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Using neural network potentials to study defect formation and phonon properties
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Investigation of charged defects is necessary to understand the properties of semiconductors. Whereas density
functional theory calculations can accurately describe the relevant physical quantities, these calculations increase
the computational loads substantially, which often limits the application of this method to large-scale systems. In
this paper, we propose a different scheme of neural network potential (NNP) to analyze the point defect behavior
in multiple charge states. The proposed scheme necessitates only minimal modifications to the conventional
scheme. We demonstrated the prediction performance of the proposed NNP using wurzite-GaN with a nitrogen
vacancy with charge states of 0, 1+, 2+, and 3+. The proposed scheme accurately trained the total energies
and atomic forces for all the charge states. Furthermore, it fairly reproduced the phonon band structures and
thermodynamics properties of the defective structures. Based on the results of this paper, we expect that the
proposed scheme can enable us to study more complicated defective systems and lead to breakthroughs in novel
semiconductor applications.
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I. INTRODUCTION

The presence of defects in materials, inevitable in most
systems, alters their electronic and dynamic properties from
their pristine forms [1]. In semiconductors, as-grown samples
often contain certain amounts of native defects, resulting in
high carrier concentrations [2,3]. Moreover, impurity atoms
are often introduced intentionally as dopants into materials to
control their conductivity. These dopants can be either n or
p type [4]. Another problem, particularly, in nitride semicon-
ductors, is the inevitability of dislocations during the growth
processes of materials. These dislocations critically impact
the mechanical and thermal properties of materials [5,6]. The
above discussion highlights the need for research focused on
studying defects in semiconductor materials.

First-principles calculations based on the density func-
tional theory (DFT) have been indispensable in studying
various defect properties of materials. The accuracy of such
calculations depends on several factors such as the level of
approximation in treating the electron-electron interaction,
supercell size in modeling, and choice of the functional. In
semiconductors, DFT calculations employing hybrid func-
tionals are known to improve accuracy [7,8]; however, this
approach increases the computational cost substantially. Fur-
thermore, performing dynamical calculations, e.g., phonons
and molecular dynamics on defective systems, typically
requires significant configurational space and long compu-
tational times. These problems highlight the limitations of
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DFT calculations in treating defect properties even at the local
density approximation or generalized gradient approximation
(GGA) level.

Interatomic potentials using machine learning (ML) tech-
niques, such as the high-dimensional neural network potential
(NNP) [9], the Gaussian approximation potential [10], the
moment tensor potential [11], and the spectral neighbor anal-
ysis potential [12], have been gaining increasing attention
because of their low computational costs (by several orders
of magnitude) and accuracy comparable with that of DFT
calculations. Such ML potentials have been applied to various
materials, e.g., Li3PO4 [13], GaN [14,15], and Au-Li [15,16]
to successfully obtain the relevant dynamical quantities.

For NN-based ML potentials, several extensions have been
proposed to achieve an improved expression of physical quan-
tities. Interatomic potentials that use a cutoff radius to truncate
the surrounding atomic environment in their descriptors gen-
erally possess a potential risk of inaccurate descriptions of
long-range interactions, particularly, when applied to ionic
materials. The initial approach to address this problem was to
overlay another NN on the standard one, which was designed
for predicting atomic charges and evaluating long-range elec-
trostatic interaction [17]. More recently, an advanced method
based on using the charge neutrality condition to predict
atomic charges demonstrated accurate predictions of nonlocal
charge transfer, which could not be achieved by conventional
models [18].

The ML potentials have never been applied to defective
systems to treat multiple charge states because of the difficulty
in optimizing the fitting parameters owing to the nonunique
output values [19] (total energies and atomic forces) for the
same or similar inputs (structural descriptors). In this paper,
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FIG. 1. (a) Schematic of the proposed NNP architecture where
the input layer contains the system charge node (Qsys). (b)–(e)
Snapshot of wurzite-GaN structures containing one N-vacancy (VN).
(b) 31 atoms, (c) and (d) 63 atoms, and (e) 127 atoms per supercell in
total. The localized defective charge densities are illustrated by the
isosurfaces. Structures are visualized using the VESTA package [23].

we demonstrated the construction of an ML potential for such
systems. We used wurzite-GaN including a nitrogen vacancy
(Vq

N) as a prototype case, where Vq
N takes various charge states

q depending on the Fermi level (EF). As mentioned earlier,
the defect study of GaN is of significance for many appli-
cations, such as light-emitting diodes [20] and high-power
devices [21].

