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Interplay between edge states and charge density wave order in the Falicov-Kimball
model on a Haldane ribbon
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To determine the impact of including edge states on the phase diagram of a spinless Falicov-Kimball model
on the Haldane lattice, a study of a corresponding ribbon geometry with zigzag edges is conducted. By varying
the ribbon widths, the distinction between the effects connected to the mere presence of the edges and those
originating from interference between the edge states is established. The local doping caused by the former is
shown to give rise to a topologically trivial bulk insulator with metallic edge states. Additionally, it gives rise to
a charge density wave (CDW) phase with mixed character of the subbands in various parts of the phase diagram.
The impact of local doping on the CDW instability is also addressed. Two additional gapless phases are found,
caused by the edges but with stability regions depending on the width of the ribbon.
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I. INTRODUCTION

The study of topological phases of matter has been
a rapidly growing research direction in condensed matter
physics over the past 30 years. The hallmark of nontrivial
topology is the presence of topologically protected states at
the boundary of a system. From zero-dimensional Majorana
states [1,2] though chiral spin Hall edge states [3,4] to surface
states in a crystalline topological insulator [5,6] all of them
carry quantized information about the bulk. Topological pro-
tection defends them against local perturbations such as lattice
imperfections, making them a viable candidate for application
in spintronics or quantum computing [7,8].

The stability of a nontrivial topological state becomes less
obvious when strong Coulomb repulsion is involved. The
effect of electron-electron interactions can vary from sim-
ple renormalization of the noninteracting bands to complete
reconstruction of the band structure due to formation of a
long-range ordered phase. The latter effect can be blocked
by the lattice symmetries, promoting a topologically non-
trivial ground state. However in some cases the order can
circumvent these restrictions favoring a topologically trivial
ground state, as in the case of the antiferromagnet in the Kane-
Mele-Hubbard model [9,10]. This interplay of topology and
various long-range orders has been explored in recent years in
search of novel phases of matter. But interactions are not only
detrimental to the nontrivial topology; they can also promote
it. Multiple scenarios were put forward where this can take
place; see Ref. [11] for a review. Interactions can for exam-
ple suppress the existing order which excluded the nontrivial
topology of the ground state [12]. Alternatively, longer-range
electron-electron repulsion can induce a time-reversal break-
ing term and make the system topological [13,14]. The result
of the interplay between the long-range order and topology
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can become even more complicated when boundaries of the
system are concerned. From the point of view topology, the
edge state cannot exist without the bulk. Yet, if the bulk is
too small the interference between the edge states can lead
to their mutual cancellation [15]. From the point of view of
formation of a long-range order the edges break the translation
symmetry. In certain geometries the initial order can be made
unstable if it becomes incommensurate with the new geom-
etry. Despite a vast theoretical effort in exploring different
scenarios where topology and long-range order compete in a
finite geometry, the topic still presents open questions.

The goal of this work is to explore this interplay by study-
ing the properties of the Falicov-Kimball model on a Haldane
ribbon across the U-T parameter space. At half filling, when
the total density of localized and itinerant electrons per site is
1, the Falicov-Kimball model (FKM) on a bipartite lattice at
T = 0 is known to be unstable toward formation of a long-
range order, the charge density wave (CDW) state [16,17]. On
a Haldane lattice, which is not bipartite, the CDW instability
remains as long as the next-nearest neighbor hopping (t ′) is
weak [18]. The CDW phase of FKM has some unexpected
features as a function of interaction strength and temperature
that distinguishes it from the much better explored orders of
Hubbard model—for example, the mechanism through which
it decays with T , the fact that it is not affected by metalliza-
tion, or that the metallic region has nonmonotonic behavior
as a function of U and T , just to name a few. Despite few
papers discussing some version of this model [19–21], none
has investigated the scenario where both edge states and CDW
instability are present. Thus, the aim of this paper is to explore
the possible physical situations that can occur when both
factors are at play.

II. MAIN RESULTS AND OUTLINE

The main result of this paper is presented in Fig. 1, which
is a schematic depiction of the phase diagram for a ribbon of
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FIG. 1. A schematic depiction of the phase diagram of FKM on
the Haldane ribbon of width L = 16. It shows eight distinct phases:
topological insulator (TI), ordered TI (OTI), gapless TI (GTI), or-
dered insulator (OI), normal insulator (NI), ordered conductor (OC),
and ordered edge conductor (OEC). The small dashed parts of the
phase diagram at OTI-OC and OC-OEC transitions represent regions
dominated by the effects connected to the finite width of the ribbon.

