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Multipartite entanglement in the random Ising chain
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Quantifying entanglement of multiple subsystems is a challenging open problem in interacting quantum
systems. Here, we focus on two subsystems of length ¢ separated by a distance r = £ and quantify their
entanglement negativity (£) and mutual information (Z) in critical random Ising chains. We find universal

constant £(«a) and Z(«) over any distances, using the asymptotically exact strong disorder renormalization
group method. Our results are qualitatively different from both those in the clean Ising model and random spin
chains of a singlet ground state, like the spin—% random Heisenberg chain and the random XX chain. While for
random singlet states Z(« )/ (o) = 2, in the random Ising chain this universal ratio is strongly o dependent. This
deviation between systems contrasts with the behavior of the entanglement entropy of a single subsystem, for
which the various random critical chains and clean models give the same qualitative behavior. The reason is that
& and 7 are sensitive to higher order correlations in the ground-state structure. Therefore, studying multipartite
entanglement provides additional universal information in random quantum systems, beyond what we can learn

from a single subsystem.
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I. INTRODUCTION

Entanglement is a distinguishing property of quantum me-
chanics, offering fundamentally stronger correlations than
classical physics. In quantum many-body systems, studying
the entanglement properties is a promising way to understand
universal properties, in particular the vicinity of quantum
phase transitions [1-4]. In this paper, we show that quanti-
fying multipartite entanglement provides additional universal
information, by distinguishing entanglement patterns that ap-
pear to be qualitatively the same when considering only a
single subsystem.

Generally, the entanglement between a subsystem, A and
the rest of the system, B, in the ground state, |¥), is quantified
by the von Neumann entropy of the reduced density matrix,
pa = Trp|¥)(¥] as

Sa = —Tra(palog, pa). (1)

In one-dimensional systems we have an almost complete un-
derstanding [5-7]: S4 is known to diverge logarithmically
at a quantum critical point as Sy = 5log, £ + cst. Here ¢
is the size of the subsystem and the prefactor is universal,
with ¢ being the central charge of the conformal field the-
ory. These results have been extended to further properties,
including the Rényi entropy and the properties of the entan-
glement spectrum [8]. Qualitatively similar results have been
obtained for quantum models in the presence of quenched
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disorder [9—-11]. In random chains (random antiferromagnetic
Heisenberg and XX models, random Ising model [RIM], etc.)
the critical point is controlled by a so-called infinite disorder
fixed point [12,13], the properties of which can be conve-
niently studied by the strong disorder renormalization group
(SDRG) method [14,15]. Using the SDRG, a logarithmic en-
tanglement entropy is found with a universal prefactor [10],
which has been numerically checked by density-matrix renor-
malization [4] and by free-fermionic methods [16]. It is not a
coincidence that various random chains show similarities, as
indicated by the exact relationship between the entanglement
entropy of the random XX chain and the RIM [17]. Another
mapping revealed the underlying random singlet (RS) repre-
sentation of the ground state of the RIM in terms of SU(2),
particles [18], extending the results in Ref. [10]. Overall,
quantum entanglement of a single interval is qualitatively
similar in all these critical quantum systems. The question
arises, whether this similarity extends to the entanglement
properties of multiple intervals. In other words, do we gain
new, universal information about critical quantum systems by
quantifying multipartite entanglement? Here, we show that
the answer is positive: The multipartite entanglement structure
is qualitatively different in these otherwise similar systems.
The reason is that multipartite entanglement is sensitive to
additional patterns, e.g., higher order correlations, that the
entanglement entropy is agnostic to. The main finding of our
results is that such higher order patterns are universal in the
right scaling limit.

