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Current-induced breakdown of the quantum anomalous Hall effect
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The quantum anomalous Hall effect (QAHE) realizes dissipationless longitudinal resistivity and quantized
Hall resistance without the need of an external magnetic field. However, when reducing the device dimensions
or increasing the current density, an abrupt breakdown of the dissipationless state occurs with a relatively small
critical current, limiting the applications of the QAHE. We investigate the mechanism of this breakdown by
studying multiterminal devices and identified that the electric field created between opposing chiral edge states
lies at the origin. We propose that electric-field-driven percolation of two-dimensional charge puddles in the
gapped surface states of compensated topological-insulator films is the most likely cause of the breakdown.
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I. INTRODUCTION

The quantum anomalous Hall effect (QAHE) [1] has been
achieved in thin films of the topological insulator (TI) material
(BixSb1−x )2Te3 doped with Cr or V [1–3], where sponta-
neous magnetization M perpendicular to the surface opens
an exchange gap in the two-dimensional (2D) surface states
[Fig. 1(a)]. The hallmark of the QAHE is the dissipation-
less longitudinal transport accompanied by quantized Hall
resistance of h/e2. Since the chemical potential of the 2D
surface states must be tuned into the exchange gap to realize
the QAHE, the system is called a quantum anomalous Hall
insulator (QAHI) in which chiral edge states are the only
transport channels. The QAHI is a promising platform [4]
for such phenomena as topological magnetoelectric effects [5]
and chiral topological superconductivity [6].

However, the actual nature of the QAHI is still not
well understood: For example, the nonlocal transport in the
QAHE has shown deviations from an ideal behavior [7,8],
which was explained by employing the coexistence of ad-
ditional, quasihelical edge states [7–9]. Also, it has been
observed that the dissipationless state breaks down with a
much smaller critical current than in the integer quantum Hall
effect (QHE), and the origin of this premature breakdown
is under significant debate [10–14]. The breakdown current
was reported to scale linearly with the sample width [11],
which is problematic for applications of the QAHE in meso-
scopic devices such as those to braid Majorana zero modes
generated in the proximity-induced superconducting state of
QAHI [15–17].

In this work, we investigate the breakdown of the QAHE,
to be understood as the loss of dissipationless edge trans-
port, in both local and nonlocal measurement geometries
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to gain insights into its mechanism. Our detailed nonlocal
transport data allow us not only to dismiss the contribution
of additional edge states, but also to identify the transverse
electric field Eyx as the most probable driving force for
the breakdown, which is corroborated by the persistence of
dissipationless edge transport in the nonlocal region above
the breakdown current. To understand the very low break-
down current, we propose that percolation of charge puddles
through the 2D bulk causes the abrupt onset of dissipation
at the critical value of Eyx. We demonstrate that the effect of
the current-induced breakdown can be minimized by spatially
separating the source and drain contacts from the voltage
probes, ideally in a nonlocal measurement configuration. We
also show that the breakdown can result in a large spuri-
ous contribution in the three-terminal configuration with a
narrow contact, which should be avoided in designing the
experiments.

