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Switching performance of optically generated spin current at the graphene edge
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We investigate the response of the optically generated spin current as a function of time at the graphene
edge for a possible application of optospintronic devices. The spin current is generated by optically excited
edge plasmon in which the induced electric field is rotating on the graphene plane. According to the inverse
Faraday effect, the in-plane rotation of electric field generates magnetization in the direction perpendicular to the
graphene plane. The diffusive spin current flows by decaying distribution of the magnetization from the edge. By
solving the time-dependent, diffusion equation in the presence/absence of the spin-source term, we evaluate the
on/off response of spin current. The switching speed becomes fast when the spin-diffusion length is sufficiently
large compared with the decaying length of the magnetization.
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I. INTRODUCTION

Surface plasmons (SPs) can confine electric fields to the
vicinity of a material surface due to their evanescent nature
[1–5]. In particular, the attenuation of the electric field per-
pendicular to the surface generates a phase difference between
each component of the electric field, i.e., the electric field
parallel and perpendicular to the surface has a phase dif-
ference of π/2, similar to that of circularly polarized light
(CPL) [6–9]. This phase difference creates a unique spin an-
gular momentum transverse to the direction of propagation
of the electromagnetic wave, in contrast to the longitudinal
spin of conventional CPL [6–11]. This spin exerts a mechan-
ical torque on the particle, causing it to rotate around its
axis, which could be used for nanoscale rotators [11–14].
Furthermore, the spin of SP induces orbital motion of elec-
trons inside the metal, which generates magnetization. This
effect is known as the inverse Faraday effect [7,8,15]. In
this paper, we propose a mechanism by which the inverse
Faraday effect can be used to optically generate spin cur-
rents in graphene and switch currents with response rates up
to 10 GHz.

Manipulation of spin current is a novel technique in the
field of spintronics, which promises new designs for memory
storage and logic circuits [16]. It is expected that a device
using spin current instead of electric current will have a better
energy efficiency, since pure spin current generates less heat
than an electric current. Although methods for generating spin
current such as either spin Hall effect, spin injection, or a spin
valve and manipulation of magnetization by light pulse are
well established, these conventional methods need either com-
plicated structure or magnetic material [16–20], which limits
the speed of the response of spintronic devices. Recently,
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Oue and Matsuo showed optical generation of spin current
without magnetic materials [21–23]. They showed that SP on
the surface of a three-dimensional (3D) metal can generate a
spin current in the direction perpendicular to the surface by
utilizing the inverse Faraday effect [21–23]. In particular, the
spin current can be tuned by changing the frequency of the SP.
The induced spin current might be observed by using inverse
Hall effect [16] or the Kerr effect measurement [24].

In a previous work, we proposed that edge plasmon in
graphene ribbon generates an in-plane spin current which is
convenient for making spintronic devices [25]. Edge plasmon
is SP that is confined near the edge of a two-dimensional (2D)
material [26–31]. Similar with SP, the spin of edge plasmon
is transverse. However, the direction is out of plane [26].
The induced magnetization decays with increasing distance
from the edge, which induces spin current that flows on the
surface [25]. Since we can switch on/off the photoexcited
magnetization by a pulse of light, it is important to evaluate
how fast the spin current can be switched on/off as a func-
tion of time. Here, by adopting the time-dependent diffusion
equation for the spin current, we theoretically evaluate the
switching performance of these optospintronic devices.