Multipartite entanglement is challenging to quantify, even
in small quantum systems [19]. The entanglement entropy

©2022 American Physical Society
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FIG. 1. We consider a tripartition of the system into two subsys-
tems A; and A,, and the rest of the system B. The subsystems each
have length ¢ and are separated by a distance r. Top: schematic of
a cluster in the RIM that does not contribute to Z or £. Middle: a
cluster that contributes only to Z. Bottom: a cluster that contributes
to both Z and &; see text for details.

is only suitable when the two subsystems span the entire
system. Here, we consider two computable measures, the en-
tanglement negativity (£) and mutual information (Z) across
multiple subsystems (two distant intervals A, A, and the rest
of the system, B); see Fig. 1. Note that B is generally discon-
nected, as it consists of two or three intervals, depending on
the boundary conditions. 7 is given by

L =84, + Sa, — Saua,s 2)
while £ is quantified by the logarithmic negativity
; 3)

where p}ZIUAZ is the partially transposed reduced density

E=In Tr’,o}zlqu

matrix with respect to A,, given by (¢1¢2|pﬁuA2|¢j¢é) =
(151 0a,ua, |0 ¢2). Here, {¢1} and {¢,} are bases for A,
and A,, respectively. £ is an entanglement monotone and
it also serves as an upper bound for the distillable entan-
glement, although it is notoriously difficult to compute in
practice [20-25]. In contrast, Z accounts for both classical and
quantum correlations, so a nonzero value does not necessarily
mean quantum entanglement.

Multipartite entanglement has been studied in random
quantum chains that exhibit an RS phase, where the ground
state factorizes into singlets, each composed of two spins; see,
for example, the random XX chain and random antiferromag-
netic spin-1/2 Heisenberg (XXX) chain [26]. In such random
chains in the RS phase, Z and £ provide the same information
as Z/E =2, due to the simple entanglement structure, as
shown by SDRG and free-fermionic techniques [26]. Here,
we show that this is not true in general, as in the RIM £ and
T behave qualitatively differently, both capturing additional
information compared to S.

The RIM is given by the Hamiltonian

H= =3 dyotol = 3 ot )
(i) i

in terms of the o;"° Pauli matrices at sites i of a one-
dimensional chain. The nearest neighbor couplings, J;;, and
the transverse fields, h;, are independent non-negative ran-
dom numbers, taken from some nonsingular distributions,

to be specified later. As far as universal properties are con-
cerned, the shape of the distributions is irrelevant. The ground
state of the RIM is conveniently determined by an efficient
SDRG algorithm [27]. During the SDRG method [15], the
largest local terms in the Hamiltonian in Eq. (4) are suc-
cessively eliminated and new Hamiltonians are generated
through perturbation calculation. The critical properties of
the RIM are governed by an infinite disorder fixed point, in
which the strength of disorder grows without limit during
renormalization [13]. Therefore, the SDRG results are asymp-
totically exact in the vicinity of the critical point, which is
indeed demonstrated both analytically [28,29] and numeri-
cally [30,31]. After decimating all degrees of freedom, the
ground state of the RIM is found as a collection of indepen-
dent ferromagnetic clusters of various size, each cluster being

in a GHZ state ﬁ(ITT B o A

II. CLUSTER COUNTING IN THE RIM

For a single subsystem, each GHZ cluster contributes
log, 2 = 1 to the entanglement entropy [Eq. (1)] if the cluster
has at least one site inside and one site outside of the sub-
system, otherwise the contribution is 0 [10]. Thus, calculation
of the entanglement entropy for the RIM is equivalent to a
cluster counting problem. Here, we study Z and £ between
two subsystems of size ¢, separated by distance r, with total
system size L, shown in Fig. 1. From Eq. (2), it readily follows
that calculating 7 also leads to a cluster counting problem. Let
us indicate the number of specific cluster configurations by
Cy,yx,» Where x; = 1 if the cluster has some sites in subsystem
A;, and y =1 if it has sites in B, while both x; and y are
0 otherwise. Then, S, = Ci10 + Cio1 + Ci11, Sa, = Conr +
Cio1 + Ci11, while 84,04, = Co11 + Ciio + Ci11, leading to

T =2Cio1 + Cin1- (5)

As & is additive on tensor products, independent magnetic
clusters contribute additively. For £, a nonvanishing contribu-
tion requires a cluster that has sites in both A; and A,, while
no sites outside [26]. Independently from the number of spins
in the GHZ state, £ is the same as for a Bell state, which
will have one negative eigenvalue of —1/2 after performing
the partial transpose. Hence, £ is the result of another cluster
counting problem, £ = Cjg, leading to

T =2E+Cyy. (6)

Interestingly, Z — £ = Cjo; + Cy1; has the simplest geometric
interpretation: the total number of clusters that have sites
in both subsystems. Note that C;;; = 0 when clusters have
only two sites, which is the case for the previously studied
systems in the RS phase, leading to Z = 2€ [26]. In contrast,
clusters in the RIM can have a large number of sites, yielding
a nonzero Cjy;, breaking the simple proportionality of Z and
E. At this point, it is not even clear if Z or £ (or their ratio)
remain universal in the RIM.