II. EXPERIMENTAL

The experiments were carried out on thin films of V-doped
(BixSb1−x )2Te3, grown by molecular beam epitaxy (MBE) on
InP (111)A. The InP substrate was kept at 190◦C while V,
Bi, Sb, and Te were coevaporated to produce uniform films of
≈8 nm thickness. To tune the chemical potential into the mag-
netic exchange gap, a Bi:Sb beam-equivalent-pressure ratio of
1:4 was used. The films were protected from degradation in air
by depositing a 3-nm Al2O3 capping layer using atomic layer
deposition immediately after taking the samples out of the
MBE chamber. The films were patterned into multiterminal
Hall-bar devices using photolithography and chemical wet
etching. Devices A, B, and C are long 26-terminal Hall-bar
devices, while devices D to I are regular 6-terminal Hall-bars
(see the Supplemental Material [18] for details). The metal
contacts were fabricated by sputtering 5 nm Pt and 45 nm Au.
All the reported films showed a clean QAHE without the need
of gating.
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FIG. 1. Local and nonlocal transport measured below the breakdown current in device A. (a) Illustration of the energy spectrum: Bulk
conduction band (CB) and valence band (VB) are well separated and the 2D surface states (SS) have an exchange gap at the � point, but the
chiral edge state connects the upper and lower branches. (b) Schematic picture of the 26-terminal Hall-bar device with the width of 100 μm.
The red (blue) line shows the high (low) potential portion of the chiral edge state for a downward, out-of-plane magnetization (M < 0) when
current flows from contact 1 to 14; arrow heads signify the direction of the current flow. Note that the chirality of the edge state inverts for
M > 0. [(c)–(e)] Magnetic-field dependence of the resistance measured between contacts 6-5 (c), 6-10 and 17-21 (d), and 0-25 (e), showing
the QAHE in the local and nonlocal regions at 15 mK with a DC current of 10 nA. (f) Four-terminal current-voltage characteristics in the local
and nonlocal regions, measured at 15 mK in +2 T. The breakdown of the QAHE occurs in the local region (voltage between contacts 6-10) at
≈0.16 μA.

III. CURRENT-INDUCED BREAKDOWN

A. Dissipationless transport and breakdown

To clearly disentangle dissipative bulk current paths from
the edge transport, we investigate 26-terminal Hall-bar de-
vices, as shown in Fig. 1(b). In the measurement shown in
Figs. 1(c)–1(e), the current flowed from contact 1 to 14;
namely, a voltage is applied to contact 1 and contact 14 is
grounded. As a result, the portion of the edge colored red
(blue) in Fig. 1(b) is at the source (drain) potential due to the
QAHE. From the point of view of local-nonlocal transport,
contacts 0 to 14 belong to the local transport region while
contacts 15 to 25 are in the nonlocal region. The four-terminal
resistance R1-14,6-10 and R1-14,6-5 correspond to the longitudinal
and transverse resistance, respectively; here, the first index
denotes the current probes (1-14), while the second index
denotes the voltage probes (6-10 or 6-5). The sample shows a
clean QAHE with R1-14,6-5 equal to the von Klitzing constant
h/e2 and a vanishing R1-14,6-10.

The nonlocal resistance R1-14,17-21 shows a near-perfect
zero resistance throughout the magnetic field sweep. This
indicates either a near-perfect nonlocal (and dissipationless)
edge transport or the absence of current flow in the nonlocal
region. If the latter is the case, the potential of contact 25
would always be equal to the drain potential of contact 14,
and hence R1-14,0-25 would be zero for M < 0. However, the
observed R1-14,0-25 is quantized to −h/e2 for M < 0, meaning
that the potential of contact 25 is equal to the source potential
of contact 1. This proves that the nonlocal edge transport is
realized.

Having demonstrated a clean QAHE and nonlocal trans-
port, we now address the breakdown of the QAHE with
increasing probe current. Figure 1(f) shows the voltages ap-
pearing at three different contact pairs as functions of the DC
probe current I1-14. The longitudinal voltage V6-10 shows a
broad plateau at 0 V up to ≈0.16 μA, above which a sharp
increase signifies the breakdown of the dissipationless state.
Note that this breakdown current value is among the highest
reported so far [10–13]. The Hall voltage V6-5 follows the ex-
pected linear behavior of the QAHE, V6-5 ≈ (h/e2)I , with only
a little deviation at high current. Obviously, the breakdown in
V6-5 is much less pronounced than in V6-10. In fact, a simple
Landauer-Büttiker formalism [19] discussed in Sec. III C and
in the Supplemental Material [18] leads to the conclusion that
a small leakage current crossing the width of the Hall-bar
directly affects the longitudinal resistance, while leaving the
Hall resistance unaffected. This is consistent with the earliest
studies of the QAHE, where the transverse resistance was
close to h/e2 while having a sizable longitudinal resistance
of several k� [2].