In this paper, we consider the switching speed of the spin
current generated by edge plasmon at one edge of a semi-
infinite graphene as a realistic situation of a device in which
the in-plane spin current flows in the direction perpendicular
to the edge, which becomes simpler than our previous case of
graphene ribbons [25]. In the previous work, we show that the
direction of spin current by edge plasmon can be controlled
by changing the gate voltage (or the Fermi energy) [25].
However, controlling the gate voltage for switching the spin
current is not easy for realizing a nanoscale device. Thus, in
this paper, we discuss the switching of spin current, not by the
gate voltage, but by turning on and off the light that generates
and removes the magnetization, respectively. We presented
the evaluation of response time by considering the effects of
both spin relaxation and plasmon decay lengths. We found that

2469-9950/2022/106(4)/045420(7) 045420-1 ©2022 American Physical Society

https://orcid.org/0000-0001-6057-8101
https://orcid.org/0000-0001-5197-7354
https://orcid.org/0000-0002-3336-9985
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.045420&domain=pdf&date_stamp=2022-07-22
https://doi.org/10.1103/PhysRevB.106.045420


TIAN, UKHTARY, AND SAITO PHYSICAL REVIEW B 106, 045420 (2022)

FIG. 1. Edge plasmon propagates along the edge of a semi-
infinite graphene (xy plane and x > 0). The electric field on graphene
(x > 0) decays spatially from the edge. Since the electric field in
the x direction has a π/2 phase difference from the phase in the y
direction, electric field is rotating on the graphene plane as a function
of time, which generates spatially decaying magnetization M. The
decaying magnetization induces surface spin current js that flows in
the direction perpendicular to the edge.

the spin current can be switched with response speed up to
10 GHz.

Organization of the paper is as follows. In Sec. II, we
explain how to obtain the spin current at the edge of graphene.
In Sec. III, we show the calculated results of the spin current
as a function of position and time. We then determine the
switching speed by removing the edge plasmon. In Sec. IV,
we discuss the results and in Sec. V, the summary of the paper
is given.

II. METHOD

In this section, we first discuss how to obtain the electric
field of the edge plasmon at the edge of graphene. We then
show that the electric field is rotating as a function of time
on the plane of graphene, which generates spatially decay-
ing magnetization from the edge according to the inverse
Faraday effect. Finally, we derive the spin current by solv-
ing the time-dependent spin-diffusion equations, in which the
induced magnetization appears as a source term.

A. Electric field of edge plasmon

We consider an edge plasmon that propagates in the y
direction at one edge (x = 0) of a semi-infinite graphene in the
xy plane as shown in Fig. 1. The electric field on the surface
of graphene is defined by

E(x, y, t ) = −∇�(x, y, t ) − ∂t A(x, y, t ), (1)

where �(x, y, t ) and A(x, y, t ) are the scalar and vector
potentials on the surface of graphene, respectively. The prop-
agating �(x, y, t ) and A(x, y, t ) are expressed by �(x, y, t ) =
�q(x)ei(qy−ωt ) and A(x, y, t ) = Aq(x)ei(qy−ωt ), with expres-
sions of �q(x) and Aq(x) satisfying the following differential
equations [25]: (

∂2
x − 2κ2

)
�q(x) = eκ

ε0
nq(x), (2)(

∂2
x − 2κ2

)
Aqx(x) = −μ0κJqx(x), (3)(

∂2
x − 2κ2

)
Aqy(x) = −μ0κJqy(x), (4)

where Aqx and Aqy is the x and y component of A(x), respec-
tively, e is the elementary charge, and ε0 and μ0 represent
vacuum permittivity and permeability. Here, κ is the decay

constant of electric field in the z direction and is defined as
κ =

√
q2 − ω2/c2 [7].

By solving Eqs. (1)–(4) we get the expression of the elec-
tric field of the edge plasmon as follows [25,26]:

Ex(x, y, t ) = −γ

[
iωμ0σ (ω)κ

γ 2 − ξ 2
q

− 1

]
φ0e−γ x+i(qy−ωt ), (5)

Ey(x, y, t ) = iq

[
iωμ0σ (ω)κ

γ 2 − ξ 2
q

− 1

]
φ0e−γ x+i(qy−ωt ), (6)

where we define the retarded wave vector ξ 2
q ,

ξ 2
q = 2κ2 − iωμ0σ (ω)κ, (7)

and decay constant γ ,

γ (ω, q) =
√

2κ

√√√√1 + iσ (ω)κ
2ε0ω

1 + iσ (ω)κ
ε0ω

. (8)

σ (ω) here represents the Drude conductivity as follows [32]:

σ (ω) = ie2EF

π h̄(h̄ω + i�)
, (9)

where EF and � denote, respectively, the Fermi energy of
graphene and the scattering rate of the electron. In this work,
we take EF = 0.05 eV and � = 0.1 meV [25].