III. ANALYTIC RESULTS

The SDRG has been used to provide the leading-order
scaling of the entanglement entropy for one subsystem [9],
corresponding to an effective central charge. Due to cluster
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counting, there is an underlying geometric interpretation

L2

S(L,¢) = % Z n(s) min(¥, s), @)

s=1

where n(s) is the number of instances in all clusters of gap-
size s, defined as the distance between consecutive sites in
the same cluster [11,32], with periodic boundary conditions
this is given by s = min(x;+; — x;, L — xj+1 + x;). The reason
behind Eq. (7) is that one site of each gap needs to be outside
of the subsystem, while the other site needs to be inside.
Therefore, each gap of size s > £ contributes to £ positions
of the subsystem, while a gap of size s < £ contributes to
s positions. For an illustration, see Fig. 11 of Ref. [11]. For
large L, the summation in Eq. (7) can be approximated by an
integral, yielding the leading-order universal logarithmic scal-
ing S(L, ¢) = %ln ¢, as n(s) = Cs~2 for large L and C/L =
cetr/(3In2) = % for the RIM [9].

Based on the known gap-size statistics n(s), a strict bound
can also be calculated for £ and Z. In practice, £ and Z are
averaged over a large number of random samples as well as for
all L subsystem positions in each sample. First, we consider
configurations where the subsystems are positioned in a way
that the sites of the gap fall inside separate subsystems. This
can happen only when s > r in a cluster. Such a configuration
has at least 1 contribution to Z (2 if it has no sites in B,
i.e., Cio1), while at most 1 contribution to £ (0 if it has sites
in B, i.e., Ci11). Out of all L potential subsystem locations,
thereares —r (ifs <€ +r),or2¢ +r —s(if s > £ + r) such
configurations. Hence, the bound is

C L+r _ C 20+r 2/ _
B:—/ dsu+—/ AT )
L/, 52 LJey, 52

B is alower bound for Z and an upper bound for £. Performing
the integrals and using C/L = ce¢r/(3In2), which is valid for
both the critical RIM and critical RS states, yields

Ceff
3In2

Here x is the scale-invariant cross ratio x = £2/(£ + r)?, or in
general

Bx) = — In(1 — x). C))

01,
x=—"=
U +r)ly+7)

when the two subsystems have different lengths, ¢; and £,.
In an RS state, where each cluster has two sites, the bound
captures £ exactly for large L, B =& =Z/2, as shown in-
dependently in Ref. [26]. In the case when r = o and €| =
£, = £, the bound is a distance-independent constant that only
depends on « (Fig. 4):

Ceff 1

Bl@)=-35h (1 a +a)2>'
Note that recently, in the RS phase, finite-size corrections to
n(s) have been characterized, also offering a way to calculate
corrections to B [33]. In comparison, clusters in the RIM
often contain more than two sites. As illustrated in Fig. 1, a
contributing gap is surrounded by a total linear extent of the
cluster of length w; and w, on each side. Therefore, in the
RIM the o dependence of £ and Z can be different from each

(10)

D

other as well as from that of B(«), as discussed in more detail
in the Appendix. In general, £ and Z depend on higher order
correlations in the ground state. As an exact result, £ can be
written as

L wy L+r—wy s—r
£ Zf duJ]/ dw2|:/ dspx»wl:wz_
0 0 r L

2+r—w;—w; 0 — wy
+/ dspé‘,un,ll}z
12

+r—w; L
20+r—w;—wy L4+r—s— ws
+ / dsps,wl,wzf}v (12)
L+r—wy

where p; .y, w, stands for the number of (s, wy, wy) triplets
in a sample. This result highlights why the RS representation
of the RIM in Ref. [18] leads to results that deviate from
those observed in RS states. While S is only sensitive to the
n(s) = [dw; [ dwypsw, v, gap-size statistics, which is the
same as in RS states, £ depends on the full p ), ., statistics
(see Fig. 7), including the linear extent of the cluster on both
sides of each gap, w;.

