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Many-body localization (MBL) is a novel prototype of ergodicity breaking due to the emergence of local
integrals of motion (LIOMs) in a disordered interacting quantum system. To better understand the role played by
the existence of such LIOMs, we explore and study some of their structural properties across the MBL transition.
We first consider a one-dimensional XXZ spin chain in a disordered magnetic field and introduce and implement
a nonperturbative, fast, and accurate method of constructing LIOMs. In contrast to already existing methods,
our scheme allows obtaining LIOMs not only in the deep MBL phase but, rather, near the transition point too.
Then, we take the matrix representation of LIOM operators as an adjacency matrix of a directed graph whose
elements describe the connectivity of ordered eigenbasis in the Hilbert space. Our cluster-size analysis for this
graph shows that the MBL transition coincides with a percolation transition in the Hilbert space. By performing
finite-size scaling, we compare the critical disorder and correlation exponent ν both in the presence and absence
of interactions. Finally, we also discuss how the distribution of diagonal elements of LIOM operators in a typical
cluster signals the transition.
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I. INTRODUCTION

Currently, there is great scientific interest to gain deeper in-
sight into the localization phenomena in many-body quantum
systems. By now, it has been found that, in one dimension,
an isolated interacting system of fermions that is subject to
quenched disorder can undergo a phase transition from a
thermal regime where transport is diffusive or subdiffusive
[1–6] to the many-body localization (MBL) phase where the
transport coefficients are exponentially small in the system
size [7–10] and memory of the initial state is retained to
arbitrarily long times [11].

It is thought that the MBL phase of such systems can
be described in terms of emergent local integrals of motion
(LIOMs) which form a complete set of quasilocal conserved
quantities [12–14]. In the absence of interaction, such a sys-
tem exhibits Anderson localization [15] for an arbitrarily
small amount of disorder. The corresponding single-particle
wave functions are exponentially localized in real space over a
characteristic length scale which is called localization length.
In this case, a complete set of LIOMs can be identified by
the occupancies of these single-particle orbitals [12]. Upon
turning the interaction on, multiparticle resonances start to
proliferate and, hence, stronger disorder is needed to keep
the system localized [7]. However, if the disorder strength
is sufficiently larger than the interaction strength, the system
remains in the MBL phase and LIOMs can be understood as
weakly dressed single-particle orbitals [12,16].

In general, the number of ways in which a set of LIOMs
can be arranged is very large and, therefore, the calculation
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of all LIOMs is a complicated task practically. It was first
pointed out that a complete set of LIOMs for a finite-size
system can be obtained via labeling the eigenstates of the
system by their corresponding LIOM eigenvalues uniquely
[13,14]. Then, it was suggested to construct LIOMs (which
do not form a complete basis) by computing an infinite-time
average of initially local operators [17,18]. In this regard,
various approaches like using Monte Carlo stochastic method
[19], exact diagonalization techniques [20–23], and tensor
networks [24–27] have been developed.

Although the above-mentioned construction algorithms for
LIOMs have made great progress, developing and implement-
ing a simple method that allows constructing a complete set of
LIOMs with the following properties simultaneously is of ma-
jor interest. A method that (i) is nonperturbative and provides
quasilocal LIOMs that commute strictly with the Hamiltonian,
(ii) not essentially requires strong disorder intensity, and (iii)
costs much less computationally but yet has enough accuracy.
In particular, the second property makes it possible to move
away from the deep MBL phase toward the transition point
and study some aspects of the phase transition using LIOMs.
This is an interesting issue because even in the ergodic phase it
is possible to define integrals of motion that are not local quan-
tities. By increasing the strength of the disorder, one arrives
in the MBL phase in which the system fails to thermalize and
constants of motion are localized. Therefore, it is the structural
properties of the LIOMs that directly affect the thermalization
of the system [28]. So, it is always interesting to characterize
the MBL transition via the properties of the LIOMs across the
transition. Thus, the main objective of the following paper is
twofold. First, we present an efficient scheme for computing
a complete set of LIOMs in a nonperturbative manner and,
second, capture certain aspects of the MBL transition by
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considering the resulting LIOM operators as an adjacency
matrix of a graph that represents the connectivity of the eigen-
basis in the Hilbert-space and undergoes a percolationlike
transition.

