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Second-harmonic generation in plasmonic waveguides with nonlocal response and electron spill-out
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Plasmonic waveguides provide an integrated platform to develop efficient nanoscale ultrafast photonic de-
vices. Although metals display a rich variety of nonlocal optical effects and surface nonlinearities, the study
of plasmonic waveguides has been limited to considering conventional bulk nonlinearities. Such analytical
tools, however, do not allow us to incorporate the nonlocal optical effects on the studied phenomenon or the
nonlinearities arising from it. In this work, we present a method based on the numerical calculation of the
inhomogeneous solution that enables the study of nonlinear optical effects, such as second-harmonic generation,
in waveguides displaying nonlocal response effects as well as surface nonlinearities. We use the proposed method
to study the nonlinear response arising from the hydrodynamic description of free electrons in the metallic
constituents of the waveguides, comparing local and nonlocal approximations. As a more general application
of our method, we also consider nonlinearities arising from the quantum hydrodynamic theory with electron
spill-out. Our results may find applicability in the design and analysis of integrated photonic platforms for
nonlinear optics incorporating a wide variety of nonlinear materials such as heavily doped semiconductors for
midinfrared applications.

DOI: 10.1103/PhysRevB.106.045415

I. INTRODUCTION

Plasmonic systems provide the possibility of concentrat-
ing and manipulating light below the diffraction limit, and
they are at the core of a variety of optical applications [1,2],
from improved chemical and biological sensing [3,4] and
efficient photovoltaic energy harvesting [5], to ultrafast pho-
tonic signal processing [6,7] and nanolasing [8–10]. In the
past decades, due to the ever-increasing demand for data
processing capabilities, researchers have focused a great
effort on the development of ultracompact photonic ele-
ments, including plasmonic components, such as waveguides
and couplers [11–14], digital gates [15,16], routers [17,18],
photon-electric converters [19], and control switches [20].
Plasmonic waveguides have also been relevant with regard
to several quantum optical phenomena such as single-photon
emission [21,22], energy transfer and superradiance of emitter
pairs [23], and qubit-qubit entanglement generation [24].

Plasmonic systems allow miniaturization below the diffrac-
tion limits thanks to surface plasmon-polariton (SPP)
modes—the resonant collective oscillations of free electrons
(FEs)—appearing in materials with a high carrier concen-
tration (i.e., metals and heavily doped semiconductors) and
arising at the interface with a dielectric because of the in-
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teraction with an external electromagnetic (EM) excitation.
Localization of light associated with SPP modes is naturally
promising for the enhancement of intensity-dependent phe-
nomena [25–35].

Functionalities based on nonlinear optics are very at-
tractive in terms of their femtosecond response times and
terahertz bandwidths. However, sizable nonlinear effects de-
mand both high field intensities and large interaction volumes,
together with configurations that offer efficient nonlinear
conversions as well as materials with large nonlinear suscep-
tibilities [36–38]. All of these features could be provided in
principle by plasmonic systems, since metals possess some
of the largest nonlinear susceptibilities. Notably, however,
interaction volumes in nanoantennas are quite limited, and
nonlinear efficiencies remain overall very small [25,26,28,29].
On the other hand, plasmonic waveguides can sustain sub-
wavelength field localization for the entire propagation length,
thereby providing ideally larger volumes of interactions.
Indeed, hybrid dielectric-plasmonic waveguides have been
reported with a variety of nonlinear applications (see, for
example, a comprehensive review on the latest advances in
nonlinear plasmonic waveguides [33]).