IV. NUMERICAL RESULTS

We have studied critical RIM chains up to subsystem size
£ = 8192 with at least 10 000 realizations for each size, using
periodic boundary conditions. Following Refs. [34,35], we
have used two different ferromagnetic disorder distributions,
in both of which J;; is uniformly distributed in [0, 1]. For box-
h disorder, the distribution of the transverse fields is uniform
in [0, k], whereas for fixed-h disorder we have h; = h, Vi. The
quantum control parameter is defined as 6 = In(h), and the
critical point is located at f,0x = 0 and 6sxeq = —1, respec-
tively.

Here, we present our results for the linear case, when
r = al, with o = 2", sampled for n = -5, —4, ..., 1. The
system size L would ideally be much larger than ¢ — co.
Numerical SDRG studies for the entanglement entropy of a
single subsystem of size £ have shown that L = 2¢ is suffi-
ciently large in practice [32]. Therefore, we chose ¢ such that
the total linear extent of the boundaries of the two subsys-
tems 2¢ + r spans half of the system, i.e., L = 2(2¢ 4 r). The
finite-size estimates of Z and £ in the linear case are shown

0.3
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N0k : :
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0oal . .
l&"*‘é/é" 8 o
0

0.003 0.006 0.009

1/¢

FIG. 2. Z in the RIM for a = 2", with n = -5, —4, ..., 1 from
top to bottom for fixed-4 (4) and box-h (L)) disorder distributions.
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FIG. 3. The same as Fig. 2 for £. Interestingly, the finite-size
corrections are of opposite sign compared to Z. For box-/ disorder,
the linear extrapolation fits the data in the entire range of sizes for
both 7 and £.

in Figs. 2 and 3, extrapolated to infinite size as 1/¢ — 0. For
both Z and &, the extrapolated values agree for the two disor-
der distributions, indicating universality. Our main results are
summarized in Fig. 4, illustrating the universal £ and Z values
for the studied values of o. We observe that Z and £ are very
different from each other, as well as from 5. In stark contrast
to random quantum chains of a critical RS state, in the RIM
the ratio of 7 and £ depends on «. Interestingly, in the studied
range of o, Z appears to decay linearly as Z = a — b1ln «, with
a =0.438(1) and b = 0.102(1). However, as 7 is positive and
larger than B, there must be deviations from this expression
for larger values of ¢ & 50. To support our numerical findings,
an approximate argument for the o dependence is presented in
the Appendix, providing Eq. (A1), which was used in the fit
in Fig. 4. The use of Z — £ as a proxy for Z is justified by
the fact that in the observed range £ is much smaller than the
upper bound provided by B; see the Appendix for supporting
analytic arguments.

0.05 0.1 0.2 0.5 1 2

FIG. 4. The extrapolated (1/¢ — 0) Z and £ values, averaged
over the two disorder distributions, box-4 and fixed-%, as a function
of @ = r/¢, together with the analytic bound B. As Z > &£, 7 can be
fitted by Eq. (A1) (blue line). £ is fitted by two different approxima-
tions, given by Eq. (A2) (magenta), as well as Eq. (A4) (red). In each
case, the indicated error bars are smaller than the size of the symbol.

FIG. 5. Z in the RIM for finite £ = 2 for fixed-4 (+) and box-h
(0O) disorder distributions. Upper inset: Two-point estimates of the n
exponent are compatible with the analytic SDRG result = # ~
0.382 (illustrated by the blue line in the main panel). Lower inset: £

in the RIM for £ = 2.

V. FINITE INTERVALS

For finite ¢, the value of B is no longer universal, but
asymptotically decays as a power law with a universal expo-
nent

Ceff 52 )
= —~r
3In2r(2¢+r)

which has been checked numerically both with SDRG and
DMRG in the RS state [26]. In the RIM, £ is not expected
to be universal, as the probability p(r) of a small cluster
surviving decimation up to a length scale r depends heavily
on the initial disorder distribution. Two such, independent,
surviving clusters can connect with a finite probability in the
SDRG procedure, resulting in the nonuniversal expectation
E~ (p(r))z. In line with this expectation, our numerical re-
sults are illustrated in the lower inset of Fig. 5, indicating fast,
nonuniversal decay.

