted
exponent α can distinguish localized, diffusive, and ballis-
tic transport regimes [3,34]. In the localized phase there is
an initial transient expansion until the wave packet width is
comparable to the localization length ξ , after which spreading
stops, corresponding to IPR ∼ 1/ξ and α = 0. In delocalized
phase a single site excitation will spread indefinitely, corre-
sponding to ballistic expansion with IPR ∝ z, i.e., α = 1. In
the critical phase, the transport is approximately diffusive,
with α ≈ 1/2 [47].

Consistent with these expectations, in the localized phase
in Fig. 7 (orange curves) the IPR does not decay to zero but
saturates at a finite value, indicating localization. Similar sat-
uration is seen in P2. Meanwhile, S and E grow the fastest in
the extended phase and saturate at a low value in the localized
phase. However, it is noticeable that there is a subtle difference
between Figs. 7(a) and 7(b) and Figs. 7(c) and 7(d) after a long
propagation distance: the persistent homology measures show
a quantitatively larger difference between the localized phase
and the extended and critical phases.

We repeat this procedure, scanning over the model parame-
ters V1 and V2 and computing IPR, S, P2, and E after the wave
packet has propagated a sufficiently large distance. Figure 8
illustrates the phase diagrams reconstructed from the beam

FIG. 8. Phase diagrams obtained from the beam propagation
simulations, using the output intensity profile |ψn(L)|2. Propagation
distance L = 300.

propagation simulations. We see that both the conventional
measures (IPR, S) and the persistent homology measures (P2,
E) are able to distinguish the dynamics in the three phases.
The most striking difference compared to Fig. 1 is that the
ordered line V1 = 2V2 cos(Q/2) is not detected by the propa-
gation dynamics. The reason for this is that along this line, the
quasiperiodic potential is only transparent to the low energy
modes; the single site initial state excites a superposition of
all the modes. Thus, the field becomes disordered after prop-
agating a sufficiently long distance.

To determine whether the ordered line can be feasibly ob-
served in experiment we construct a finite size Gaussian beam
with width w = 10 and alternating phase between neighbor-
ing sites, ψn(0) = (−1)n exp[−(n − N/2)2/(2w2)], shown in
Fig. 9(a). Owing to the similarity between this profile and the
ground state, in the extended phase this initial state mainly
excites the low energy modes. Figure 9(b) shows two intensity
profiles obtained after propagation at ordered and disordered
points in the extended phase. Thanks to the suppression of
the high energy modes there is a clear difference in the out-
put intensity profiles; the profile is smooth on the ordered
line, whereas elsewhere in the extended phase rapid intensity
fluctuations are generated. The Shannon entropy of the out-
put intensity profiles shown in Fig. 9(c) does not distinguish
these two profiles, whereas the persistent entropy in Fig. 9(d)
correctly identifies the ordered line, showing that the persis-
tent homology method may also be useful for distinguishing
ordered from disordered propagation dynamics without re-
quiring ensemble averages.

V. CONCLUSION

We have studied how the persistent homology analysis can
be applied to characterize the eigenstates and propagation dy-
namics of tight-binding models. Focusing on the example of
the generalized Aubry-André-Harper model, we have shown
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FIG. 9. (a) Amplitude profile of low energy wave packet initial state and (b) output field profiles after propagating a distance L = 250 on
the ordered line (blue; V1 = 0.3,V2 ≈ 0.41) and elsewhere in the extended phase (V1 = 0.3,V2 = 0.8). (c) and (d) Phase diagrams obtained
from the output beam profile’s Shannon entropy S (c) and persistent entropy E (d).

how point summaries of the persistence diagrams can be used
to distinguish its three phases (extended, localized, critical), as
well as distinguish ordered from disordered regimes. This is
despite the fact that the persistence diagrams form a highly
compressed representation of the eigenstates, i.e., contain-
ing only information about their local maxima and minima.
Persistent homology-based observables such as the persistent
entropy may be a useful tool for detecting novel phases and
parameter regimes of complex lattice models.

We focused on the case of a one-dimensional lattice for
ease of understanding. However, persistent homology can also
be readily applied to higher dimensional intensity profiles,
where it can not only characterize the number of high inten-
sity clusters, but also detect higher-dimensional topological
features such as holes and loops. This could be useful for dis-
tinguishing localized, extended, and compact localized modes
in disordered flat band lattices such as the Lieb lattice and its
higher dimensional generalizations [48,49].

Another interesting direction would be to investi-
gate whether persistent homology-related observables are
amenable to analytical or semianalytical calculations. For
example, in 1D tight-binding lattices the energy-dependent
localization length can be computed without diagonalizing the
Hamiltonian by evaluating a recurrence relation satisfied by

the eigenstates [3,14]. Analytical results may reveal to which
specific features of eigenstates persistent homology is most
sensitive.