In this paper, we describe and develop a fast method to
construct a complete set of LIOMs explicitly for the random-
field XXZ spin chain that can be used to study some structural
properties of LIOMs near the MBL to ergodic transition. We
perform our algorithm via arranging an optimized set of the
eigenstates of the system in a quasilocal unitary operator
which maps the physical spin operators onto effective spins
operators. Such an ordered set of the eigenbasis can be ob-
tained by assigning an integer index number to each eigenstate
which determines its order in our desired set. We recognize
this index number by locating the original basis vector of the
Hilbert space on which that eigenstate has the largest absolute
amplitude among all the eigenstates of the system. Then, in
the next step, we consider the resulting LIOM operator as
an adjacency matrix of a network whose elements indicate
the connectivity of the eigenbasis in the Hilbert space. We
illustrate that this network undergoes a percolationlike tran-
sition on crossing the transition from MBL into the ergodic
phase. The percolation transition can be understood within
the Hilbert-space cluster size analysis of the fragmentation of
the network associated with LIOMs. Such a classical percola-
tion analogy for the MBL transition was previously observed
either by considering the Hamiltonian as a tight-binding
model in Fock space [29,30] or by retaining only resonant
contributions and mapping the quantum problem to rate equa-
tions [31]. However, in this paper, we underline the impor-
tance of such a transition in a network associated with LIOMs
which is a key concept in MBL transition. We further provide
an analysis of how local observables on the clusters of this net-
work can quantitatively capture the ergodic to MBL transition.

The rest of the paper is organized as follows. In Sec. II,
we describe our spin-1/2 model employed and introduce our
algorithm to construct LIOM operators. Section III contains
numerical results obtained by the implementation of our al-
gorithm. We first represent the results concerning the locality
of obtained LIOM operators. We then use the LIOM opera-
tors and show that the ergodic to MBL transition coincides
with a percolation transition in a graph of eigenvectors in
the Hilbert space whose structure is described by the matrix
representation of LIOMs. To illustrate how the transition takes
place, we perform cluster size analysis and apply finite-size
scaling to compare the percolation threshold and correlation
exponent ν in the presence and absence of interaction. We
further discuss how the distribution of local magnetization
of clusters may signals the transition and, finally, concluding
remarks are given in Sec. IV.

II. MODEL AND APPROACH

A. Model Hamiltonian

We consider a standard model of MBL which is a spin-1/2
chain of length L in a random magnetic field in the z direction
and can be written as

H =
L−1∑
i=1

J

(
σ+

i σ−
i+1 + σ−

i σ+
i+1 + 1

2
�σ z

i σ z
i

)
+ hiσ

z
i , (1)

where σ±
i = σ x

i ± iσ y
i are the raising and lowering spin-1/2

operators and σ
x,y,z
i denote the Pauli operators acting on spin

i. Here, we use open boundary conditions and fix the exchange
interaction coupling at J = 1. The values hi are, also, drawn
independently from a random uniform distribution [−W,W ]
and the parameter � determines the anisotropy of the model.
This model is known to undergo a phase transition at a critical
disorder strength W = Wc = 3.5 ± 0.5 from an ergodic phase
to an MBL phase which depends on energy density [32,33]. In
the current paper, we focus on the MBL side of the transition,
W > Wc, in which the existence of LIOMs prevents thermal-
ization. Using the Jordan-Wigner transformation [34], this
model can be mapped to a model of spinless fermions and we
are interested in two different cases when � = 0 and � = 1,
which corresponds to the noninteracting Anderson model and
an interacting and disordered fermionic model, respectively.

B. Approach

To begin, let us review the basic idea behind the LIOM
scheme. We first consider a noninteracting system in which
� = 0. Upon diagonalization of the Hamiltonian in Eq. (1),
one obtains a set of energy eigenvalues that uniquely identifies
the system’s eigenstates. In this system, which is equiv-
alent to a single-particle Anderson model, eigenstates are
exponentially localized around some localization center and
their occupation numbers are mutually commuting, conserved
quantities, and hence can form a complete set of LIOMs.
These are the number operators,

nα =
∑

i j

ψ∗
α (i)ψα ( j)c†

i c j, (2)

in terms of which the Hamiltonian can be rewritten as

H =
∑

α

2εαnα −
∑

α

εα, (3)

where the last term on the right-hand side is the vacuum
constant energy shift. It is now straightforward to define the
corresponding LIOM operators in terms of the original spin
operators via the Jordan-Wigner string operator as

τ z
α = 2

∑
i j

ψ∗
α (i)ψα ( j)σ+

i

⎛⎝ max(i, j)∏
k=min(i, j)

σ z
k

⎞⎠σ−
j − 1, (4)

which allows us to write the Hamiltonian as

H =
∑

α

εατ z
α. (5)

Given the locality of the τα , one could as well associate an
index i of the lattice to each index α, for example, considering
the maximum of |ψα (i)|2.