In this work, we present a method to study second-
harmonic generation (SHG) in waveguides based on the
numerical calculation of the inhomogeneous solution at the
waveguide cross-section in the presence of arbitrary non-
linear sources. Conventionally, coupling of the pump field
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modes and SH modes is carried out through an evaluation
of overlap integrals [39–46]. Most waveguide systems can
in fact be easily studied by decoupling the propagation and
transverse problems [39–46]. This separation is only possible
when the electric field divergence, which is nonzero at the
metal surface, is negligible. As will be shown in Sec. II,
such an approximation does not hold when nonlinearities
arise directly from the plasmonic material [47] and, in par-
ticular, from the dynamics of nonequilibrium FEs [30,31,48].
Indeed, FE nonlinearities in noble metals have been shown
to contribute strongly to second-order nonlinear processes in
the visible/near-infrared (IR) [28,29,35], while experimental
measurements in gold nanoparticle arrays have demonstrated
SHG efficiencies comparable to those in nonlinear crystals
when normalized to the active volumes [25].

In the following, we introduce our method in the context of
the hydrodynamic theory. We then utilize our method to study
SHG in distinct plasmonic waveguides based on semiclas-
sical hydrodynamic nonlinearities, as well as a generalized
quantum hydrodynamic theory with electron spill-out effects.
For completeness, we apply our method to the case in which
nonlocal effects are neglected, and we discuss the impact of
more accurate models. We validate our method through full-
wave numerical simulations of SHG in a simple waveguide
configuration.

II. THEORY

The hydrodynamic model has been used extensively
to describe FE nonlinear dynamics in noble metals
[26,28–31,35,49–51] and heavily doped semiconductors [52].
Within the hydrodynamic description, FE nonlinear dynamics,
under the influence of external electric, E(r, t ), and magnetic,
B(r, t ), fields can be described by the following equation [53]:

me

[
∂v
∂t

+ v · ∇ + γ

]
v = −e(E + v × B) − ∇ δG[n]

δn
, (1)

where me is the electron mass, γ is the electron collision
rate, and e is the elementary charge (absolute value). The
hydrodynamic variables v(r, t ) and n(r, t ) represent velocity
and density of free electrons, respectively, and G[n] contains
the total internal energy of the electronic system [50,53]. The
exact expression for G[n] is unknown, however it is possible
to rely on an approximated expression. Its simplest form can
be obtained in the Thomas-Fermi approximation, i.e., G[n] =
TTF[n] = (Eha2

0)cTFn5/3, where Eh is the Hartree energy, a0 is
the Bohr radius, and cTF = 3

10 (3π2)2/3. This approach will be
referred to as Thomas-Fermi hydrodynamic theory (TF-HT).

Equation (1) can be easily rewritten in terms of the polar-
ization field P(r, t ) considering that ∂P

∂t = J = −env, where
J(r, t ) is the current density. Then, using a perturbative ap-
proach, it is possible to write n(r, t ) = n0 + nind(r, t ), where
n0 and nind = 1

e ∇ · P are the equilibrium and the induced
charge densities, respectively. For low enough excitation in-
tensities, nind � n0, such that we can write

−β2∇∇ · P + ∂2P
∂t2

+ γ
∂P
∂t

= ε0ω
2
pE + SNL, (2)

where β2 = (Eha2
0) 10

9
cTF
me

n2/3
0 , and SNL is the second-order

nonlinear source, including Coulomb, Lorentz, convective,

and nonlinear pressure terms [29]:

SNL = e

me
E(∇ · P) − μ0e

me
(Ṗ × H) + 1

n0e
(Ṗ∇ · Ṗ + Ṗ · ∇Ṗ)

+ 1

3

β2

n0e
∇(∇ · P)2. (3)

Here, Ṗ represents the time derivative of the polarization
field.

To study SHG, let us expand the fields into two time-
harmonic contributions, F(r, t ) = ∑

j F j (r)e−iω j t , with F =
E, H, or P and j = 1, 2. This assumption limits the applica-
bility of our method to relatively long pulses in which the time
dependence of the envelope can be neglected. Equations (2)
and (3) and Maxwell’s equations can then be rewritten as a set
of coupled equations for each harmonic ω j :

∇ × ∇ × E j − k2
j E j = μ0ω

2
j P j, (4a)

−β2∇∇ · P j − (
ω2

j + iγω j
)
P j = ε0ω

2
pE j + S j,NL, (4b)

where k j is the free-space wave number. Considering that
∇ · P = −ε0∇ · E, the polarization field can be expressed as
a function of the electric field:

P j = ε0χ j

[
E j − β2

ω2
p

∇∇ · E j

]
+ P j,NL, (5)

where χ j = εr (ω j ) − 1 = − ω2
p

ω2
j +iγω j

and P j,NL = χ j

ω2
p
S j,NL. Fi-

nally, from Eqs. (4), we get the following system:

∇2E1 −
[

1 − β2 k2
1χ1

ω2
p

]
∇∇ · E1 + εr (ω1)k2

1E1 = 0, (6a)

∇2E2 −
[

1− β2 k2
2χ2

ω2
p

]
∇∇ · E2+ εr (ω2)k2

2E2

= −μ0ω
2
2P2,NL, (6b)

where, for simplicity, under the undepleted pump approxi-
mation, we assumed P1,NL � 0. The second-order nonlinear
source becomes

S2,NL = e

me
E1∇ · P1 + i

ω1μ0e

me
P1 × H1

− ω2
1

n0e
[P1(∇ · P1) + P1 · ∇P1]

+ 1

3

β2

n0e
∇(∇ · P1)2. (7)

Equations (6a) and (6b) can be solved assuming the continu-
ity of the normal component of the polarization vector, i.e.,
P−

n = P+
n . This assumption is often combined with a constant

equilibrium density n0 in the metal, while being zero outside
(hard-wall boundary conditions) [28,29,31,54–56].

We are interested in waveguide solutions at this point. To
derive the fundamental field (FF) from Eq. (6a), let us assume,
without loss of generality, that the modes propagate along
the z-direction. The solution is then of the form E1(r) =
A1Ẽ1(x, y)eiκ1z, where κ1 is the complex mode propagation
constant, A1 is the mode amplitude, and Ẽ1(x, y) is the mode
profile of the FF at the waveguide cross-section. By writing
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∇ = ∇⊥ + iκ1ẑ, Eq. (6a) can be solved either analytically,
in a few simple cases [54], or numerically, for an arbitrary
waveguide cross-section [55–57], using an eigenmode solver
to calculate the mode’s profile and propagation constant. In
our implementation, we have used Comsol Multiphysics [58]
with a customized weak form. The found mode can then be
normalized assuming the input-power at the z = 0 waveguide

cross-section to be 1 W:

1

2

∫
�

Re[Ẽ1 × H̃∗
1] · ẑdS = 1 W, (8)

where � is the cross-sectional plane. Therefore, within these
assumptions, the second-order nonlinear source in Eq. (6b)
can be rewritten as

P2,NL(r) = A2
1
χ (ω2)

ω2
p

e2iκ1z

{
e

me
Ẽ1(∇⊥ + iκ1ẑ) · P̃1 + i

ω1μ0e

me
P̃1 × H̃1 − ω2

1

n0e
[P̃1[(∇⊥ + iκ1ẑ) · P̃1] + P̃1 · (∇⊥ + iκ1ẑ)P̃1]

+ 1

3

β2

n0e
(∇⊥ + iκ1ẑ)[(∇⊥ + iκ1ẑ) · P̃1]2

}
, (9)

where the mode is normalized in such a way that A2
1 is the

pump input power.
For the SHG, let us now consider Eq. (6b). In nonlinear op-

tics, the divergence term is generally neglected and a solution
of Eq. (6b) can be easily obtained in the slowly varying enve-
lope approximation, through the definition of overlap integrals
evaluated in the waveguide cross-section [39–46]. In the case
of metal nonlinearities, and in particular of hydrodynamic
nonlinearities, neglecting the divergence will strongly affect
the results, since the larger nonlinear contributions arise at the
metal surface, where the divergence is nonzero. On the other
hand, fully solving Eq. (6b) in a three-dimensional numerical
setup is challenging, due to the large-scale mismatch between
the surface effects and the overall mode propagation.

In what follows, we describe a procedure that allows us
to calculate SHG along the waveguide by only solving a
numerical problem on a two-dimensional cross-section of the
waveguide.