As for T — &, we expect qualitatively different behavior
than B(r) ~ r~2 in the RS phase. For £ =1, T — £ is the
(longitudinal) two-point correlation function of two spins
being in the same cluster. At the critical point, such corre-
lations decay algebraically, with the same exponent for any
finite ¢, Z— & ~ r~" for r > €, where n = 355 ~ 0.382
according to SDRG results [12,13]. The value of n has been
also confirmed by numerical calculations using free-fermionic
techniques [30,31]. Our numerical SDRG results for £ =2
are in line with this theoretical expectation (Fig. 5), as both
Z and Z — & are found to decay algebraically with a universal
exponent = 0.37(2).

; (13)

VI. DISCUSSION

We presented our results for two multipartite entanglement
measures £ and Z in critical RIM chains between subsystems
of size ¢, separated at a distance r. Our results indicate a linear
scaling limit (r = «£) for critical quantum correlations, where
multipartite entanglement approaches distance-independent
universal values for £ and Z. Our results differ qualitatively
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from those known in critical RS states (e.g., random antifer-
romagnetic Heisenberg and XX models), where Z/€ = 2. In
the RIM, the ratio of Z and & is still universal but depends
strongly on «, indicating that the two measures capture dif-
ferent universal aspects of the underlying correlations. The
strong deviation from the simple RS results is due to the more
complex ground-state structure in the RIM and is expected to
be a generic feature of critical quantum systems that are not
in an RS state. We have shown that the RS results serve as
a lower bound for Z and an upper bound for £. In general,
tripartite entanglement is related to coarse-grained three-point
correlation functions. Our results indicate that the correspond-
ing integrated statistics [i.e., Eq. (12)] is universal in the linear
scaling limit. While we provided quantitative arguments that
fit the o dependence of £ and Z in the RIM more closely than
the RS results, it remains an open challenge to calculate £ and
7 analytically, similarly to the already established calculation
of the entanglement entropy [10]. A potentially promising
direction is through the well-known mapping to a random
potential representation of the SDRG treatment, similarly to
the application in Ref. [36].

In addition to the linear scaling limit, there are several other
possibilities to consider. A simple case is for adjacent intervals
when » = 0 but £ o< L. However, this limit does not provide
additional information compared to a single subsystem. For
both the RIM and models in the RS state, £(£) = S(¢£)/2, as
the same cluster contributions are encountered as for S, over
one endpoint out of the two endpoints of the subsystem. We
have also explored the case of finite subsystems (constant £
when r — o0) and found a nonuniversal £, while the decay
of Z is universal and the same as the known SDRG result
of the two-point correlation function. In sum, characterizing
multipartite entanglement between large nonadjacent subsys-
tems is a promising strategy to gain additional insights into
quantum criticality compared to single subsystem studies. We
note that 7 and £ are expected to behave differently outside
of the critical point. While both Z and £ have to vanish in
the paramagnetic phase, in the ferromagnetic phase only £ is
expected to vanish, while Z = 1 for large sizes, as there is a
giant magnetic domain.

Our investigations can be extended in several directions.
Here, we mention further quantum chains both with and
without disorder, as well as interacting quantum systems in
higher dimensions [32,37-39], and systems with long-range
interactions [40—42]. The mutual information (Z) results can
be readily extended to more subsystems, Aj, ..., A,, n > 2,
potentially leading to even more pronounced differences be-
tween various models. For n > 2, 7 is zero in RS states, while
nonzero and presumably universal in the RIM. Finally, we
mention nonequilibrium dynamics of £ and 7 after a quench,
i.e., a sudden change of the parameters in the Hamiltonian at
time t = 0 [43].
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FIG. 6. Distribution of the linear extent R of the clusters averaged
over 10 000 samples. For each size, we show two lines, correspond-
ing to the box-h and fixed-4 distributions, respectively. The black line
has a slope of —2, illustrating our approximation pgz ~ LR™2.

APPENDIX

Here, we present two arguments when r = oL as an at-
tempt to better capture £(«) and Z(«) than the B bound in
Eq. (11).