It is important to notice that while the breakdown is clearly
observed in the local transport region, dissipationless edge
transport is maintained in the nonlocal region: As partly
shown in Fig. 1(f), V17-21 remains zero beyond ≈0.16 μA
up to the maximum current employed (0.4 μA), to within
the accuracy of our DC measurement (≈1 μV). This points
to the transverse electric field as the driving force of the
breakdown of the dissipationless state, as was also suggested
in Refs. [10,11], because the transverse electric field is absent
in the nonlocal region where the edge potential is constant.
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FIG. 2. Length dependence of the current-induced breakdown
of the QAHE, measured on the 26-terminal Hall-bar device B at
40 mK. (a) Schematic of the potential distribution in the chiral edge
state for M > 0; the red (blue) color signifies the source (drain)
potential. (b) Plots of the longitudinal voltage V1-x vs I0-25 with
x = {5, 9, 11, 13, 17, 21}, measured at +2 T. The breakdown of the
QAHE occurs at ≈0.16 μA. (c) The value of V1-x/I0-25 at 0.3 μA
as a function of the voltage contact spacing L. (d) Longitudinal
resistance R0-25,1-x near the coercive field μ0Hc = 1.09 T, measured
with IDC = 30 nA. (e) The peak values of R0-25,1-x at the coercive field
Hc as a function of L.

The presence of edge current in the nonlocal region above
the breakdown is shown in Ref. [18] with additional data
(Fig. S8).

Wang et al. predicted an exponential length dependence of
the edge potential in case quasihelical edge states are coex-
isting with the chiral edge state [9]. As seen in Fig. 1(f), we
observed no sign of dissipation in the nonlocal region (see
Ref. [18] for additional data). Moreover, when the I-V char-
acteristics are recorded for a varying voltage contact spacing
L, a clear linear dependence of the longitudinal resistance Rxx

on L is observed above the breakdown [see Figs. 2(a)–2(c)].
The peak values of Rxx at the coercive field Hc are shown
for comparison in Figs. 2(d) and 2(e), which also presents a
linear dependence on L. The absence of a nonlocal position-
dependent edge potential, together with the linear relation of
Rxx on L, point to 2D diffusive transport as the origin of dissi-
pation and speak against the presence of additional dissipative
edge states as was proposed in Refs. [7–9].

B. Spurious contributions to the three-terminal resistance

Since the separation between the high- and low-potential
branches of the chiral edge state directly determines the

FIG. 3. (a) The three-terminal current-voltage characteristic of
device B for contact 0 (100 μm, blue) and contact 1 (20 μm, red)
with contact 25 as reference, measured at 40 mK in +2 T (M > 0).
Insets show the measurement configurations. (b) Corresponding dif-
ferential resistance for contacts 0 and 1. The curve for dV25-0/dI1-0 is
magnified by a factor of 10 for clarity.

strength of the transverse electric field, one would expect the
breakdown to play a strong role near the source and drain
contacts where the two branches come together. In our long
Hall-bar device shown in Fig. 1(b), contacts 1 to 24 are
made via a 20-μm-wide section of the magnetic TI film (see
Fig. S1(b) in Ref. [18] for schematics), while contacts 0 and
25 are made along the full width (100 μm) of the device.

To elucidate the adverse effect of a narrow contact on
the breakdown, we employed three-terminal measurements
involving contacts 0, 1, and 25. Figure 3 shows the three-
terminal I-V characteristics and corresponding differential
resistance for two configurations with M > 0. The voltage
V25-0 was measured with contact 0 as the drain (I1-0). Since
the edge current flows counterclockwise for M > 0, contact
25 was at the drain potential in this measurement. Indeed,
the differential resistance dV25-0/dI1-0 is approximately zero
with an upturn at ≈0.16 μA due to the breakdown of the
QAHE. Hence, there is no additional resistance associated
with contact 0.