II. METHODOLOGY

A. Neural network potential architecture

To develop our ML potentials, we employed the Behler-
Parrinello-type NNP [9] as a base model with minimal
modifications. Figure 1(a) depicts the schematic of the pro-
posed NNP model. The local atomic features expressed by the
radial and angular symmetry functions (SFs) were provided in
the input layer. In addition, we added one system charge (Qsys)
node in the input layer. We defined Qsys as constant value c
times a charge state of the considered supercell qsys divided
by its volume V . For instance, in the cases of pristine and
V0

N, Qsys = 0. In contrast, Qsys = c/V, 2c/V , and 3c/V for
V1+

N , V2+
N , and V3+

N , respectively. Although we used c = 100
for the ease of scaling, we emphasize that the present scaling
method may not be the optimal one. All input nodes were fully
connected to the first hidden layer. The atomic energy (Ei) for
the two hidden layer case is expressed as

Ei = f out
a

[
wout

0,1 +
k0∑

k=1

wout
k,1 f 2

a

{
w2

0,k

+
j0∑

j=1

w2
j,k f 1

a

(
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0, j +
μ0∑
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μ, jG
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μ0+1, jQsys

)}]
,

(1)

where Gμ
i is the SFs of atom i with multiple input nodes

μ. wn
l,m denotes a weight parameter connecting the nth and

precedent layers of the lth and mth nodes, respectively. f n
a

corresponds to the activation function of the nth layer. We
used the hyperbolic tangent for the first and second hidden

layers, whereas a linear function was used for the output layer.
The sum of Ei over all constituent atoms E = ∑

i Ei is the total
energy. The forces along atomic coordinates α = x, y, z can
be expressed as Fαi = −∂E/∂αi = −∑

μ ∂E/∂Gμ∂Gμ/∂αi.
Note that Qsys has no explicit contribution to atomic forces.

B. Training dataset generation

To generate the training dataset of NNP, we first per-
formed the molecular dynamics (MD) simulations using the
Stillinger-Weber potential [22]. Using the pristine GaN (con-
ventional cell) comprising 32 atoms, we performed canonical
ensemble MD simulations at temperatures of 300–2700 K
with 400-K intervals for 1 ns. From the obtained trajecto-
ries, we extracted the structures of every 10 ps. We used
the optimal lattice constant as well as the compressed and
expanded ±1% and ±2% and obtained 3500 structures. Next,
we generated VN structures by introducing a nitrogen vacancy
into the above-mentioned pristine structures. Using the top
two components of the principal component analysis based
on the SFs (see Ref. [14] for the parameters of SFs), we per-
formed clustering using a k-means algorithm to generate 3500
clusters. We chose one data point randomly from each cluster
to obtain 3500 VN structures. In addition, we performed MD
simulations with the systems including 64 and 128 atoms in
the same manner. The simulation time was 0.1 ns, and the
snapshots of every 10 ps were extracted. In these cases, we
obtained 700 and 350 VN structures of 63- and 127-atom
systems by randomly introducing a nitrogen vacancy. We then
performed DFT calculations with 0, 1+, 2+, and 3+ charge
states for the VN structures. In this way, we generated 9100
(3500×2 + 700×2 + 350×2) structures in total and the cor-
responding 22750 DFT data. Figures 1(b)–1(e) depicts one
of these VN structures. We used the Vienna ab initio sim-
ulation package [24,25] for all DFT calculations. We used
the GGA with the Perdew-Burke-Ernzerhof functional [26],
plane-wave basis set (550-eV cutoff energy), and the projector
augmented-wave method [27]. Brillouin-zone integration was
performed using the sampling technique of Monkhorst and
Pack [28] for the training dataset (4×4×2 sampling mesh for
32-atom systems, 4×2×2 and 2×4×2 for 64-atom systems,
and 2×2×2 for 128-atom systems), whereas the �-centered
2×2×2 was used for phonon calculations. The convergence
criteria were 10−7 eV and 10−4 eV/Å for the self-consistent
field and ionic relaxation, respectively. The number of elec-
trons was varied for Vq

N by adding a jellium background
charges q to neutralize the systems.

III. RESULTS AND DISCUSSION

A. NNP construction

Figure 2 depicts a comparison between DFT and the pro-
posed NNP with respect to their total energies and atomic
forces. For this comparison, we used randomly chosen 10%
of the structures from the dataset as the test data. Both total
energies and atomic forces were aligned along diagonal lines,
suggesting that the constructed NNP accurately predicted all
structures and charge states considered. The comparison plots
using the conventional NNP are given as Fig. S1 in the Supple-
mental Material [29]. The root-mean-square errors (RMSEs)
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FIG. 2. Comparison between DFT and NNP in respect of (a) total
energies and (b) atomic forces. The black and red circles represent
the training and test data, respectively.

of the total energies and atomic forces of the proposed model
were, respectively, 1.45 meV/atom and 63.8 meV/Å for the
training dataset and 1.44 meV/atom and 64.6 meV/Å for the

test dataset. In this case, we used 8 and 24 types of radial
and angular SFs, respectively, for each elemental combination
(8×2 + 24×3 = 88) with the 7-Å cutoff distance. We used
the NN consisting of two hidden layers with 30 and 20 nodes.
Therefore, the NN architecture was [89-30-20-1]. Note that
we used this setting for subsequent calculations based on sev-
eral trial trainings (see Secs. 2–4 in the Supplemental Material
for the details of the SF parameters, comparison between DFT
and the proposed NNP separately depicted for each data type
and transferability tests, respectively [29]).