Ex(x, y, t ) and Ey(x, y, t ) denote the x and y components of
the electric field, respectively. It is noted that the Ex(x, y, t )
and Ey(x, y, t ) have a phase difference of π/2, similar to the
CPL. Therefore, the electric field of edge plasmon at each
point rotates as a function of time, which corresponds to the
nonzero spin angular momentum of light [6,7]. It is noted that
in the case of CPL, the spin angular momentum is longitu-
dinal to the propagation direction, while in the case of edge
plasmon, the spin angular momentum is transverse and out of
plane [25,26]. The nonzero spin angular momentum of light
on the surface of graphene generates a finite magnetization,
which will be discussed in Sec. II B.

Frequency of the edge plasmon is obtained by solving the
boundary conditions at x = 0 [26,27]. It is noted that in the
case of the nonretardation region, κ ≈ q, the frequency of
edge plasmon is analytically given by

ω(q) =
√

2

3

√
e2EFq

2πε0h̄2 ≡
√

2

3
ωSP(q), (10)

where ωSP(q) is the frequency of the surface plasmon in
graphene [1,27,33]. Thus, the frequency of edge plasmon is
smaller than that of surface plasmon by the factor

√
2/3.

B. Spin-diffusion equation

Light with spin angular momentum can induce a magneti-
zation in a metal, which is referred to as the inverse Faraday
effect [7,15,34]. The induced magnetization M ind is expressed
by [15]

Mind = −i
|σ (ω)|2
4ωen̄

(E∗ × E ), (11)

where n̄ is the charge density at the thermal equilibrium. In the
case of graphene, n̄ is given by n̄ = [EF/(

√
π h̄vF)]2 [1]. It is
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noted that the spin angular momentum of light is proportional
to the product of (E∗ × E ), which is not zero only if there is a
phase difference between the x and y components of E [6,7].

Substituting Eqs. (5) and (6) into Eq. (11), the magnetiza-
tion induced by edge plasmon on the graphene is expressed as
follows:

M ind(x) = −ẑ
|σ (ω)|2γ

ωen̄q

∣∣∣∣ iωμ0σ (ω)κ

γ 2 − L2
q

− 1

∣∣∣∣
2

E2
0 e−2γ x, (12)

where we define E0 = qφ0. From Eq. (12), we understand
that the edge plasmon induces a magnetization pointing in
the direction perpendicular to the surface of graphene (ẑ). The
induced magnetization is constant in time but exponentially
decaying (e−2γ x ) measured from the edge of graphene. Thus,
the edge plasmon induces spatially decaying magnetization on
graphene surface. A similar magnetization is also induced in
the case of surface plasmon in 3D metals [21–23]; however,
the magnetization is distributed inhomogeneously in the per-
pendicular direction to the surface.

The magnetization that is induced by edge plasmon
polarizes the spin of individual electrons and generates
spin accumulation, which is described by the spin-diffusion
equation as a source term, as follows [21–23,25]:(