width L = 16 and infinite length. The size of the ribbon was
chosen to be small enough to allow for interference between
the edge states within the bulk, but not so small that the size
effects dominate the physics. By examining the distribution
of localized particles and the values of the mobile particles’
local spectra at the Fermi level, one can distinguish between
seven phases of this model: topological insulator (TI), ordered
TI (OTI), normal insulator (NI), ordered conductor (OC),
ordered insulator (OI), gapless TI (GTI), and ordered edge
conductor (OEC). The distinction between the topologically
trivial and nontrivial phases at finite temperatures is based
on the comparison of local spectra and dispersions across the
ribbon. Each of the phases and the transition between them
is discussed in the following sections. Further differentiation
inside the OC phase will be made through analysis of the
subband symmetries, following Ref. [22]. The most striking
consequence of introducing zigzag edges on the phase dia-
gram comes in the form of the OEC phase. It is characterized
by a trivial bulk insulator with metallic edges, which orig-
inates from combination of low-energy scattering subbands
and local doping at the zigzag edges. This interplay is also
responsible for a mixed, in subband asymmetry, nature of the
gapped phase inside the CDW region. The finite width of the
ribbon allows us to investigate the influence of penetration
depth of the edge states on the stability of the nontrivial
topological phase—a feature that proves to play a role at
finite temperatures not only in extremely small systems. It is
responsible for formation of a residual-metallic state (OC) at
moderate U upon the transitions from OTI to gapped CDW
and from OC to OEC; cf. the small dashed regions of the
phase diagram 1. The region of U-T space that this phase
occupies decays with the ribbon width. An analogous phase
on the gapped side of this transition was not found due to dif-
ferent properties of the edge states in the topologically trivial
state.

FIG. 2. Lattice scheme with blue and red circles indicating
nonequivalent lattice sites on the honeycomb lattice. Black indi-
cates the nearest neighbor hopping with amplitude t = 1. Green line
indicates NNN hopping with complex phase φ, whose change is
indicated with arrows. System is infinite in Cartesian x direction and
finite in y direction.

The paper is organized as follows. In the next section the
model will be introduced and the method used to solve it will
be discussed. Next, the analysis will begin with a section about
T = 0 evolution. It will cover not only the transition between
the OTI and OI but also the consequences of finite width of the
system. The following section will cover the same transition
from OTI to TI but at finite temperatures, a transition that
resembles that of an infinite lattice. This will be followed by
the analysis of the change of the properties of the system as it
evolves from OI to TI along a U = 1.2 line, which is above
the T = 0 critical U for the topological phase transition.
The remaining sections will look at evolution of the system
along different isothermal lines. This allows exploring of the
richness of phases originating from the interplay between
different OI phases in FKM, one of them being the OEC.
Lastly, a high-T evolution will be discussed. This parameter
regime is characterized by lack of order causing the lines of
transition points to be vertical.

III. MODEL AND METHOD

The Hamiltonian of the FKM on a Haldane lattice in the
second quantization form is given by

H = −t
∑
〈i, j〉

c†
i c j + it ′ ∑

〈〈i, j〉〉
νi, jc

†
i c j + H.c.

+
∑

i

Ud†
i dic

†
i ci −

∑
i

(Ed d†
i d + μc†

i ci ), (1)

where c†
i , d†

i are the creation operators of itinerant and local-
ized spinless fermions. The first line in Eq. (1) describes a
honeycomb lattice, with hopping amplitude t between nearest
neighbors, and with a complex next-nearest neighbor hopping
t ′. Parameter νi, j = ±1 distinguishes between a clockwise
and anticlockwise movement of particles. Figure 2 illus-
trates the Haldane lattice with its two-atom unit cell (A and
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B types indicated as blue and red dots), directional hop-
pings, depicted as green lines with arrows, and nondirectional
hoppings indicated by black lines. The second line in Hamil-
tonian (1) describes the interaction between localized (d) and
itinerant(c) fermions of strength U , and Ed , μ set the chem-
ical potential for d electrons and c electrons, respectively. In
this work a semi-infinite version of the Haldane lattice will
be considered with a finite number of unit cells L in the y
direction, as shown in Fig. 2. This so-called ribbon geometry
can host two main types of edges depending on along which
lattice vector it is cut [23]. Here the focus will be only on the
zigzag type. In this geometry each edge host an excess of one
type of atom (A or B) leading to additional states even in the
topological trivial case. This is not the case in the armchair
edge, which sustains the sublattice symmetry.

The Hamiltonian (1) will be solved using the inhomoge-
neous dynamical mean-field theory (iDMFT). This method
builds upon the DMFT assumption of locality of self-energy
[24] and applies it to systems with broken translation invari-
ance in one or more directions. First introduced by Potthoff
and Nolting [25], this method has helped in understanding
the competition between lattice geometry and interactions. It
was successfully applied to study both the Hubbard model
[26–29] as well as the FKM [30–32]. The standard DMFT
is a well-established method, described in the context of the
FKM in Refs. [17,24]. In the following paragraph the iDMFT
procedure will be described with emphasis put on the steps
characteristic to it.