On the other hand, V25-1 was measured with contact 1 as
the drain (I0-1). Now contact 25 is at the source potential,
and hence dV25-1/dI0-1 should be equal to h/e2. However,
dV25-1/dI0-1 immediately deviates from h/e2 with a finite IDC

[see the red curve in Fig. 3(b)]. As shown in Ref. [18] and
in Sec. III C using the Landauer-Büttiker formalism [19], this
can be explained by the large electric field appearing in the
narrow contact arm, causing an immediate breakdown in the
contact arm and enhancing the three-terminal resistance [see
Eqs. (5) and (6) below]. This demonstrates the necessity to
avoid a three-terminal configuration with a narrow contact to
minimize the breakdown effect. For example, in a recent study
using an ≈200-nm-wide Nb electrode on top of a QAHI film,
the breakdown of the QAHE was the dominant contribution
to the measured conductance [20], making it difficult to detect
the Andreev reflection at the Nb/QAHI interface.

C. Breakdown in the Landauer-Büttiker formalism

As discussed in detail in Ref. [18], the effect of break-
down on the measured three- and four-terminal resistances can
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FIG. 4. Schematics of the edge transport in a 12-terminal Hall-
bar device for M < 0, with the leakage between opposing counter-
propagating edges parametrized by the scattering probabilities α, β,
and γ . The contact spacing between neighboring contacts are chosen
to be equal, i.e., L0-1 = L1-3 = L3-5 = L5-7 = L7-9 = L9-11.

be phenomenologically understood by using the Landauer-
Büttiker formalism [19]. Here, we briefly discuss the exten-
sion of the Landauer-Büttiker treatment to the nonlocal regime
by considering the situation shown in Fig. 4, which schemati-
cally models a 12-terminal Hall-bar device for M < 0 with the
current flowing from contact 0 to 6, similar to the setup used
in Fig. 1. The scattering probabilities α, β, and γ describe
the fraction of the current leaking between the opposite edge
states in the local region, nonlocal region, and current contact
6, respectively. This simplistic model by no means describes
the physics of the current-induced breakdown accurately, but
it can provide a qualitative expressions for the observed resis-
tances above the breakdown.

We use the Landauer-Büttiker formula [19]

Ii = e2

h

∑

j

(TjiVi − Ti jVj ), (1)

where Vi is the voltage on the ith contact, Ii is the current
flowing through the ith contact into the sample, and Tji is the
transmission probability from the ith to the jth contact. The
full set of transmission coefficients for the case of Fig. 4 is
given in Ref. [18]. Note that the spacing between neighboring
contacts are chosen to be equal for simplicity, since α, β,
and γ are length dependent. Using V6 = 0, I0 = −I6 = I , and
Ii = 0 for all other contacts, Eq. (1) can be solved for I and Vi,
which allows us to calculate the longitudinal (Rxx), transverse
(Ryx), and nonlocal (RNL) resistances as follows:

Rxx = R0-6,1-3 = R0-6,2-4 = R0-6,3-5 = α

1 − α

h

e2
, (2)

Ryx = R0-6,2-1 = R0-6,4-3 = − h

e2
, (3)

RNL = R0-6,5-7 = R0-6,5-8 = · · · = 0. (4)

Note that RNL is the resistance between any pair of contacts in
the nonlocal region (contacts 5, 7, 8, 9, 10, 11) for the current
flowing from contact 0 to 6. The results for Rxx and Ryx are the
same as those for the simple four-terminal geometry discussed
in Ref. [18]. The result RNL = 0 means that additional resistive
channels in the middle of the nonlocal region (represented by
β) do not carry any nonequilibrium current, as they are short-
circuited by the dissipationless chiral edge channel.

If the resistive channels in the 2D bulk are allowed to
carry some leak current to the drain contact, or additional,
dissipative quasihelical edge states are included in the model,

FIG. 5. Current-voltage characteristics showing the current-
induced breakdown of the QAHE at 25 mK in 0 T (after training
at +2 T), measured for various widths of the sample in the three-
terminal (a) and four-terminal (b) geometries. The specified widths
in panels (a) and (b) correspond to the contact and Hall-bar widths,
respectively, of devices F2, G2, H, and I (cf. Table I in Ref. [18]).
The devices were fabricated on the same wafer. (c) Corresponding
width dependence of the critical current Ic. The black solid line is a
linear fit through both data sets, yielding a slope of ≈0.85 nA/μm.

a position-dependent expression for the edge potential in the
nonlocal region is obtained (see Ref. [18] for details). How-
ever, experimentally we found RNL = 0, which indicates that
the edge current is not lost in the nonlocal region through
such leakage paths and the dissipationless edge transport is
maintained in the nonlocal region.