∇2 − 1

λ2
− ∂

∂t

tsf

λ2

)
δμ(x, t ) = 8μBμ0γ

2 M ind(x)

d
, (13)

where δμ(x, t ) is defined by the shift of chemical potential
by the spin accumulation in units of eV. tsf and λ are the spin
relaxation time and spin-diffusion length, respectively [16],
d denotes the thickness of graphene, and we adapt d ≈ 1 Å.
The δμ(x, t ) is solved with the Neumann boundary condition,
which is ∂xδμ = 0 at x = 0, by using the finite difference time
domain (FDTD) method and analytically [see Eq. (22)]. Since
the induced magnetization is spatially decaying from the edge
of graphene, we then expect that the δμ(x, t ) is decaying not
only as a function of time, but also as a function of x. The
obtained δμ(x, t ) generates diffusive spin current, which is
expressed as follows [16,19]:

Js(x, t ) =σ0

2e
∇δμ(x, t ). (14)

Here, σ0 is the DC conductivity of graphene, that is obtained
by substituting ω = 0 in Eq. (9). We use DC conductivity to
describe the spin current because the spin current is driven by
the spatially decaying magnetization which is not a function
of time, as is given in Eq. (12). Since the magnetization is
a function of x, then the Js(x, t ) flows on the surface of
graphene in the x direction, too. Since spin generation by edge
plasmon is our idea, we do not know of any results similar to
this study in the literature. One might consider it similar to
the paper by Oue and Matsuo [21]. However, we would like
to point out that their spin generation is not due to the edge
plasmon in 2D materials, but rather to the surface plasmon
on 3D metal surfaces. Furthermore, the direction of the spin
current in Oue and Matsuo is perpendicular to the surface,
whereas the direction of the spin current in this study is in
plane. Thus, they are not similar, and the in-plane spin current
is considered to be more useful.

FIG. 2. Spin accumulation δμ (a) given as a function of time, at
x = 5 μm, under a source term of light that is turned on (0.2 ns) and
off (0.2 ns) with a period of 0.4 ns. The blue solid line represents the
result obtained from the FDTD method, while the green dashed line
represents the analytical expression of δμ given in Eqs. (21) and (22).
It is observed that the δμ reaches the steady state (orange dashed-
dotted line) within 0.2 ns. Further, when the source term is turned
off, δμ vanishes within 0.2 ns. This means δμ can respond to the
source term with frequency up to 10 GHz. The orange dashed line
represents the δμst(x = 5 μm) as given in Eq. (15). (b) δμst(x) as a
function of distance from the edge x. δμst(x) is confined to the edge
with decay length of less than 40 μm. The blue solid line represents
the result obtained by FDTD, while the orange dashed line represents
the δμst given in Eq. (15). Here we adopt ω = 4.32 THz, E0 = 860
V/m, λ = 6.344 μm, γ = 0.13 μm−1, and tsf = 58.5 ps.

III. RESULTS

First, we show the numerically calculated result of the
δμ(x, t ), which are obtained by solving Eqs. (13) and (14)
by FDTD calculation. To investigate how fast the δμ responds
to an external source, we apply a periodic light source term
which turns on (0.2 ns) and off (0.2 ns) in a period of 0.4 ns.
We obtain δμ as a function of t for a given x = 5 μm, which
is plotted in Fig. 2(a). Here we adopt ω = 4.32 THz, E0 =
860 V/m, γ = 0.13 μm−1, λ = 6.344 μm, and tsf = 58.5 ps.
The values of ω = 4.32 THz and λ = 6.344 μm correspond
to the case that the diffusion length becomes comparable to
the decay length of magnetization, λ = 1/2γ (ω). With this
value of ω and λ, we can observe the crossover phenomena
between the spin-diffusion regime [λ � (1/2γ )] and the de-
caying dominant region [λ � (1/2γ )]. We took the value of
λ = 6.344 μm and tsf = 58.5 ps from the measurement con-
ducted by Raes et al. [35]. The value of 860 V/m corresponds
to the laser intensity of 100 mW/cm2. It is observed that the
δμ(x, t ) saturates around 0.5 neV within 0.2 ns, which we
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call the steady state denoted by δμst(x). After turning off the
source term, δμ(x, t ) vanishes in less than 0.2 ns. This means
that with the given parameters, δμ(x, t ) can respond to the
source term with frequency up to 10 GHz.