1. Estimating Z — £

7T — & = Cjg1 + Ci11 has a contribution in at most R — r
positions out of L for each cluster of linear extent R > r; see
Fig. 1 for an illustration. SDRG suggests that there can be
only O(L/R) such large clusters. Hence, the position averaged
T — & is expected to be proportional to 1 — r/R for each
such cluster (R > r), the probability of which is given by pg.
Hence,

L
I—Scx/dRpR(l—I%>~a+b(,3+%), (A1)

with B = 7 = m Based on numerical observations (see
Fig. 6), we used pg ~ LR~ to estimate the integral. The best

fitis given by a = 0.41(3) and b = 0.007(2).

2. Estimating £

Depending on the shape of the cluster (given by s, w;, and
wy), there are three distinct configurations to consider that
contribute to £. For two equal-sized subsystems of length £,
we can choose to label the cluster such that w; > w, without
loss of generality. The three contributing cases are as follows:

(1) When the range of contributing positions is dictated by
s. This is the case when w; +s <€ +rand w, +s < £+ r.
There are s — r contributing positions, yielding

l wq C+r—wy s—7r
f dw1/ dwzf dsps,wl,wz_-
0 0 r L

(2) When the range of contributing positions is dictated by
s on one side and w; on the other. This is the case when w; +
s 2L +rand wy + s < £+ r. There are £ — w; contributing
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FIG. 7. Frequency distribution of clusters contributing to £ for
a system with L = 8192, at a &~ 1/2, which corresponds to ¢ =
1638.4 and r = 819.2. The w; and w, values are binned into bins
of width 80. The first panel corresponds to all points that contribute
to £ (41 966 points). The other three panels correspond to the points
that contribute to each of the three cases discussed and have 28 133,
10213, and 3620 points respectively for cases 1, 2, and 3. The
number of data points within each bin is indicated by the same color
scale for each plot.

positions, yielding

J4 wy L+r—wy ¢ — wy
/ dwlf de/ ds pswyw,——-
0 0 4w, L

(3) When the range of contributing positions is dictated by
wy on one side and w, on the other. This is the case when w; +
s>f+rand wy+s>£€+r (and w; +wy +5 <204 7r).
There are 2¢ 4+ r — s — w; — w; contributing positions, yield-
ing

¢ wi 2etr—wi—w 2l+r—s—w;—wy
/ dw1/ dwz/ ds Ps.w,.w, .
0 0 L+r—ws L

The sum of these three contributions, Eq. (12), is an exact
result for £, assuming that the joint statistics p;, ,,,w, is known
analytically. As this is not the case, we need to rely on approx-
imations of the observed pj ), ., counts, illustrated in Fig. 7.
As we have cluster contributions only when w;, w, < £ and
s > r, along with r = o€, we find that the relevant range is
wi, Wy < S/

As a first approximation, we can estimate w; = 75/« and
wy = 128/, yielding

Ceff |:1 ((1+06)(06+772))
n
3In2 (@ +m)?
0l+771+7721n<(1+0l)(0t+’71+772)>} (A2)
o Q2+ a)a+m)

Fitting this to the numerical data, we find n; = 0.87(1) and
n = 0.86(1), as shown in Fig. 4. While such a fit works in
the studied range of «, it goes negative for larger «. Ideally,
we would need an estimate of p; ,, ., that stays positive for
any o.

As a second approximation, we assume that w; are inde-
pendent from each other as well as from s, and carry out the s
integral first, yielding

4 wip
/ dwlpun/ dwzpsz(X),
0 0

where x depends on w; and w,, through ¢; = ¢ — w; and
£y =€ — wy in Eq. (10). This result is intuitive as it indi-
cates that additional sites in the cluster reduce the number of
contributing positions by effectively reducing the size of the
subsystems by the amount w;. Assuming a box distribution for
1+
|:2(1 +a)3+a)ln (

both w; and w, leads to
>
24w
) 1]’
o

up to an overall multiplicative constant. In Fig. 4, we show
Eq. (A4) fitted to the data, with the constant numerically deter-
mined. While the fit is less good than the first approximation
over the range of o values investigated, Eq. (A4) remains
positive in the limit o — oo, scaling as 1/a*.

+

(A3)

2+a)

— 2+ a)In ( (A4)
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