Since persistent homology captures multiscale properties
of wave functions, the techniques developed here may be use-
ful for characterizing the response of active photonic systems,
such as supercontinuum and frequency comb generation in
microring resonators, where the intensity can be measured
over a huge range of scales [50]. Thus, we envision the tech-
niques could be further developed for advanced studies, which
may find applications in deep-learning-based photonic design
and AI-empowered nanophotonics that will continue to grow
in the coming decade [51,52].
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scars and weak breaking of ergodicity, Nat. Phys. 17, 675
(2021).

[14] F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod.
Phys. 80, 1355 (2008).

[15] A. Rodriguez, L. J. Vasquez, K. Slevin, and R. A. Römer,
Multifractal finite-size scaling and universality at the Anderson
transition, Phys. Rev. B 84, 134209 (2011).

[16] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N.
Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine learn-
ing and the physical sciences, Rev. Mod. Phys. 91, 045002
(2019).

[17] R. Ghrist, Barcodes: The persistent topology of data, Bull. Am.
Math. Soc. 45, 61 (2008).

[18] L. Wasserman, Topological Data Analysis, Annu. Rev. Stat.
Appl. 5, 501 (2018).

[19] G. Carlsson, Topological methods for data modelling, Nat. Rev.
Phys. 2, 697 (2020).

[20] J. Murugan and D. Robertson, An introduction to topo-
logical data analysis for physicists: From LGM to FRBs,
arXiv:1904.11044.

[21] D. Leykam and D. G. Angelakis, Topological data analysis and
machine learning, arXiv:2206.15075.

[22] Y. Hiraoka, T. Nakamura, A. Hirata, E. G. Escolar, K. Matsue,
and Y. Nishiura, Hierarchical structures of amorphous solids
characterized by persistent homology, Proc. Natl. Acad. Sci.
USA 113, 7035 (2016).

[23] R. Mengoni, A. Di Pierro, L. Memarzadeh, and S. Mancini,
Persistent homology analysis of multiqubit entanglement,
Quantum Inf. Comput. 20, 375 (2020).

[24] B. Olsthoorn, J. Hellsvik, and A. V. Balatsky, Finding hidden
order in spin models with persistent homology, Phys. Rev.
Research 2, 043308 (2020).

[25] Q. H. Tran, M. Chen, and Y. Hasegawa, Topological persis-
tence machine of phase transitions, Phys. Rev. E 103, 052127
(2021).

[26] D. Leykam and D. G. Angelakis, Photonic band structure design
using persistent homology, APL Photonics 6, 030802 (2021).

[27] D. Spitz, J. Berges, M. K. Oberthaler, and A. Wienhard, Find-
ing universal structures in quantum many-body dynamics via
persistent homology, SciPost Phys. 11, 060 (2021).

[28] A. Cole, G. J. Loges, and G. Shiu, Quantitative and interpretable
order parameters for phase transitions from persistent homol-
ogy, Phys. Rev. B 104, 104426 (2021).

[29] A. Tirelli and N. C. Costa, Learning quantum phase transitions
through topological data analysis, Phys. Rev. B 104, 235146
(2021).

[30] N. Sale, J. Giansiracusa, and B. Lucini, Quantitative analysis of
phase transitions in two-dimensional XY models using persis-
tent homology, Phys. Rev. E 105, 024121 (2022).

[31] S. Park, Y. Hwang, and B.-J. Yang, Unsupervised learning
of topological phase diagram using topological data analysis,
Phys. Rev. B 105, 195115 (2022).

[32] P. G. Harper, Single band motion of conduction electrons in a
uniform magnetic field, Proc. Phys. Soc. A 68, 874 (1955).

[33] S. Aubry and G. André, Analyticity breaking and Anderson
localization in incommensurate lattices, Ann. Isr. Phys. Soc. 3,
133 (1980).

[34] Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N.
Davidson, and Y. Silberberg, Observation of a Localization
Transition in Quasiperiodic Photonic Lattices, Phys. Rev. Lett.
103, 013901 (2009).

[35] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg,
Topological States and Adiabatic Pumping in Quasicrystals,
Phys. Rev. Lett. 109, 106402 (2012).

[36] S. Ganeshan, K. Sun, and S. Das Sarma, Topological Zero-
Energy Modes in Gapless Commensurate Aubry-André-Harper
Models, Phys. Rev. Lett. 110, 180403 (2013).

[37] F. Liu, S. Ghosh, and Y. D. Chong, Localization and adiabatic
pumping in a generalized Aubry-André-Harper model, Phys.
Rev. B 91, 014108 (2015).

[38] A. Purkayastha, A. Dhar, and M. Kulkarni, Nonequilibrium
phase diagram of a one-dimensional quasiperiodic system with
a single-particle mobility edge, Phys. Rev. B 96, 180204(R)
(2017).