We further investigate the solution of δμst(x), which cor-
responds to the case of ∂δμ(x, t )/∂t = 0 in Eq. (13). The
δμst(x) is expressed as follows:

δμst(x) = A exp (−2γ x) + B exp
(
− x

λ

)
, (15)

where A and B are coefficients for describing the contribu-
tion of the induced magnetization and the spin diffusion to
δμ, respectively. The coefficient A is obtained by substituting
Eq. (15) into Eq. (13), which is given as follows:

A = 2μBμ0

d

(2γ λ)2

(2γ λ)2 − 1
Mind(0). (16)

On the other hand, the coefficient B is determined from the
Neumann boundary condition: ∂xδμst(x) = 0 at x = 0, from
which we get B = −2γ λA.

In Fig. 2(b), the δμst(x) [Eq. (15)] is plotted by an orange
dash-dotted line as a function of x together with the result
obtained by FDTD (blue solid line), whose agreement is sat-
isfactory. It is observed that δμst(x) is confined to the edge,
which is expressed by a linear combination of exponentially
decaying functions. The maximum δμst(x) occurs at the edge,
which reaches up to 0.5 neV. Furthermore, the decay length of
δμst(x) is about 20 μm.

When x = 0, Eq. (15) determines the largest possible value
of δμ for given λ and γ . In Fig. 3(a), we plot Eq. (15) for
x = 0 as a function of λ and γ , from which we find that the
δμst increases with increasing λ and decreasing γ . In Fig. 3(b)
we plot δμst [Eq. (15)] as a function of λ at x = 0 for several
values of γ . When λ = 300 μm, γ = 0.12 μm−1, maximum
δμ reaches 100 neV. From the calculation, we can suggest
to fabricate graphene with a larger spin-diffusion length λ

and then we excite edge plasmon with small decay constant
γ (i.e., a longer decay length) in order to obtain larger spin
accumulation. It is noted that γ depends on ω and q as is
expressed in Eq. (8). Small γ can be obtained by decreasing
the frequency of edge plasmon, which is described in detail in
our earlier work [25].

In Fig. 3(c), we plot spin current density Js in units of
μA/m as a fucntion of x for several values of λ from 1 to
5 μm. Here, spin current density Js is calculated by substitut-
ing Eq. (15) into Eq. (14). As seen in Fig. 3(c), Js increases
with increasing λ The value Js might be observed experimen-
tally if the length of the edge is larger than 1 mm.

To further identify the time-dependent behavior of
δμ(x, t ), we have obtained the analytical solution of δμ(x, t )
by the Green’s function method. The Green’s function of the
diffusion equation given in Eq. (13) is expressed as follows:

G(x, t, x′, t ′) = − exp

(
− t − t ′

tsf

)
�(t − t ′)�(t ′)λ√

4πtsf(t − t ′)

× {
exp

[−(x − x′)2k2
a

]
+ exp

[−(x + x′)2k2
a

]}
, (17)

FIG. 3. Maximum spin accumulation δμst at x = 0 (a) given as a
function of spin-diffusion length λ and edge plasmon decay constant
γ . Larger λ and smaller γ give a larger maximum δμst. (b) δμst as
a function of λ, for several values of γ : γ = 0.070 μm−1 for the
blue solid line, γ = 0.094 μm−1 for the orange dashed line, and
γ = 0.12 μm−1 for the green dash-dotted line. We find that δμst

reaches up to 140 neV when λ = 300 μm and γ = 0.070 μm−1.
Here we adopt E0 = 860 V/m and tsf = 58.5 ps. (c) Spin current
density [Eq. (14)] as a function of x for several values of λ. Peak spin
current appears from a distance from the edge. This distance and the
peak spin current value increases with increasing λ. Here we adopt
ω = 4.32 THz, E0 = 860 V/m, γ = 0.13 μm−1, and tsf = 58.5 ps.