The crucial difference between the iDMFT and DMFT is
that the local self-energy is not assumed to be the same at
each lattice site. In the real-space representation it is given by
a (diagonal) matrix-valued function

[�(z)]α,β = �(z, α)δα,β, (2)

where z = ω + i0+ is the complex frequency, and α, β are lat-
tice site indexes. Because iDMFT deals with inhomogeneous
systems the local part of lattice Green’s function cannot be
calculated through Hilbert transform. Instead, it is obtained
by direct evaluation of the resolvent,

G(z) = [G−1
0 (z) − �(z)]−1. (3)

To accelerate this process it is useful to take advantage
of the remaining symmetries of the lattice. In the case of
the ribbon geometry it is the translation invariance along one
direction (x). Hence, to calculate the local part of the lattice
Green’s function it is useful to work in the mixed momentum
k (x direction) and position (y direction) representation,

[G(z)]α,α = 1

2π

∫
dk[G(z, k)]α,α, (4)

where k is the rescaled momentum by
√

3
2 and

G(z, k) = [zI − �(z) − H(k)]−1. (5)

In the mixed representation the noninteracting part of the
Hamiltonian (1) has a 2 × 2 block tridiagonal form due to two
atoms per unit cell of the honeycomb lattice. The off-diagonal
blocks of the Hamiltonian in this basis are given by

[H(k)]s,s+1 =
[

2t ′ sin(k) 0
t −2t ′ sin(k)

]
(6)

and the diagonal blocks

[H(k)]s,s =
[−2t ′ sin(2k) − μ 2t cos(k)

2t cos(k) 2t ′ sin(2k) − μ

]
, (7)

where index s enumerates the unit cells across the ribbon.
The (block) tridiagonal form of the Hamiltonian in the mixed
representation makes the calculation of the resolvent time
efficient [33]. From the local parts of the lattice Green’s
function the iDMFT procedure follows the same steps as in
the standard DMFT self-consistency loop. The noninteracting
Green’s function is extracted from the lattice Green’s function
through

G−1
0 (z, α) = [G(z)]−1

α,α + �(z, α). (8)

The local density of localized particles is updated using this
noninteracting Green’s function through

ρd (α) = nFD(Ẽd (α, T ), T ), (9)

where nFD is the Fermi-Dirac distribution function, T is the
temperature, and

Ẽd (α, T ) = Ed −
∫

dω

π
nFD(ω, T )Im ln

(
1

1 − UG0(z, α)

)

(10)
is the effective local potential of the localized particles. Next,
the local Green’s function of the mobile particles is obtained
using

G(z, α) = 1 − ρd (α)

G−1
0 (z, α)

+ ρd (α)

G−1
0 (z, α) − U

. (11)

Finally, the set of local self-energies is updated through

�(z, α) = G−1
0 (z, α) − G−1(z, α), (12)

which is plugged in to recalculate the lattice Green’s function,
closing the iDMFT loop. In addition at each step a new Ed is
found such that the total density of localized particles fixed
to ρd = 1

N

∑
α ρd (α), where N is the total number of lattice

sites.
Due to the translation invariance along the x direction,

in the following the index y will be used to enumerate the
nonequivalent unit cells across the ribbon and additional index
σ = A, B will indicate the sublattice. The system size L is
defined as the number of y values enumerating nonequivalent
unit cells across the ribbon. In the rest of the paper Aσ,y(ω)
will symbolize the local density of states (LDOS) or spectral
function, which is minus imaginary part of the corresponding
retarded local Green’s function divided by π , at sublattice
σ at unit cell y from the edge. The dispersion along the
ribbon will be obtained through the analogous quantity ob-
tained from the Green’s function in the mixed momentum and
position representation. The ρd (σ, y), ρc(σ, y) will represent
the density of localized electrons at sublattice σ and the yth
unit cell from the edge. To distinguish between the ordered
and disordered phases the d (y) = ρd (A, y) − ρd (B, y) will be
used. The LDOS at the Fermi level Aσ,y(ω = 0) will play the
role of order parameter for metallization.

In this work t = 1, the strength of the nondirectional hop-
ping, will set the energy scale. The next-nearest neighbor
hopping will be fixed at t ′ = 0.1t . The localized particle
density per lattice site will be set to ρd = 0.5 and a fixed
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chemical potential μ = U
2 will be assumed to keep ρc = 0.5.

Most results analyzed below are for a ribbon of width L = 16.
A finite-size scaling analysis revealed this to be the sweet-
spot width to obtain results quantitatively close to the infinite
lattice, but also to include the interference between the edge
states.

IV. T = 0

At T = 0 the density of the localized electron is fixed to
integer values. This makes the effects of interactions static
and results in a sublattice splitting mass term of strength U
felt by mobile particles [17]. It counters the gap inversion,
caused by the directional t ′, and a topological phase transition
(TPT) takes place for U > UT PT = 6

√
3t ′ [34]. This effect

was fully captured within the Hartree approximation in pre-
vious studies [20]. For finite systems the critical interaction
strength depends on the system size [15]. The tunneling of
the edge states inside the ribbon reduces the gap width in the
middle of the ribbon, which plays the role of the bulk. As a
consequence the UT PT is reduced. This is why the quantum
phase transition between the OTI and OI in Fig. 1 takes place
at U < UT PT ≈ 1.0. Increasing the ribbon width to L = 20
already recovers the critical U from the infinite-lattice limit.
This is in agreement with findings for the noninteracting
Kane-Mele model [15], which reduces to the Haldane model
if one spin channel is considered.