In the presence of interactions, however, the basic idea be-
hind the LIOMs scheme is to find a unitary transformation U
that defines a similar complete set of independent pseudospin-
1/2 operators:

τ z
i = Uσ z

i U †. (6)

With the above considerations, the following properties are
fulfilled by the τ z

i operators [12]:
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(i) τ z
i ’s are quasilocal operators, in the sense that∣∣∣∣[τ z

i , σ
a
j

]∣∣∣∣ < ce−|i− j|/ξ , (7)

for a = +,−, z, and some ξ, c.
(ii) τ z

i are exactly conserved operators and commute with
each other: [H, τ z

i ] = 0 and [τ z
i , τ

z
j ] = 0.

(iii) τ z
i have eigenvalues ±1 ((τ z )2 = 1) and each subspace

has exactly dimension 2L−1.
The unitary U is a composition of local unitary transfor-

mations as described by Refs. [35,36]. With the same unitary
transformation, one can also define τ±

i , which completes the
Pauli algebra. Once the operators τ z

i has been determined, one
can use it to write the Hamiltonian H as a sum of local terms
of these interacting LIOMs as

H =
∑

i

εiτ
z
i +

∑
i j

Ji jτ
z
i τ

z
j +

∑
i jk

Ji jkτ
z
i τ

z
j τ

z
k + · · · , (8)

where the couplings between clusters of pseudospins Ji1,...,ia
are local in the sense that they decay exponentially as a func-
tion of any couple of indices.

It is obvious that each arbitrary arrangement of the eigen-
vectors of Hamiltonian H in the unitary matrix U of Eq. (6)
results in a new set of τi operators which satisfy the above-
mentioned properties (ii) and (iii) by default. However, we
are interested in finding a complete set of τi operators that
also fulfills the quasilocality requirement which is defined in
Eq. (7). Therefore, our goal is to identify a specific arrange-
ment of the eigenstates in U that best fulfill properties (i)–(iii)
altogether.

For all choices of W and �, total magnetization is a
conserved quantity which implies the conservation of the z
component of the total spin, [Sz

t , H] = 0 with Sz
t = ∑L

i=1 Sz
i .

Therefore, it defines a good quantum number and we can con-
sider different magnetization sectors separately. Throughout
the paper, we use the standard notation |n〉 ≡ |Sz

1, Sz
2, ..., Sz

L〉
with Sz

i =↑,↓ for the basis states in real space. In this no-
tation, n in |n〉 is a decimal integer can be obtained from
the L-bit binary representation |n1n2...nL〉 as n = ∑L

i=1 ni2i−1,
where ni = 0, 1 stands for Sz

i =↓,↑ respectively. Using these
basis states, we consider an initial set of the basis vectors
{|n〉} in such a way that the Hamiltonian H is block diago-
nalized and each block corresponds to a subspace with a fixed
magnetization. Here we are interested to introduce an efficient
way of ordering the LIOM basis states. We use the idea of
Ref. [14], which considers a one-to-one mapping between
initial basis states |n〉 and the eigenstates of the system and
develop our own scheme to introduce a systematic way of
performing such a mapping process. Therefore, we will use
the same labeling scheme in which each LIOM basis state
can be shown by a binary spectrum as |̃n〉 ≡ |τ z

1 , τ
z
2 , ..., τ

z
L〉

with effective pseudospin τ z
i = ↓̃, ↑̃. Again, it is convenient to

obtain the corresponding integer ñ for each LIOM basis vector
from its binary representation as before. In what follows, we
introduce an optimal ordered set of basis states that makes the
unitary operator

U =
∑

n

|̃n〉〈n| (9)

and can be used in Eq. (6) to form a complete set of LIOMs
with our desired properties (i)–(iii).