In passing, the three-terminal resistances obtained from
the solution of the Landauer-Büttiker formula for the case of
Fig. 4 are

R0-6,0-1 = α

1 − α

h

e2
, R0-6,0-2 = 1

1 − α

h

e2
, (5)

R0-6,4-6 = α − 2αγ + γ

(1 − α)(1 − γ )

h

e2
, R0-6,8-6 = 1

1 − γ

h

e2
. (6)

The differential resistances shown in Fig. 3(b) correspond to
the case of γ � α.

D. Width dependence of breakdown

To investigate the scaling of the critical current Ic on
the edge state separation W , we fabricated four types of
six-terminal Hall-bar devices F, G, H, and I on the same
V-doped (BixSb1−x )2Te3-InP wafer (see Table I in Ref. [18]
for details) with their Hall-bar (contact) widths equal to 100
(30), 150 (40), 200 (50), and 250 μm (60 μm), respectively.
Figures 5(a) and 5(b) shows representative three- and four-
terminal I-V characteristics for devices F2, G2, H, and I.
One can see an approximately linear dependence of Ic on
W in Fig. 5(c), which corroborates the assumption that the
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FIG. 6. Temperature dependence of the QAHE in 0 T after train-
ing at +2 T. (a) 2D color mapping of the longitudinal voltage |Vx|
as functions of T and IDC for the 100-μm-wide device E. (b) Vx vs
IDC at 18, 100, 125, 150, 175, and 200 mK, showing the evolution of
the current-induced breakdown curve. (c) Plot of Ic vs T ; the dashed
line is a guide to the eyes. (d) Arrhenius plot of the longitudinal con-
ductance Gxx and transverse conductance Gyx of device D, measured
with an AC rms current of 10 nA. Black solid line is a fit to the linear
behavior Gxx = G0e−T0/T , yielding T0 ≈ 0.5 K.

transverse electric field governs the breakdown process.
Namely, breakdown occurs at a particular value of the nominal
critical current density

Ic

W
∼ e2

h
Eyx, (7)

independent of the device dimensions, as one can infer from
Figs. 2(b) and 5(c).

E. Temperature dependence of breakdown

Now we turn to the temperature dependence of the break-
down effect. The six-terminal devices D and E were measured
in the regular four-terminal Hall-bar geometry. Figure 6(a)
shows a 2D mapping of the longitudinal voltage Vx as func-
tions of temperature T and probe current IDC; the plots of Vx

vs IDC at selected temperatures are shown in Fig. 6(b). A well-
extended zero-voltage plateau is seen up to ≈100 mK, while
a linear I-V relation is slowly restored at higher temperatures.
The temperature dependence of Ic, which tends to saturate
towards lower T , is plotted in Fig. 6(c).

Figure 6(d) shows that the thermal activation of charge
carriers determines the conductance above ≈100 mK with a
small activation energy of kBT0 ≈ 40 µeV (i.e., T0 ≈ 0.5 K).
This value is comparable to the values ≈17–121 µeV found in
previous studies [8,10,11,21–23]. It is worthwhile to note that
this activation energy is much smaller than the exchange gap
of ≈14–28 meV observed in scanning tunneling spectroscopy
[24,25], hinting at the role of disorder.

IV. DISCUSSION

We have demonstrated that the current-induced breakdown
of the QAHE, to be understood as the loss of dissipationless
edge transport, is most likely caused by the large transverse
electric field Eyx, giving rise to 2D diffusive transport across
the width of the Hall-bar device in the local transport re-
gion. In the following, we discuss the three most probable
breakdown mechanisms: bootstrap electron heating, electric-
field-driven percolation of 2D charge puddles, and Zener
tunneling between 2D charge puddles.