After the TPT the edges turn insulating but their zigzag
geometry still manifests itself in the form of additional
bands. Instead of connecting the K and K ′ points across
the gap they now connect the two k points within the same
(valence/conduction) band. Combined with the CDW order
the resulting band structure hosts an additional hole band
localized at one end of the ribbon and an electron band at
the other end. This is in contrast to Kane-Mele model, where
these bands have a time-reversal counterpart, which cancels
the charge imbalance between the edges [4].

As an illustration a dispersion along a single edge for
U = 2 and L = 16 is shown in the second column in the top
plot of Fig. 3. The edge state after the TPT is highlighted
by the red dashed ellipse. The dispersion at the other edge
is not shown; due to symmetry it is just p-h transformed. The
first column shows the corresponding LDOS at the edge. As
a reference point the third (fourth) column shows dispersion
(LDOS) along (at) the middle of the ribbon. From compar-
ison between the LDOSs one can see that the presence of
the additional state at the edge triggers a transfer of spectral
weight from below the gap to the additional states located
above the upper gap edge. Despite that, the gap width is con-
stant across the whole ribbon (black dashed lines). At T = 0
the static correlations of FKM and integer-valued density of
localized particles does not allow for unit-cell dependence
of the gap width. This is in sharp contrast to the Hubbard-
type interactions, where the correlations are dynamic and the
reduced kinetic energy at the edges locally enhances the role
of interactions [25,26,35]. The fixed gap does not make the
underlying lattice geometry insignificant, even in the topolog-
ically trivial phase. On either side of the TPT the edge states
tunnel into the ribbon in a particular way. They hybridize only
with sites belonging to the same sublattice. This enhances the
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FIG. 3. Top row: Dispersion and corresponding LDOS along the
edge (left half) and along the middle of the ribbon (right half) for
U = 2, T = 0. Dashed lines indicate the gap edges, and the red
dashed ellipse in second from the left plot highlights the edges
state after TPT. Bottom row: Local density of mobile particles
[ρc(A, y), ρc(B, y)], total density (ρc(A + B, y) = 0.5[ρc(A, y) +
ρc(B, y)]), and polarization [δρc(y) = ρc(A, y) − ρc(B, y)] inside y
unit cell across the ribbon.

charge imbalance [δρc(y) = ρc(A, y) − ρc(B, y)] within unit
cells, which is most pronounced at the edges; cf. bottom panel
of Fig. 3. Because one edge hosts an additional electron band
and the other hosts a hole band the overall effect is transfer
of the mobile electrons across the ribbon from one edge to
the other, such that the overall system remains half filled. The
effect is strongest in the vicinity of the TPT, when the edge
states are well separated from the bulk bands. As U grows
the overlap in energy between bulk and edge bands becomes
larger and the difference in mobile electron density between
the edge unit cells decays.

V. NONZERO TEMPERATURE

At finite temperatures the perfect checkerboard order be-
comes unstable and the order parameter d (y) is no longer
fixed to integer values. This is interpreted as the onset of
temperature induced (annealed) disorder in the distribution
of localized particles [36,37]. The scattering off the disorder
leads to formation of additional subbands inside the T = 0
gap, located symmetrically around the Fermi level in the itin-
erant electron total (both sublattices) spectra. It is a general
feature of the model, reported for various lattices [36,38,39].
It originates solely from the form of the local Green’s function
in the FKM; cf. Eq. (11). Depending on the which term has
a larger numerator, the other term can be recast into a sum
of scattering series from a potential of value ±U and the
unperturbed environment described by the majority Green’s
function

G(z, α) =
{

[1 − ρd (α)]X + ρd (α) X
1−U X ,

ρd (α)X + [1 − ρd (α)] X
1+U X .

(13)

The top (bottom) recasting corresponds to the situation where
ρd (α) ≈ 0 (ρd (α) ≈ 1) and the unperturbed Green’s func-

054209-4



INTERPLAY BETWEEN EDGE STATES AND CHARGE … PHYSICAL REVIEW B 106, 054209 (2022)

FIG. 4. Top row: Edge (left panel) and bulk (right panel)
site-resolved LDOS for various T across the ordered-disordered tran-
sition at U = 0.6. Bottom row: The corresponding order parameter
across the unit cells of the ribbon.

tion X is the solution from the perfectly ordered system
X = G0(z, α) (X = [G−1

0 (z, α) − U ]−1). In both cases the
position of the subbands corresponds to the poles of the scat-
tering series. As the temperature grows the subbands inflate
and eventually start to overlap, closing the gap. Multiple stud-
ies reported that this gapless CDW phase wedges between the
ordered and disordered phases.