We begin to construct our own approach by considering
the noninteracting case, (� = 0). In this case, as we already
mentioned, LIOMs can be characterized by conserved occu-
pations of single-particle eigenstates and, hence, only the first
term on the right-hand side remains in Eq. (8). We start with
the reference state |0〉 with all spins down as the only possible
state in its magnetization sector which is also an eigenstate of
the system. Therefore, it has a similar representation on both
the original and LIOM basis, i.e., |↓̃↓̃...↓̃〉︸ ︷︷ ︸

L

= | ↓↓ ... ↓〉︸ ︷︷ ︸
L

.

By flipping one spin in |0〉, we get a new state with Sz
t =

L/2 − 1 and since we have L places for this spin, we have L
states in this sector. These states, which are supposed to be
ordered according to their binary code, form the original basis
states spanning the single-particle block of the Hamiltonian
H . After diagonalizing Hamiltonian H , we obtain a set of
eigenstates |ψm〉 which needs to be ordered. According to
the quasilocality criterion of Eq. (7), we expect an ordered
set in which each pseudospin operator τ z

i is mostly localized
around a physical spin operator in real space. Therefore, we
can order the obtained eigenstates by determining their max-
imum overlap with the original basis states. For instance, the
first eigenstate is the one that has maximum overlap with the
first original basis state. Thus, we need to find the maximum
available overlap among the set {|〈↑ ↓↓ ... ↓︸ ︷︷ ︸

L−1

|ψm〉|2, m =

1, ..., L}. If the m0th eigenstate is the one with maximum over-
lap with the first original basis state, it is the first basis state in
pseudospin space, which means that |↑̃ ↓̃↓̃...↓̃︸ ︷︷ ︸

L−1

〉 = |ψm0〉. By

the same token, it is possible to determine the jth eigenstate
of this sector by defining the following sequence of eigenstate
overlaps for the remaining eigenstates:{

α j
m = |〈↓ ... ↑︸︷︷︸

jth

↓ |ψm〉|2,

m = 1, ..., m0 − 1, m0 + 1, ..., L
}
, (10)

and finding the eigenstate which maximizes the above overlap
and labeling it with |↓̃... ↑̃︸︷︷︸

jth

↓̃〉.

We now proceed to the next sector which has L(L − 1)/2
basis states with two flipped spins which can be represented
by the following notation:

| j1, j2〉 = S+
j1

S+
j2
|0〉 = | ↓ ... ↑︸︷︷︸

j2th

... ↑︸︷︷︸
j1th

... ↓〉. (11)

The indexes j1 and j2 immediately determine the associated
integer number n of this basis vector accordingly. Therefore,
if we are looking for the ñth eigenstate in our optimized set,
we should find the one with maximum overlap with its cor-
responding basis vector. That is, finding the maximum value
among the following set of overlaps:

{|〈 j1, j2|ψm〉|2, m = 1, ..., L(L − 1)/2}, (12)
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and label it as ñ. The same analysis can be performed in
higher-excitation sectors to arrange the final ordered set of the
eigenstates properly.

Besides its ease of use and implementation, the main ad-
vantage of the above-mentioned algorithm is that it can be
generalized even for the case of an interacting system (� �=
0). At the same time, it provides an opportunity to consider
the whole Hamiltonian in the full Hilbert-space of the sys-
tem simultaneously. This is because each eigenstate has only
nonzero amplitudes on the basis states of its own sector and
hence, in our scheme there is a one-to-one mapping between
initial basis states and their corresponding eigenstates of the
same sector which prevents sector mixing. Consequently, if
the initial basis states are chosen in such a way that the
Hamiltonian is block diagonal, the resulting unitary matrix
U of the eigenstates obtained after performing our ordering
procedure is also block-diagonal. In the remainder of this sub-
section, we elaborate on the implementation of the algorithm
which allows ordering a generic set of energy eigenstates of
the system in such a way that the resulting LIOMs satisfy our
desired properties (i)–(iii).