A. Bootstrap electron heating

We first discuss the role of electron heating in the break-
down process. It is obvious that an abrupt increase in the
longitudinal resistance will lead to heating and that the re-
sulting increase in the electron temperature would accelerate
the breakdown process. However, the assumption that electron
heating itself lies at the origin of the breakdown of the QAHE
is doubtful. In the bootstrap electron heating (BSEH) model,
initially proposed for the integer QHE [26], the breakdown is
attributed to runaway electron heating and described by the
following balance equation:

ρxx(Tel ) j2 = ε(Tel ) − ε(TL )

τ
, (8)

with j the current density, ε(T ) the energy of the system at
temperature T , Tel and TL the electron and lattice temperature,
respectively, and τ the relaxation time of the heated electrons
[26]. Upon increasing the current, the energy gained by elec-
trons, ρxx(Tel ) j2, causes Eq. (8) to become unstable and a new
equilibrium is found at a higher Tel . The model is in good
agreement with the experimentally observed critical current
values of the QHE [26,27]. Moreover, it is quite generic and
independent of the microscopic details of the samples. Hence,
BSEH can be easily employed to describe the breakdown of
the QAHE as well [11].

However, by comparing the critical current density jc at
which the breakdown occurs for both the QHE (≈1 A/m [28])
and the QAHE (≈1 mA/m), it is clear that the heating effect
differs by several orders of magnitude. Even if one considers
the much smaller excitation energy of the QAHE (≈40 μeV in
our samples) compared to the QHE (h̄ωc ≈ 10 meV at 10 T,
with ωc the cyclotron frequency), runaway electron heating
seems unlikely. Moreover, if one compares the shape of the
breakdown curve of the QHE to that of the QAHE, the large
vertical jump in the longitudinal resistance at jc in the QHE
case, attributed to the jump in Tel , is absent in the QAHE
breakdown curves. Hence, while electron heating would ac-
celerate the breakdown of the QAHE, it does not seem to be
its origin.

B. Electric-field-driven percolation of 2D charge puddles

To understand the origin of the breakdown as well as the
strongly reduced activation energy, it is useful to consider the
role of charge puddles appearing in compensated TI mate-
rials [29–31]. It has been established that puddle formation
in three-dimensional (3D) compensated TIs is an unavoid-
able consequence of the long-range nature of the Coulomb
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FIG. 7. Illustration of puddles in compensated QAHI films and
the response to electric fields. (a) Spatial variation of the energy
spectrum of the gapped 2D surface state. Meandering lines represent
the 2D conduction and valence band edges, EC and EV , respectively,
in the presence of Coulomb disorder. When the Fermi level μ crosses
the band edges, electron and hole puddles (shaded regions) are cre-
ated. (b) Situation close to the breakdown. Arrows depict thermally
activated or hopping transport. (c) Growth of puddles driven by
increasing electric field Eyx until breakdown occurs at Eyx = EBD,
based on Ref. [40]. The critical current Ic is reached with the critical
source potential producing EBD between two opposing edge states.
The shaded regions correspond to electron and hole puddles in an
insulating background.

interaction [32–34]. While the 3D bulk puddles are strongly
suppressed near the surface due to the screening by the metal-
lic surface states [35,36], 2D surface puddles are predicted
to show up in compensated TI thin films [37]. In this regard,
(BixSb1−x )2Te3 is a solid solution of n-type Bi2Te3 and p-type
Sb2Te3, achieving a compensation to result in vanishing 2D
surface carriers at low temperature [38]. In the QAHI films,
the tendency to form 2D puddles would be strong, because
the averaged chemical potential is tuned into the gap opened
at the charge neutrality point. In such a case, little surface
carriers are available to screen the Coulomb potential and the
screening can only occur nonlinearly through the formation of
2D electron and hole puddles [32], as illustrated in Fig. 7(a).
In addition, the large dielectric constant of TI films slows
down the decay of the Coulomb potential in space and greatly
enhances the puddle formation [37]. Indeed, signatures of
puddle formation have been observed in the resistivity of
ultrathin films of (BixSb1−x )2Te3 [39].