On the Haldane lattice at U < UT PT this is not the case,
which the results for ribbon geometry confirm. As long as
the topology of the bulk does not change, the CDW order
can decay without the intermediate metallization of the bulk.
To illustrate this Fig. 4 displays the edge (upper left panel)
and the bulk (upper right panel) site-resolved LDOS for
U = 0.6 < UT PT and various temperatures across the CDW
transition. The bottom panel shows the corresponding be-
havior of the order parameter across the ribbon. Since the
topology can only be canceled by strong enough CDW order,
when the temperature grows the annealed disorder hinders
the CDW, making the nontrivial topology more stable, i.e.,
increasing the size of the negative gap. If starting from T = 0
the bulk had an inverted gap, no TPT upon heating is possible;
cf. the upper right panel of Fig. 4. On top of that, reduction in
the CDW order parameter leads to a more symmetric spectrum
with respect to the chemical potential. However, at such small
U scattering does not introduce any low-energy excitations
due to gapped spectrum. It only contributes at higher ener-
gies by smearing out its peaked structure. The situation at
the edges is different, where the edge states start to acquire
finite lifetime due to scattering off the disorder. As a result
they become flattened and more symmetric around the Fermi
level, evolving toward an “M shape.” Despite that they remain
directional, one edge state connects the valence band with the
conduction band from K → K ′ and the other from K ′ → K .

Free of the integer value constraint the CDW order pa-
rameter d (y) starts to vary across the ribbon; cf. the bottom
panel of Fig. 4. As the order-disorder transition is approached
the d (y) decays faster in the bulk then at the edges. This all

FIG. 5. Site-resolved LDOS for bulk (dashed line) and the edge
(continuous line) for various temperatures at U = 1.2. The legends
on the left of each row display also the corresponding value of the
order parameter.

stems from the presence of the edge states and their influence
is twofold. First, they lead to formation of an electron-rich
and a hole-rich region at either end of the ribbon. In re-
sponse, the localized particles redistribute from the former to
the latter region in order to minimize the potential energy. It
is important to note that despite d (y) being symmetric with
respect to the middle of the ribbon the total density mono-
tonically declines across its width. The second effect of the
edge states comes from their localization at a single sublattice.
The additional/missing band at only one sublattice allows
for stronger CDW order which enhances the redistribution of
localized particles. As the edge state decays inside the ribbon
so does the tail of the d (y), highlighting the fact the two are
connected.

For interaction strengths U > UT PT the result of the com-
petition between the topology and interactions becomes less
straightforward. At T = 0 the system starts with a trivial gap
and upon heating it has to eventually end up in a disordered
phase. This allows for a temperature-induced TPT, when the
CDW order falls below the threshold of stability of a trivial
insulator. An example evolution upon heating of the edge
(continuous line) and bulk (dashed line) total unit cell LDOS
(Ay(ω) = 0.5[AA,y(ω) + AB,y(ω)]) for U = 2.4 is presented in
Fig. 5. Because of the edge states, the Ay(ω) is not the same
at sites y equally distanced from the middle of the ribbon,
but they are p-h reflected. The log scale in Fig. 5 is used to
highlight the low-energy part of the spectrum. The system
starts as an ordered trivial insulator (OI) with a well-resolved
CDW gap in the bulk and at the edges. As the temperature
increases the order melts and trivial gap is reduced; cf. the
two top plots in Fig. 5. The comparison between y = 0 and
y = L/2 spectra reveals the (trivial) edge state contribution
in the form of a peak just below the upper edge of the bulk
gap. The y = L spectra (not shown) have a similar peak lo-
cated above the lower gap edge. At T = 0.03 these peaks are
located almost at the Fermi level, but the gap remains across
all unit cells of the ribbon. This indicates that the system is
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approaching TPT from the trivial side. Further increase of
temperature melts the order below the threshold and the triv-
ial gap is closed, as shown in the third panel from the top
in Fig. 5. At T = 0.04 the system becomes a TI phase as
indicated by the edge turning metallic due to formation of
an asymmetric, in ω, broad peak that bridges the previous
CDW gap. This is a clear sign of the presence of a topological
edge state; cf. top right left in Fig. 4. Simultaneously, the
low-energy part of the bulk LDOS also undergoes an abrupt
change. The sharp features, that sandwiched the CDW gap at
lower T ’s, are suddenly pushed away from Fermi level. The
gap becomes softened due to tunneling of the edge state inside
the ribbon, hence the low spectral weight subgap states. The
fact that the tunneling of edge states is responsible for that
was confirmed with a finite-size scaling analysis of metallicity
of the bulk. It showed a steady decline of AL/2(0) with the
system size and becoming fully suppressed around L = 30. As
a result of an edge state forming a large difference in the CDW
order parameter between the edge and the bulk is observed;
see inset of the T = 0.04 panel in Fig. 5. This stems from the
fact that the edge state is asymmetric around the Fermi level
promoting additional increase in CDW order.