where �(x) represents the Heaviside function. ka is the time-
dependent diffusion parameter, which is written as follows:

ka =
√

tsf

4(t − t ′)λ2
. (18)

It is noted that the Green’s function given in Eq. (17) satisfies
the Neumann boundary condition. When the source term is
turned on and spin is accumulating, the δμ(x, t ) can then be
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obtained as follows:

δμ(x, t ) = 8μ0μBγ 2

d

∫ ∞

−∞
dt ′

∫ ∞

0
dx′ G(x, t, x′, t ′)Mind(x′).

(19)

On the other hand, when the source term is turned off, the
δμ(x, t ) starts to relax and decays away from the steady state.
Thus, the δμ(x, t ) is written as follows:

δμ(x, t ) = tsf

λ2

∫ ∞

0
dx′G(x, t, x′, 0) δμst(x

′), (20)

where δμst(x) expressed in Eq. (15) corresponds to the fully
accumulated condition when the source is turned on after a
sufficiently long time. By substituting Eq. (17) into Eqs. (19)
and (20), and by noting that the expression includes a
Gaussian integral, we can further obtain the analytical ex-
pression of δμ given in terms of the Gauss error function as
follows:

δμ(x, t ) = 8μ0μBγ 2

d
Mind(0)

∫ t

0
dt ′e(4λ2γ 2−1)(t−t ′ )/tsf

×
[

e−2γ xerfc

(
γ − k2

ax

ka

)
+ e2γ xerfc

(
γ + k2

ax

ka

)]
,

(21)

for the accumulation of δμ and

δμ(x, t ) = Ae(4λ2γ 2−1)(t/tsf )

×
[

e−2γ xerfc

(
γ − k2

ax

ka

)
+ e2γ xerfc

(
γ + k2

ax

ka

)]

+ B

[
e−x/λerfc

( 1
2λ

− k2
ax

ka

)

+ ex/λerfc

( 1
2λ

+ k2
ax

kr

)]
, (22)

for the relaxing of δμ. In Eqs. (21) and (22), erfc(z) represents
the complementary error function of z as follows:

erfc(z) = 1 − 2√
π

∫ z

0
e−t2

dt . (23)

The solution obtained by the Green’s function is shown by
the green dashed line in Fig. 2(a). The analytical expression
reproduces the FDTD results. Equation (17) implies that the
switching speed of δμ(x, t ) depends on tsf, λ, γ , and position
x. In the next section, we discuss the dependence of the re-
sponse time on tsf, λ, γ , and x.

IV. DISCUSSION

For optimizing the response speed of the present spintronic
device, information concerning the response speed of spin
accumulation in relation to external perturbation is important.
Noticing that the shape of the δμ(x, t ) from Fig. 2(a) can be
roughly fitted with an exponential function, in Fig. 4, we fit
the following exponential function to the time-dependent plot
of δμ(t ):

δμ(x, t ) = δμst (x)

{
1 − exp

(
− t

ta

)}
, (24)

FIG. 4. δμ as a function of time. The red dot-dashed line rep-
resents the δμ given in Eqs. (19) and (20). The solid orange line
and solid blue line represent the fitting function of Eqs. (24) and
(25), respectively. The green dash-dotted horizontal line represents
δμst, and the vertical black line denotes the t = t0 in Eq. (25).
Here we adopt ω = 4.32 THz, E0 = 860 V/m, γ = 0.13 μm−1, λ =
6.344 μm, x = 5 μm, and tsf = 58.5 ps.

for the accumulation of δμ(x, t ) and

δμ(x, t ) = δμst (x) exp

(
− t − t0

td

)
, (25)

for the relaxation of δμ(x, t ). Here, ta and td are the response
times for the accumulation and relaxation of δμ(x, t ). In
Fig. 4, we plot the fitted δμ(x, t ), which is not perfect but
sufficient for discussing the response times (ta and td). As
shown in the end of Sec. III, we will discuss how the response
times depend on tsf, λ, x, and γ . The response time is defined
mathematically as the time necessary to reach the following
δμ(x, t ) for the accumulation δμ(x, t ),