In the light of the likely existence of 2D puddles in com-
pensated TI films, we propose that the breakdown occurs via
the formation of metallic percolation paths connecting these
2D puddles across the width of the sample. The QAHI films
can be thought of as an insulating background containing
isolated metallic puddles, as shown in Fig. 7(c). In analogy to
Ref. [40] for the QHE, we propose that at high enough source
potential, the insulating regions separating two adjacent elec-

tron or hole puddles break down due to the high electric field
created between source and drain potentials. Since the local
potential is constant within the metallic puddles, the electric
field is confined to the insulating regions. As the puddles
grow with increasing source potential, the local electric field
in between the puddles increases rapidly, facilitating further
puddle growth in a nonlinear manner; see Figs. 7(b) and 7(c).
At the critical value of the source potential corresponding to
the critical current, the growth becomes unstable and leads to
an avalanche process [40], so that the metallic paths percolate
from one edge of the sample to the other and causes an abrupt
onset of dissipation.

The puddle breakdown mechanism proposed here also
sheds a new light on the very low temperature required to ob-
serve the QAHE, which is much lower than that expected from
the Curie temperature TC (≈15–20 K) or the spectroscopically
resolved exchange gap (≈14–28 meV) [24,25]. In the pres-
ence of charge puddles, electrons are not excited across the
2D exchange gap; rather, electrons and holes are thermally
excited from the puddles to the percolation levels [32]. As
demonstrated already for 3D bulk puddles in compensated
TIs, this reduces the activation energy for thermally-activated
transport [32–34]. Moreover, at low temperature the elec-
trons and holes may hop or tunnel directly between puddles,
possibly giving rise to a crossover from activated transport
to variable-range-hopping (VRH) behavior [32], as was ob-
served in some transport studies on QAHI films [10,11]. The
puddle scenario is also consistent with the bulk dissipation
observed in Corbino geometry [14].

C. Zener tunneling between 2D charge puddles

Lastly, we comment on Landau-Zener tunneling between
neighboring electron-hole puddles as a possible breakdown
mechanism. Estimates of the tunneling probability for such
a process in ultrathin TI films possessing a hybridization gap
in the 2D surface state spectrum were made in Refs. [37,39].
Assuming a defect density of Ndef ≈ 1019 cm−3, an insulat-
ing state in our QAHI films is expected to be realized for
a gap � > 10–60 meV at the Dirac point. This is exactly
the range of the exchange gap found for magnetically doped
(BixSb1−x )2Te3 [24,25]. Note that in the presence of charge
puddles, the application of an electric field is not required
to induce Zener tunneling, because the disorder potential
provides the required local electric field and band bending.
In other words, in the presence of puddles, Zener tunneling
would provide a finite bulk short even at infinitesimally small
currents. As a result, no sudden onset of Zener tunneling at
some critical current is expected.

It is prudent to mention that an estimate based on
Refs. [37,39] would predict a sizable Zener tunneling in our
films. However, a near-dissipationless QAHI state has been
experimentally observed, at least for low probe currents, with
a reported longitudinal resistivity value as low as 1.9 m�

[11]. This speaks against any major role of Zener tunneling
in compensated QAHIs. Nevertheless, Zener tunneling might
be relevant to the small, nonvanishing resistance in the pre-
breakdown regime.
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V. CONCLUSION

We demonstrated that the breakdown of the QAHE, to be
understood as the loss of dissipationless edge transport, occurs
in the region with the shortest separation between the high-
and low-potential branches of the chiral edge state, while it
is absent in nonlocal transport regions. This indicates that the
transverse electric field is responsible for the breakdown and
gives a guiding principle for minimizing the breakdown effect.
Moreover, we propose that charge puddles play a key role
in the breakdown mechanism for the QAHE and govern the
diffusive transport through the 2D bulk states.

Note added in proof. After submission, we became aware
of the work by Fijalkowski et al. reporting nonlocal transport
measurements on V-doped (BixSb1−x )2Te3 in multiterminal
Corbino devices [41].
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