Suppose that we have an initial set of the basis vectors
|n〉 in which our Hamiltonian matrix is block diagonal. We
can diagonalize this Hamiltonian and obtain the set of energy
eigenbasis which is an arbitrary (but fixed) arrangement of en-
ergy eigenbasis of the system. Our aim is to rearrange them by
assigning a decimal integer that determines their index in our
final optimum set. Doing so, we use the fact that each eigen-
state of the system is a 2L component vector which can be
expanded based on the Hilbert-space original basis vectors |n〉
as |ψi〉 = ∑2L

n′=1 Ai
n′ |n′〉. We can label a given eigenbasis |ψi〉

by integer number n if this eigenstate has the largest absolute
amplitude on |n〉 among all the eigenstates of the system. This
means that one needs only to find the index n in such a way
that |Ai

n|2 is the largest value of the set {|Ai
n|2, i = 1, ..., 2L}.

In other words, if we consider matrix U , which initially con-
tains the eigenbasis of the Hamiltonian in its columns with
an arbitrary arrangement, to find the nth eigenstate in our
desired order, we need just to look at the nth row of U and
determine which column has the maximum absolute value in
this row. This procedure is represented graphically in Fig. 1.
The repeated execution of this procedure results in our optimal
arrangement of the eigenstates which can optimally satisfy our
desired conditions. The procedure outlined above is accurate
in the sense that the resulting LIOMs are exactly conserved
operators and it is fast because it requires less computational
effort as compared to other schemes [22–24] that are based
on exact diagonalization. The reason is that in our method,
unlike in the above-mentioned schemes, we no longer need to
evaluate the expectation values of physical spin operators (L
operations) for each energy eigenstate to determine its order
in our desired set of eigenstates in U . This will reduce the
computational cost associated with rearranging all the eigen-
states in U by a factor of (L× the number of eigenstates)
totally. Consequently, since the procedure outlined above does
not essentially require the strong disorder limit and, on the
other hand, is very simple and fast, and we can use it to
obtain our optimum and complete set of LIOMs rapidly and
study some structural properties of the system across the phase
transition.

FIG. 1. Graphical representation of the procedure outlined in
Sec. II B to arrange the eigenstates of the system in the unitary
matrix U which is obtained after diagonalization. The left side shows
the matrix of eigenvectors obtained via the exact diagonalization
procedure in which usually the eigenstates are ordered according
to their corresponding eigenvalues. The right side is the matrix of
eigenstates after rearranging them using our algorithm.

III. RESULTS

To examine our method, we have carried out numerical
calculations based on the exact diagonalization technique. In
what follows, we consider a spin chain with L spins and open
boundary conditions. To gain a deeper understanding of the
role of interaction in the MBL case, we consider our model in
both interacting (� = 1) and noninteracting (� = 0) regimes,
and depending on the system size L, 105 to 5 × 103 disorder
realizations are employed to obtain the statistics.

A. Effective characterization of LIOM locality

In this section, we demonstrate the quasilocality of the
resulting LIOM operators obtained by our algorithm. To this
end, we use the two-point correlator between a LIOM operator
τ z

j and physical spin σk which is expected [17,18,23] to decay
exponentially with distance |k − j| as〈

τ z
j σ

z
k

〉 = Tr
(
τ z

j σ
z
k

) ∼ exp (−|k − j|/ζ ), (13)

when j and k are far apart in the MBL regime. In Eq. (13), ζ

defines a length scale over which the corresponding LIOM
operators are localized. This length scale is related to the
spatial correlation length of the eigenstate amplitudes on the
Fock space [37,38] and expected to diverge at the critical
point.

Figure 2(a) shows the behavior of the logarithm of two-
point correlator 〈τ z

j σ
z
k 〉 versus | j − k| for the LIOM operator

which is located near the center of chain in the presence of
interaction, � = 1. It is obvious that in the deep localized
regime (W � 5), the LIOM operators τ z

j are strongly local-
ized, and the 〈τ z

j σ
z
k 〉 profile is mostly localized near the origin

j with a fast decaying function to the neighborhood. This
is in contrast to the delocalized regime (W � 2.5) in which
such a fast decaying part is obviously absent. Furthermore,
there is a clear size dependency, especially near the origin
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FIG. 2. Decay of two-point correlator [log(〈τ z
j σ

z
k 〉)] for the

LIOM operators localized near the chain center versus | j − k| for
different system sizes L = 8 − 16 and disorder intensities in both
(a) interacting (� = 1) and (b) noninteracting (� = 0) regimes. In-
sets show the divergence of length scale ζ as a function of (W − Wc )
in the presence and absence of interaction, respectively

which is the characteristic feature of ergodic regime. To make
a comparison with noninteracting system (� = 0), we have
shown the behavior of the 〈τ z

j σ
z
k 〉 profile for this regime in

Fig. 2(b). In this case (� = 0), even for very small disorder
strength W = 0.5 the faster decaying behavior as well as
weaker size dependency can be observed in comparison to the
MBL counterpart (� = 1).