δμ(x, ta) =
(

1 − 1

e

)
δμst(x), (26)

or the time it takes to decay to the following δμ(x, t ) for the
decaying δμ(x, t ),

δμ(x, td) = 1

e
δμst(x), (27)

where e is natural exponential number. As we see from
Eq. (13), t can be scaled by tsf. We define dimensionless
response time aa(d) by

ta(d)(tsf, λ, x, γ ) = aa(d)(λ, x, γ )tsf, (28)

where aa(d)(λ, x, γ ) denotes a factor on tsf whose value
depends only on λ, x, and γ . We confirm by numerical cal-
culation that aa(d) does not depend on tsf. When aa(d)(λ, x, γ )
is small, the response time becomes fast.

In Figs. 5(a) and 5(b), we plot aa(d) as a function of x
and λ for the accumulation and relaxation parts, respectively.
The x and λ dependence of aa(d) shows similar behavior. The
values of aa and ad are almost the same; then we refer to them
simply as a(λ, x, γ ). For a fixed value of λ, x = 0 always
gives a small value of a(λ, x, γ ), which corresponds to a fast
response. The value of a(λ, x, γ ) becomes small for a large
λ for any value of x. As seen in Figs. 5(a) and 5(b), we can
see that a(λ, x, γ ) has a local maximum for x not near the
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FIG. 5. Dimensionless response time aa(d)(λ, x, γ ) = ta(d)/tsf for
(a) the accumulation part of δμ and (b) the relaxation part of δμ.
A local peak of aa(d)(λ, x, γ ) appears where λ = 1/(2γ ), which
corresponds to a slowest response time. When λ > 1/(2γ ), the value
of aa(d)(λ, x, γ ) becomes small for a large λ for any values of x. Here
we adopt ω = 4.95 THz, E0 = 860 V/m, and γ = 0.17 μm−1.

edge. The condition for obtaining the maximum is λ = 1/2γ ,
which can be numerically checked. Thus, we conclude that
the response time can be short when the spin-diffusion length
(λ) is sufficiently large compared with the decay length of the

magnetization (1/2γ ). For a fixed value of λ, the response
time becomes shorter with increasing γ , which corresponds
to the increasing frequency of the edge plasmon (ω). How-
ever, even though the response time is shorter, as shown in
Fig. 3(a), if we increase the γ , the value of δμst decreases.
Thus, we need to find the appropriate γ or ω that gives a
fast response time and sufficient δμ to be measurable. Let us
use λ = 2.96 μm for graphene, thus the a(λ, γ ) is maximum
when γ = 0.169 μm−1, which corresponds to frequency of
the edge plasmon ω = 4.59 THz for EF = 0.05 eV. To achieve
a faster response time, we can select the γ = 2 × 1/2λ, so
that the δμ does not become too small to be measurable.
In this case, the frequency of the edge plasmon is around
ω = 7.32 THz. The corresponding response time ta and td
= 70.2 ps at x = 5 μm, which means a theoretical response
frequency of 7.12 GHz. Thus we get a gigahertz response for
this spintronic device.

V. CONCLUSION

In conclusion, by using the finite-difference time-domain
method and the Green’s function method, we investigate the
response time of the spin current induced by edge plasmon
at the graphene edge. The response speed is estimated to
be up to 10 GHz. The condition that we obtain a faster re-
sponse is that the spin-diffusion length is sufficiently large
compared with the decay length of the magnetization. We
suggest selecting a frequency that gives the decay length of the
magnetization whose value is half of the spin-diffusion length
to achieve a sufficiently fast response time with sufficient spin
accumulation.
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