A topological state inducing a gapless bulk on the topo-
logically nontrivial side of the TPT is a generic situation for
finite-size systems at T �= 0, not discussed in previous studies
of this model [20]. The mere presence of edge states in topo-
logically nontrivial states softens the bulk gap by introducing
subgap bands, which tunnel into the bulk in a particular way.
Despite most of the spectral weight being at the center of
the edge state, what tunnels inside is the part closest to the
band edge. When the inverted gap is narrow, as depicted for
T = 0.04, these subgap states are located very close to the
Fermi level. The additional broadening of these states at finite
temperatures, due to scattering, leads to eventual closing of
the gap. From the third panel in Fig. 5 one can see that
these states are an order of magnitude smaller than any other
features in spectra. It has to be stressed that the gapless bulk
in this parameter range in a TI-CDW state is different from
the “standard“ gapless CDW (OC) in FKM [36]. They both
originate from merger of subbands, but in the OC case these
subbands are created solely by the disorder. Hence, the OC
is stable also in the thermodynamic limit unlike this gapless
TI-CDW. The part of the phase diagram it covers depends on
the system size and as L grows it collapses into a line. As
the temperature and U increase, the physics of the bulk start
to dominate the tunneling effects and the gapless TI-CDW
smoothly evolves into standard OC.

In principle, on the topologically trivial side of the TPT
a similar situation could take place as the low-energy peaks
at the edges also tunnel inside the ribbon. Due to their small
size, in contrast to their topological analogs, they decay much
faster. Comparing the T = 0.02 and T = 0.03 in Fig. 5 one
can see the edge state peak being an order of magnitude
smaller on the topologically trivial side than on the topolog-
ically nontrivial side of the transition. This makes a gapless
bulk on the topologically trivial side of the transition stable
only at extremely small system size, at which point the parity
of L becomes of importance [15].

Upon heating from T = 0.04 to T = 0.05 the CDW or-
der further decreases and the inverted bulk gap grows. At

FIG. 6. Comparison of the dispersion along the unit cells at the
edge (bottom row) and the middle (upper row) of the ribbon for
various interaction strengths U and T = 0.08. The red dashed lines
indicate the positions of maxima of the scattering rates around the
Fermi level (black dashed line).

T = 0.05 it becomes well defined, but the remnants of the
CDW are still present in all LDOSs across the ribbon in the
form of a small asymmetry around the chemical potential.
This confirms the findings from Ref. [20] obtained using the
Hartree approximation, that even at U > UT PT a CDW sur-
vives inside a TI up to a certain temperature. The agreement
between the Hartree approximation and full DMFT calcula-
tion proves the dominant role of the topology over interactions
in this region of the U-T parameter space. Further increase
of temperature leads to complete suppression of order. The
local LDOS becomes that of a disordered TI, with symmetric
LDOS and “M-shaped” edge state band at low energies; cf.
spectra for U = 0.6, T = 0.02 in Fig. 4. Once the system
becomes maximally disordered further heating does not intro-
duce any new behaviors, since temperature enters the mobile
electrons’ LDOS only through the distribution of localized
particles.

The lack of the OC state at U ≈ UT PT raises the question
of whether it can be found at any point of the phase diagram
and, if so, how does the finite size of the system effect its
properties. Away from the TPT one expects the system to
follow the generic behavior of the FKM. Previous studies
showed that at any constant T and upon increasing U the
system will eventually become an OC due to the cusp in its
stability region, cf. phase diagram 1, which reaches down to
T = 0 within the CDW dome [36]. The analysis of spectra
at higher U has the added benefit of having the scattering
subbands separated from the clean system bands, making the
study of the impact of finite size on various ordered phases
easier. Figure 6 shows a U evolution of the dispersion along
the edge (bottom row) and the dispersion along the middle of
the ribbon (top row) at T = 0.16.

Starting at U = 1.6 (leftmost column) the dispersion shows
a (disordered) TI, with a gapped bulk and broadened edge
state crossing the Fermi level. The red dashed lines in Fig. 6
indicate the location of local maxima of scattering rate. These
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FIG. 7. Site-resolved LDOS for bulk (dashed line) and the edge
(continuous line) for various interaction strengths U at T = 0.08.
The logarithmic scale is used to highlight the interplay between the
low-energy scattering subbands.

maxima correspond to the location of scattering subbands. In
the bulk, they are located symmetrically above and below the
Fermi level, reflecting the symmetry of the bulk unit cell. As
the interaction is increased these peaks approach each other.
At the same time the CDW order parameter increases. Equiv-
alently, the annealed disorder is reduced. This can be inferred
from the decrease in the broadening of the bulk bands, which
start to recover a well-resolved internal structure for U > 1.7.
By extrapolating the position of the scattering subbands upon
change of U , one can see that they will eventually cross (at
T = 0.08 it happens for U = 2.8, shown in Fig. 7) turning
the bulk into a gapless CDW metal before reopening of the
gap [39]. For the parameters used in Fig. 6 the closing of
the inverted gap (at U = 1.7) is not affecting the merg-
ing of the subbands, since the former takes place at much
smaller U .