It is also worth mentioning that the characteristic length
scale ζ can be extracted from the linear part of the log(〈τ z

j σ
z
k 〉)

versus | j − k| for the largest system size to observe its diver-
gence near the transition point. The inset shows the power-law
divergence of the ζ as a function of (W − Wc) on approaching
the transition point (Wc = 3.0 and Wc = 0.0 in the presence
and absence of interaction, respectively) in the localized
regime (W > Wc).

Although the above comparison between the locality of
LIOMs in both interacting and noninteracting systems is
a piece of qualitative evidence for their difference in the
sense of critical disorder needed for localization transition,
we will elaborate on this more quantitatively in the coming
sections and discuss the critical disorder Wc on which the
transition takes place in detail.

B. Percolation transition in connected clusters associated with
LIOMs in the Hilbert space

In this section, we introduce a classical percolation prob-
lem associated with clusters of LIOMs in the Hilbert space.
Indeed, LIOMs are dressed versions of spin operators as given
by Eq. (6) and can be viewed as a matrix with elements (τ z

i )mn

(m and n refer to the row index and column index of this ma-
trix, respectively) in the basis of product states in the Sz basis.
Our idea is to interpret this matrix as an adjacency matrix
representation of a finite directed graph in which the off-
diagonal matrix elements of a given LIOM operator express
whether two nodes (basis) are adjacent or not. According to
the above discussion, we can write the adjacency matrix like
the following:

Cmn =
{

1, i f
∣∣(τ z

i

)
mn

∣∣ > ηc

0, otherwise.
(14)

Here, ηc is a connectivity threshold for deciding below
which edge between a pair of basis states on the Hilbert-space
graph will be removed or not. It is obvious that if ηc = 0,
we always have a single connected cluster that contains all
basis states of the Hilbert space. Therefore, we need to take
a nonzero connectivity threshold, ηc > 0, for the rest of our
analysis, which we will describe how to do in the following.

One detail should be described before discussing the es-
timation procedure. The point is to restrict our numerical
calculations to the largest subspace with zero total spin, be-
cause the size of the Hilbert space grows exponentially and
total magnetization is a conserved quantity in our system.
This subspace contains NH = (L

L
2
) states (nodes). Thus, one

naturally expects to have only a single connected cluster with
size (number of nodes) NH for a very weak disorder intensity,
namely, 0 < W � 1. This criterion will give us an upper
bound for the parameter ηc. In our computation below, we
take the maximum possible value for ηc according to its upper
bound. Figure 3 shows a typical LIOM operator (represented
as a matrix) and its adjacent Hilbert-space graph which is
obtained with ηc = 0.05 for a spin chain with L = 10 spins for
two random realizations of disorder with disorder strengths
W = 2, 6 in the MBL regime (� = 1).

1. Cluster-size analysis

In the theory of lattice percolation, the emergence of a
spanning cluster at the percolation threshold which connects
two opposite boundaries on the lattice is a measure of per-
colation transition [39]. It is obvious that such a definition
doesn’t really make sense for our considered network here.
Therefore, in this subsection, we characterize the percolation
transition by analyzing the size of the largest and second-
largest connected cluster [40] associated with LIOMs in the
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FIG. 3. The left side shows the graphical representation of matrix
elements of a typical LIOM operator obtained using Eq. (6) and the
ordered set of eigenvectors in unitary matrix U . The right side is the
corresponding adjacent graph of the same LIOM operator in the basis
of product states in the Sz basis for a spin chain with length L = 10
spins for two different disorder intensities W = 2 (upper panel) and
W = 6 (lower panel) in the MBL regime (� = 1).

Hilbert space. Starting from the low disorder limit, W � 1,
we expect to have only a single connected cluster with size
S1 = NH which contains all the nodes of Hilbert space. Due
to the localization of eigenstates, one expects to observe a
decrease in the largest cluster size by increasing the disorder
intensity which means that it only contains a finite fraction
of Hilbert-space nodes. In the percolation language, this is
equivalent to the formation of smaller size clusters in the
network.