B. Phonon properties

Figure 3 depicts the calculated phonon bands of the
pristine and Vq

N structures. We used a 4×4×2 supercell
with 0.01-Å atomic displacement. The Vq

N structures con-
tained one nitrogen vacancy in the supercell. All the phonon
calculations were performed using PHONOPY software [30],

FIG. 3. Calculated phonon bands and densities of states of (a)–(c) pristine, (d)–(f) V1+
N , and (g)–(i) V3+

N structures using DFT and NNP.
The densities of states obtained using DFT and NNP are plotted together. The phonon bands of the pristine case are superimposed on those
of Vq

N.
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and the band-unfolding package was used [31,32]. In the pris-
tine case, the calculated phonon band structures and densities
of states depicted in Figs. 3(a)–3(c) for DFT and NNP agreed
well. These results were in agreement with experimental re-
sults [33]. Whereas some slight differences were seen at the
higher frequency end, the detailed structures of both acoustic
and optical modes matched considerably in the two methods.
Note that we used the optimized structures obtained through
DFT for the phonon calculations using NNP.

The calculated phonon band structures and densities of
states of V1+

N and V3+
N are depicted in Figs. 3(d)–3(f) and 3(g)–

3(i), respectively (see Fig. S6 in the Supplemental Material
for phonon bands of other valence states [29]). In this case,
the pristine phonon bands were superimposed on the defective
bands for ease of comparison. Overall, the introduction of the
defect caused band splitting at various regions. In addition,
softening could be seen clearly for the V1+

N (also V0
N) case at

around 2 to 3 THz (see Fig. S7 in the Supplemental Material
for phonon bands showing the features of DFT and NNP and
the differences between them [29]), whereas, the bandwidths
of acoustic modes were comparable in all the cases. We found
that the softened mode corresponded to the vibration around
the defect position (see the Supplemental Material animation
1 for the softened vibration at the � point [29]). In the op-
timized structure of V0

N, the Ga atoms nearest to the defect
slightly moved toward the defect direction when compared
with their pristine positions. In contrast, the Ga atoms moved
away from the defect position in the V1+,2+,3+

N cases, and the
shifts were larger for the higher charge states (see Fig. S8
and Table S5 in the Supplemental Material for the atomic
configurations of Vq

N [29]). A previous study has also reported
structural changes in V1+

N and V3+
N [34], which agree with

the present results. This suggests that the potential-energy
gradient became shallower for the lower charge states thereby
causing the corresponding phonon softening.

The optical phonon modes, on the contrary, differ sig-
nificantly clearly among the charge states. Particularly, we
found flat bands at the bottom of optical modes in V3+

N . The
lowest frequency mode corresponded to nitrogen vibrations
along the ab plane. The second lowest mode included nitrogen
vibrations along the c direction in addition to the ones along
the ab plane (see the Supplemental Material animations 2 and
3 for the vibrations of the flat bands at the � point [29]). The
phonon band obtained using this NNP also exhibited the emer-
gence of a flat band in V3+

N . Furthermore, the proposed NNP
reproduced the entire phonon band structures well although
with some slight discrepancies.

Furthermore, we evaluated the thermodynamic properties
of the defective GaN within the quasiharmonic approxima-
tion, aiming to see to what extent the physical quantities
of actual materials could be altered from their bulk values
by the presence of defects. We used the optimal, ±1%, and
±2% lattice constants for these calculations. Figure 4 depicts
the calculated Grüneisen parameters of the pristine and Vq

N
systems as functions of temperature. The obtained values
are close to the reported Grüneisen parameter of 0.87 at
300 K [35]. We found that the Grüneisen parameters of V0

N
and V1+

N were larger than that of the pristine at T < 100 K.
The magnitudes of Grüneisen parameters reflect the size
of phonon anharmonicity. Therefore, V1+

N had the strongest

FIG. 4. Calculated Grüneisen parameters of pristine and Vq
N

structures as functions of temperature: (a) DFT and (b) NNP.

anharmonicity among the considered systems. This result co-
incided with the observed phonon softening. In contrast, we
found smaller Grüneisen parameters for V2+

N and V3+
N because

V2+
N had a smaller bulk modulus and thermal expansion coef-

ficient. For V3+
N , the thermal expansion coefficient was small;

however, its bulk modulus was the largest among all.
The Grüneisen parameters obtained using NNP reproduced

the DFT results well at T > 200 K. Even though the predic-
tion at T < 200 K was not accurate, a qualitative agreement
was achieved: the V0