The situation at the edges is different, due to the fact they
are locally doped away from half filling. As shown in the
bottom row the midpoint between the centers of the scat-
tering subbands is below the Fermi level, with the subband
on the hole side (ω > 0) of the dispersion being closer to
the Fermi level. As the system is being driven across the
TPT this subband is pushed down to the Fermi level. As a
result the metallic nature of the edges remains despite the
bulk becoming a topologically trivial insulator. This ordered
edge conductor phase (OEC) owes its metallic edges to the
combined effect of scattering off annealed disorder and the
existence of additional bands at the zigzag edges of the Hal-
dane ribbon, which makes them locally doped. For that reason
studies done for an analogous model but on an infinite lattice
could not observe this phase. Moreover, due to its origin the
OEC phase is always present in ribbons wider than L = 10.

Below that width the dispersions along the ribbon show strong
L dependence which can alter the local doping.

At U ≈ 1.8 the OEC phase does not show a clear gap
in the bulk; neither does the system enter the gapless CDW
phase (OC) from Ref. [39]. Instead, in this parameter range
the metallicity of the bulk is just a finite-size effect caused
by a narrow bulk gap hybridizing with the metallic edges.
This is similar to the situation discussed at the order-disorder
transition at U ≈ UT PT , but this time the zero-energy edge
state is not of topological origin. As shown in the top plot
of Fig. 7 the scattering subbands in the bulk LDOS (dashed
line) are well separated and the residual spectral weight comes
only from hybridization with the edge (continuous line). The
low-energy part of the spectrum at the edge does not show a
broad asymmetric peak like for example at U = 0.6 (see top
left panel of Fig. 4), characteristic for an edge state. It is sym-
metric and narrow, typical for scattering subbands. In order
to better disentangle bulk from edge one has to look at larger
U . The second panel in Fig. 7 shows the same site-resolved
local spectra for bulk and edge for U = 2.2. At this interaction
strength the CDW order opens a large enough gap to fully
uncover the interplay between the subbands. The low-energy
part of the edge spectrum [AA,0(ω)] consists of two pairs of
subbands. One pair mirrors the subband structure of the bulk
but with a reduced weight, clearly seen for the ω > 0 subband,
meaning that they stem from hybridization. The other pair
does not have an analog in the bulk spectra and the midpoint
between the subbands is shifted to negative energies. This
indicates they originated at the edge. The gap between them
is filled by the subband that has tunneled from the bulk. The
metallic nature of the edge remains due to the shifted position
of the upper subband, whose upper edge is above the Fermi
level. Following the nomenclature from Ref. [22] the bulk and
edge is in some version of OI-X phases, the edge one being
shifted in ω, which is inferred from the subbands’ asymmetry.
Both the larger scattering subband and the larger band are on
the same side of the Fermi level.

From this point on, increasing the interaction strength
causes the system to alternate between metallic at U =
2.2, 2.8 and the insulating state at U = 2.5, 3.2, due to ex-
change of the position of the bulk and the edge subbands.
First, at U = 2.5 the edge subbands merge below the Fermi
level which results in opening of the gap at the edges without
closing it in the bulk. Later, at U = 2.8 the bulk subbands
merge turning the bulk, and due to hybridization the edge as
well, metallic. Closer inspection of the central peak in the
U = 2.8 edge spectra shows that the edge alone is already
in the OI-Y phase but the upper subband is mixed with the
contribution from the bulk. If this peak was purely a hybridiza-
tion effect it would not have the same height as the bulk one;
cf. the small negative energy part of the upper subband in
the edge spectra. Finally, at U = 3.2 the gap reopens. Both
edge and bulk are in the OI-Y phase with larger scattering
subbands on the opposite side of the Fermi level than the
corresponding bands with higher spectral weight. Despite the
subbands merging at different energies at the edges and inside
the bulk, a phase with metallic bulk and gapped edges is not
possible. Every time the bulk turns metallic it will tunnel
into the edges. This overshadows any hypothetical MIT at the
edges. For this reason the metallic phase covers a larger part
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FIG. 8. The high-temperature (T = 0.15) evolution of site-
resolved LDOS for bulk (dashed line) and the edge (continuous line)
for various interaction strengths U .

of the U-T parameter space for the edges compared to bulk;
cf. Fig. 1.