We start to illustrate our percolation scenario by calculating
the fraction of the largest cluster, defined as the relative size
of the largest connected cluster with respect to the Hilbert-
space dimension, S1/NH . Figure 4 shows how the mean largest
cluster size which is averaged over different realizations of
disorder decreases as a function of disorder intensity W for
a spin chain of length L = 16. Additionally, we can also
compute the average size of the second-largest cluster S2 to
confirm the transition threshold. This is because, on finite
systems, the size of the largest cluster grows by adding smaller
clusters, and therefore it is possible to determine the vicin-
ity of the transition point by locating the point where the
second-largest cluster size reaches its maximum. The peak
position coincides with the percolation threshold in the ther-
modynamic limit [40]. We observe that the normalized size
of the second-largest cluster, S2/Smax

2 , also peaks near the
percolation transition. We have plotted the same quantities
for both noninteracting and interacting regimes in Figs. 4(a)
and 4(b), respectively, to make a comparison possible. It is
obvious that the presence of interaction shifts the percolation

FIG. 4. Behavior of the average largest and second-largest clus-
ter sizes versus disorder intensity W for a spin chain with L = 16
spins in both (a) the noninteracting (� = 0) and (b) interacting
(� = 1) regimes. It is obvious one needs a stronger disorder to reach
the nonpercolating regime in the presence of interaction.

threshold Wc toward the stronger intensity of disorder, how-
ever, we leave the discussion of more accurate determination
of such a percolation threshold for the sections that follow.

2. Universal feature and finite-size scaling analysis near the
transition point

The more precise determination of the percolation thresh-
old for the adjacent graph of the LIOMs can be obtained using
scaling analysis. Following the arguments of Ref. [29], we
first focus our attention on the scaling of the mean cluster size,
and since the largest cluster is not essentially a typical one, we
take the cluster C that contains the basis state of corresponding
eigenstate |ψ0〉 with the closest energy to the mean value of
the energy spectrum and compute the geometric average of its
size over different realizations of disorder as

Styp = exp

(
1

Nr

∑
r

ln(sr )

)
. (15)

Here, sr is the number of nodes (eigenstates) in the cluster C
for a given realization r of disorder and Nr is the number of
disorder realizations. According to the finite-size scaling [39],
the scaling of the normalized cluster sizes near the transition
point can be stated as [29]

Styp/NH ∼ f ((W − Wc)L
1
ν ), (16)

in which the exponent ν is called the correlation length ex-
ponent. Therefore, by performing data collapse analysis, it is
possible to obtain the percolation threshold Wc and critical
exponent ν. The results of such data collapse, yielding the
critical exponent ν(� = 1) = 2.0 and ν(� = 0) = 2.5 in the
presence and absence of interaction is shown in Figs. 5(a)
and 5(b), respectively. We should emphasize that in the data
collapse procedure in the noninteracting regime � = 0, we
constrained the critical point Wc = 0.0 as a transition point
of the corresponding XX model [41]. We note that the re-
sulting exponent ν satisfies the Harris-CCFS bound (ν � 2

d )
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FIG. 5. The resulting data collapse of Styp/NH onto a scaling
function of (W − Wc )L1/ν which is obtained for spin chains with
different lengths (L = 8 − 16) both in the (a) absence � = 0 and
(b) presence � = 1 of interaction in the localized phase. The crit-
ical parameters Wc = 3.0, 0.0, and ν = 2.0, 2.5 is obtained for the
case of MBL and Anderson transition, respectively. Insets show the
corresponding raw data.

[42,43], confirmed for the ergodic to MBL transition recently
[29,44,45].

In addition, the percolation threshold is quite different as
Wc = 3.0 and Wc = 0.0 for the case of the interacting and
noninteracting systems, respectively. It is worth mentioning
that beyond the error of our analysis, the percolation thresh-
old for the case of the interacting system coincides with the
ergodic to MBL transition point Wc ≈ 3.5 [33], which shows
that our system experiences a percolation transition in its
corresponding LIOMs across the MBL transition.