[39] F. M. Izrailev, Intermediate statistics of the quasi-energy spec-
trum and quantum localisation of classical chaos, J. Phys. A:
Math. Gen. 22, 865 (1989).

[40] G. Casati, I. Guarneri, F. Izrailev, and R. Scharf, Scaling Be-
havior of Localization in Quantum Chaos, Phys. Rev. Lett. 64,
5 (1990).

[41] J. Gong, H. J. Wörner, and P. Brumer, Control of dynamical
localization, Phys. Rev. E 68, 056202 (2003).

[42] E. Cuevas and V. E. Kravtsov, Two-eigenfunction correlation
in a multifractal metal and insulator, Phys. Rev. B 76, 235119
(2007).

[43] D. J. Luitz, N. Laflorencie, and F. Alet, Many-body localization
edge in the random-field Heisenberg chain, Phys. Rev. B 91,
081103(R) (2015).

[44] H. Edelsbrunner and J. Harer, Persistent homology—A survey,
Contemp Math. 453, 257 (2008).

[45] P. Bubenik, Statistical topological data analysis using persis-
tence landscapes, J. Mach. Learn. Res. 16, 77 (2015).

054210-8

https://doi.org/10.1103/PhysRevLett.114.146601
https://doi.org/10.1103/PhysRevLett.122.170403
https://doi.org/10.1103/PhysRevLett.125.073204
https://doi.org/10.1038/s41567-020-0908-7
https://doi.org/10.1103/PhysRevLett.126.040603
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1038/s41567-021-01230-2
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PhysRevB.84.134209
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1090/S0273-0979-07-01191-3
https://doi.org/10.1146/annurev-statistics-031017-100045
https://doi.org/10.1038/s42254-020-00249-3
http://arxiv.org/abs/arXiv:1904.11044
http://arxiv.org/abs/arXiv:2206.15075
https://doi.org/10.1073/pnas.1520877113
https://doi.org/10.26421/QIC20.5-6-2
https://doi.org/10.1103/PhysRevResearch.2.043308
https://doi.org/10.1103/PhysRevE.103.052127
https://doi.org/10.1063/5.0041084
https://doi.org/10.21468/SciPostPhys.11.3.060
https://doi.org/10.1103/PhysRevB.104.104426
https://doi.org/10.1103/PhysRevB.104.235146
https://doi.org/10.1103/PhysRevE.105.024121
https://doi.org/10.1103/PhysRevB.105.195115
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1103/PhysRevLett.103.013901
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevLett.110.180403
https://doi.org/10.1103/PhysRevB.91.014108
https://doi.org/10.1103/PhysRevB.96.180204
https://doi.org/10.1088/0305-4470/22/7/017
https://doi.org/10.1103/PhysRevLett.64.5
https://doi.org/10.1103/PhysRevE.68.056202
https://doi.org/10.1103/PhysRevB.76.235119
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1090/conm/453/08802
http://jmlr.org/papers/v16/bubenik15a.html


PERSISTENT HOMOLOGY ANALYSIS OF A GENERALIZED … PHYSICAL REVIEW B 106, 054210 (2022)

[46] N. Atienza, R. Gonzalez-Díaz, and M. Soriano-Trigueros, On
the stability of persistent entropy and new summary functions
for topological data analysis, Pattern Recognit 107, 107509
(2020).

[47] S. Longhi, Phase transitions in a non-Hermitian
Aubry-André-Harper model, Phys. Rev. B 103, 054203
(2021).

[48] X. Mao, J. Liu, J. Zhong, and R. A. Römer, Disorder effects
in the two-dimensional Lieb lattice and its extensions, Phys. E
124, 114340 (2020).

[49] J. Liu, X. Mao, J. Zhong, and R. A. Römer, Localization,
phases, and transitions in three-dimensional extended Lieb lat-
tices, Phys. Rev. B 102, 174207 (2020).

[50] A. L. Gaeta, M. Lipson, and T. J. Kippenberg, Photonic-chip-
based frequency combs, Nat. Photonics 13, 158 (2019).

[51] W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y.
Liu, Deep learning for the design of photonic structures, Nat.
Photonics 15, 77 (2021).

[52] Z. Chen and M. Segev, Highlighting photonics: Looking into
the next decade, eLight. 1, 2 (2021).

054210-9

https://doi.org/10.1016/j.patcog.2020.107509
https://doi.org/10.1103/PhysRevB.103.054203
https://doi.org/10.1016/j.physe.2020.114340
https://doi.org/10.1103/PhysRevB.102.174207
https://doi.org/10.1038/s41566-019-0358-x
https://doi.org/10.1038/s41566-020-0685-y
https://doi.org/10.1186/s43593-021-00002-y