Following a similar evolution of LDOS with U at higher
temperatures one starts to observe a disordered metallic phase
inside the bulk before order starts to form. Figure 8 il-
lustrates this for T = 0.15 as the interaction changes from
U = 2.1 (top panel) to U = 2.4 (second from the top). The
high temperature does not allow anymore for recognizing the
topological state by comparing the bulk and edge spectra. In-
stead, to determine the topological state one has to analyze the
inverse of the zero-frequency single-particle Green’s function
[20,40]. In this cases it states that despite the metallic bulk
the system is a topologically nontrivial state. The appearance
of this phase is in agreement with previous Monte Carlo
simulations [21], which showed such a topological gapless
state (GTI) occupying a similar part of the phase diagram.
The transition line to this phase is T -independent, because it
appears in the part of the diagram where localized electrons do
not form any order. The rise of the gapless bulk is purely due
to formation of a Mott gap inside a topological gap. During
this process the gap is smoothly reverted and the scattering
off the maximal disorder introduces additional smearing of
the gap edge. Hence, the GTI region on the phase diagram has
a maximal density of states at the Fermi level located in the
middle.

Further increase of U triggers the formation of a CDW
order. Initially, the bulk LDOS shows a small change in its
shape from the disordered case. Eventually, it evolves toward
a gapless CDW discussed above, as shown in the fourth panel
from the top in Fig. 8. At this stage the edge and bulk display
opposite asymmetries with respect to the Fermi level in their
subbands. This reflects the fact that the two parts of the system
are on different sides of their respective subbands’ merging

FIG. 9. Top panel: The bulk CDW order parameter d (L/2) as a
function of interaction strength U for various temperatures. Bottom
panel: The difference in the value of the CDW order parameter
between the edge and the bulk as a function of U . In both panels
the same colors correspond to the same temperatures.

point. In this region of U-T space the bulk shows a stronger
tendency to order than the edges; cf. the bottom panel of
Fig. 9. At smaller temperatures entering an ordered phase
was more pronounced at the edges due to dominant role of
the edge states. At higher temperatures the annealed disorder
reduces this role up to the point where the physics of the
OC phase becomes dominant. There the swap of positions
of the scattering subbands at the edge introduces additional
compensation of the unit cell polarization and the reduction
in d (0) follows, making the CDW larger in the bulk than at
the edge. A similar change of the sign in d (0) − d (L/2) is
already present at lower temperatures when the system enters
a state with opposite asymmetry of subbands in the bulk and at
the edge, i.e., at T = 0.25 and U > 4.5. Change in sign of the
difference of the CDW order parameter is not accompanied by
any abrupt change in the the bulk CDW order parameter, top
panel of Fig. 9, which has a monotonic behavior with U .

Lastly, taking a cut along even higher T shows only an
evolution from nontrivial to trivial disordered gapped bulk
through a gapless bulk phase, which can be inferred from
the edges becoming gapped at larger U . Due to high temper-
ature the system is not able to form an ordered state. As a
result the temperature does not influence the spectra of mo-
bile electrons and the transitions between different phases are
solely due to the interplay between topology and interaction.
Hence, the transition lines in this part of the phase diagram
are vertical; cf. Fig. 1. This is consistent with the results
from previous Monte Carlo calculations [21] and a DMFT
for the homogenous phase on an infinite lattice [19], which
highlights how dominant are the local correlation effects in
the behavior of FKM. What differentiates the two approaches
is the interpretation of the topological nature of the crossover
regime. Despite the lack of a CDW order the topological state
becomes unstable at a certain U value at which point the
system becomes a trivial (normal) homogeneous insulator. In
contrast to the Monte Carlo results, before this transition the
iDMFT shows no change in topology of the system.

054209-8



INTERPLAY BETWEEN EDGE STATES AND CHARGE … PHYSICAL REVIEW B 106, 054209 (2022)

VI. CONCLUSIONS

In this paper an analysis of the phase diagram of a Haldane
ribbon with Falicov-Kimball interaction was presented. The
results were obtained using iDMFT with fixed total densities
of particles but with their distributions recalculated within
each loop. This model allowed analyzing the influence of
including boundaries of a system in studying the interplay
between topology and the CDW order formed due to inter-
actions. Most of the results presented here were obtained for
a ribbon with intermediate width, to allow for interference
between edge states, but also to allow the middle part of the
system to follow closely the thermodynamic limit behavior.
Beside the presence of previously reported phases of the
FKM on the Haldane lattice the zigzag edges give rise to a
topologically trivial ordered edge conductor, a phase whose
conducting edges stem from locally doped boundaries and
formation of scattering subbands. The locally doped nature of
the zigzag edges was also shown to enhance the CDW order

and induce small phase separation, by supplying a state for the
mobile particles in one sublattice and removing at the other.
Another consequence of the zigzag edge was the formation
of a gapped/gapless CDW phase that had different subband
symmetry in the edge and bulk site-resolved spectra. Finally,
it was shown that in the ribbon geometry a gapless topological
CDW state can exist in the region of parameter space that
decays with the ribbon’s width, thus providing a reference
point for determining the edge effects in bulk properties.
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