Before ending this subsection, let us shed more light on
the effect of changing the estimated parameter ηc in our clus-
terization mechanism. As we already discussed, we set the
value of this parameter by the largest value of ηc for which the
size of the largest cluster is exactly equal to the Hilbert-space
dimension NH . It is certainly possible to consider smaller

nonzero values for the connectivity threshold parameter (any
value in (0, ηc]). However, our investigations showed that the
changing of ηc may change a bit the percolation threshold Wc,
but the correlation length exponent ν will not change.

C. Distribution of local observables on the clusters

The last quantity which we are interested in is the distribu-
tion of the eigenstate expectation values of local observables
which are shown to vary significantly across the MBL tran-
sition [46,47]. In doing so, let us consider cluster C, which
contains the eigenstate |ψ0〉 with size s, as we discussed be-
fore, and define the following quantity for the cluster [29]:

ml = 1

s

′∑
n

〈n|τ z
l |n〉, (17)

where
∑′ denotes the restrictions imposed by considering

only the eigenstates in C in summation. This is indeed the
average local magnetization of the cluster and can be obtained
by averaging only over the diagonal entries of the correspond-
ing LIOM operator which belongs to the cluster C. We are
interested in the distribution of this quantity which is averaged
over different realizations of disorder.

Before going further, let us point out the meaning of the
diagonal element of τ z

l using Eqs. (6) and (9),

〈n|τ z
l |n〉 =

∑
m

(
σ z

l

)
mm|ψm(n)|2, (18)

where ψm(n) represents the amplitude of the mth eigenstate on
the nth basis state and (σ z

l )mm is the mth element of diagonal
matrix σ z

l with entries +1 or −1. Now, the average local mag-
netization of cluster C defined in Eq. (17) can be expressed as

ml = 1

s

′∑
n

∑
m

(
σ z

l

)
mm|ψm(n)|2. (19)

Figure 6 shows the distribution of this quantity for the
largest system size L = 16 spins in both MBL and Anderson
regimes. In the case of interacting regime � = 1 for weak dis-
order intensity W = 0.5, we have a single peak around zero.
This is because in the ergodic phase, cluster C contains all the
basis states of the Hilbert space and, hence,

∑′
n → ∑NH

n=1 and
s = NH . Therefore, it is convenient to perform the summation
over n first and use the normalization condition of the eigen-
states,

∑
n |ψm(n)|2 = 1, which results in ml = Tr(σ z

l ) = 0.
This is the reason for observing a single peak at ml = 0 in the
distribution function P(ml ) in Fig. 6 for weak disorder regime
(W = 0.5 and � = 1).

By increasing the disorder intensity W , since the size of
cluster C starts to deviate (decreases) from the size of Hilbert
space, some of the nodes (basis states) will be excluded from
the summation over n in Eq. (19). Consequently, it is the
eigenstate profile ψm(n) in Eq. (19) which plays a crucial
role in characterizing the distribution function P(ml ) and one
needs to know its exact form to describe the smooth part
of P(ml ) in the intermediate regime Wc < W < ∞. For the
case of very strong disorder limit (W → ∞), the probability
of having only a single node in cluster C increases, which
yields ψm(n) ∼ δm,n and s = 1 and hence ml = ±1. So one
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FIG. 6. Distribution function P(ml ) of the average local magnetization of cluster ml , which is the average expectation values of LIOM
operator τ z

l over the nodes of this cluster both for � = 0 and � = 1.

naturally expects to observe two single peaks at ml = ±1 for
the distribution function P(ml ) in this regime. The plots in
Fig. 6 show that the existence of such single-node clusters is
much more probable even for very small disorder intensities
in the case of the noninteracting regime (� = 0).

IV. CONCLUDING REMARKS

We provided a fast and accurate method to efficiently
obtain LIOMs for a disordered system that undergoes MBL
transition. We showed that an optimized set of eigenvectors
obtained by locating their maximum overlap with Hilbert-
space basis can be used to obtain the desired set of LIOM
operators. We showed that the resulting LIOMs experience a
percolation transition in their graph representation in Hilbert
space by increasing disorder intensity. We also compared the

critical disorder and critical exponent describing percolation
transition for both interacting (MBL) and noninteracting (An-
derson) regimes. Our analysis showed that there is a concrete
connection between the ergodic to MBL transition and the
structural properties of LIOMs in their graph representation
on the Hilbert space.
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