N and V1+
N (V+2

N and V3+
N ) exhibited larger

(smaller) Grüneisen parameters than that of the pristine case.
Because calculations require a highly accurate prediction per-
formance, we might need DFT calculations or ML potentials
with significantly smaller RMSE values as criteria. Possibly,
charged defect corrections for atomic forces may require to
be considered. We leave this aspect for future studies. It is
worth noting that the Grüneisen parameters of VN systems
approached the pristine value when the defect density de-
creased as expected. We found that a 6×6×4 model may be
sufficient to examine the dilute-limit properties (see Fig. S9 in
the Supplemental Material for the model size dependence of
the Grüneisen parameters [29]).

C. Defect formation energies

Finally, we calculated the vacancy formation energies us-
ing the proposed NNP. In formation energy calculations of
charged defects in periodic systems, corrections to eliminate
spurious electrostatic interaction energy among the periodic
images are necessary. Various techniques have been proposed
in this regard [36–38]. In this paper, we did not apply such cor-
rections owing to the inaccessibility of electrostatic potentials
by NNP. However, this problem can be resolved by accounting
for corrections as a preprocess for the preparation of training
data.

Figure 5(a) depicts the calculated vacancy formation en-
ergies of Vq

N as functions of EF. Note that we considered
the Ga-rich condition and used the reference valence-band
maximum and chemical potential values obtained using DFT
for NNP calculations. Near the valence -band side, we ob-
tained the transition from V3+

N to V1+
N (3+/1+). In addition,

the transition from V1+
N to V0

N (1+/0) could be seen at the
conduction-band side. These tendencies agreed with those re-
ported in previous studies [40]. The transition levels obtained
using NNP reproduced the DFT results well for V0,1+,2+

N .
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FIG. 5. (a) Calculated defect formation energies as functions of EF. The background colors indicate the band-gap energies of GGA
(1.71 eV), Heyd-Scuseria-Ernzerhof (2.85 eV), and experiment (ca. 3.50 eV) [39]. (b) Calculated defect formation energies with the charge
corrections. (c) Calculated temperature dependence on transition levels of Vq

N. Solid (dotted) line depicts the DFT (NNP) results.

However, an error of 1.03 eV remained in the V3+
N case. One

of the reasons for this could be insufficient sampling near
near the optimized structure in the training data. The current
training dataset generated by adding thermal fluctuations (MD
trajectories) could not cover the particular structure-energy
relationship. Thus, a structural sampling method that can re-
solve this problem would be necessary for defective systems.
In addition, we found that the electronic states of the highly
charged Vq

N are sensitive to structural changes especially near
the most stable structure, which may also increase the error.
Another reason could be the absence of correction energies for
the spurious electrostatic interactions of the charged defects in
periodic systems. The correction energies in the present sys-
tems exhibited noticeable variation depending on the supercell
size, atomic configuration, and charge state. The distribution
was spread over a few eV in the V3+

N case, which presum-
ably degraded the prediction accuracy of NNP. In fact, the
prediction error in V3+

N was suppressed when considering the
energy as the sum of the total energy and correction energy
for each structure during NNP training as shown in Fig. 5(b).
For more details on the above discussion, see Section S6 in
the Supplemental Material [29].

Figure 5(b) depicts the temperature-dependent transition
levels of Vq

N including the phonon contributions. The color
map depicts the Gibbs free energies, and the transition levels
are indicated as lines (solid for DFT; dotted for NNP). In
both 3+/1+ and 1+/0, the transition levels decreased when
the temperature increased because the phonon contributions
(phonon energy and entropy terms) were larger for lower
valence states. The V0

N case had the largest contributions,
resulting in the largest shift in the transition level. The pro-
posed NNP successfully reproduced these shifts, although the
3+/1+ transition was predicted inside the valence band.

IV. CONCLUSIONS

To summarize, we developed a scheme of the NNP to
analyze the point defect behavior in multiple charge states.
Our results indicate that minimal modifications to NNP—we
added only a system charge node in the input layer of the con-
ventional NNP—can significantly improve the training results
of such systems. We demonstrated the performance of the pro-
posed NNP using wurzite GaN including a nitrogen vacancy
with 0, 1+, 2+, and 3+ charge states, as a prototype mate-
rial. We constructed the proposed NNP using various GaN
structures and the corresponding total energies and atomic
forces obtained using the DFT calculations. The resultant
NNP accurately reproduced the phonon band structures and
thermodynamic properties of defective systems. Preparation
of training data using hybrid functional calculations should
further improve the prediction performance. The proposed
scheme is expected to pave the way for further advancement in
potential applications of ML and growth in materials science
research.
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