The general solution of the partial differential equation (6b)
is given by the sum of the solution of the homogeneous equa-
tion [i.e., assuming P2,NL(r) = 0] and a particular solution
of the inhomogeneous equation, i.e., E2(r) = Eh(r) + Ep(r).
Eh(r) = ∑

m amẼm(x, y)eiκmz, with Ẽm being the modes sup-
ported by the waveguide at ω2, and am are amplitude
coefficients to be determined. The modes Ẽm can be easily
found through an eigenmode solver. As usual, we assume that
the modes are normalized to carry the same input power, i.e.,

1

2

∫
�

Ẽm × H̃∗
m · ẑdS = 1 W. (10)

Because the system is not lossless, the modes need to
satisfy the following orthogonality relation [59,60]:∫

�

(Ẽm × H̃n) · ẑdS = Nmδnm, (11)

with

Nm =
∫

�

(Ẽm × H̃m) · ẑdS. (12)

The particular solution can be sought of the form Ep(r) =
Ẽp(x, y)ei2κ1z, where κ1 is the known FF’s propagation con-
stant. Equation (6b) can then be solved in the waveguide
cross-section by transforming the nabla operator as ∇ =
∇⊥ + 2iκ1ẑ. Once Ep(r) is known, we can determine the

coefficients am by imposing the total power flow to be zero
at the waveguide input, z = 0:

WSHG(z = 0) = 1

2

∫
�

Re[E2 × H∗
2] · ẑdS = 0. (13)

To do so, it is useful to project the field Ep on the waveg-
uide modes at z = 0, i.e., find the coefficients bm such that
Ep(z = 0) = ∑

m bmẼm.
These coefficients can be found as [59,60]

bm = 1

2Nm

∫
�

(Ẽp × H̃m + Ẽm × H̃p) · ẑdS. (14)

The condition of Eq. (13) then becomes

∑
m,n

[
(ama∗

n + amb∗
n + bma∗

n + bmb∗
n)

×
∫

�

(Ẽm × H̃∗
n ) · ẑdS

]
= 0. (15)

If the number of modes and the losses are small such
that

∑
m �=n

∫
�

(Ẽm×H̃∗
n ) · ẑdS � ∑

m

∫
�

(Ẽm×H̃∗
m) · ẑdS,

Eq. (15) can be simplified as

∑
m

[(|am|2 + amb∗
m + bma∗

m + |bm|2)

×
∫

�

(Ẽm × H̃∗
m) · ẑdS

]
� 0. (16)

Since the quantity in the integral is nonzero, it must be∑
m

(|am|2 + amb∗
m + bma∗

m + |bm|2) = 0. (17)

Equation (17) can be satisfied by choosing am = −bm. The SH
field can then be written as

E2(r) =
∑

m

bmẼm(x, y)(ei2κ1z − eiκmz ), (18)

and the SHG power as a function of the propagation distance
z is given by

WSHG(z) =
∑

m

|bm|2|ei2κ1z − eiκmz|2. (19)

Equation (19) constitutes the main result of this section.
The SHG power along the waveguide can be obtained through
the mode propagation constants, κ1 and κm, at the FF and
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FIG. 1. The MIM waveguide: (a) schematic of the geometry,
(b) magnetic field profiles, and (c) the real part of the effective
refractive indices as a function of the gap size of the supported
modes.

SH wavelengths, respectively. Note that if only one mode is
supported by the waveguide at ω2, i.e., b1 = b, then |b|2 =
1
2

∫
�

Re[Ẽp × H̃∗
p] · ẑdS. In the following, we will refer to this

method as the particular solution method (PSM).

III. RESULTS

In this section, we present some application examples
of SHG in waveguides with hydrodynamic nonlinearities.
To validate our method, we first consider a simple metal-
insulator-metal (MIM) waveguide. Because of the translation
symmetries of the system, in fact, it is possible to easily
perform full-wave calculations without having to rely on a
three-dimensional implementation of the hydrodynamic equa-
tions [61]. Subsequently, we apply the PSM to a typical
waveguide design without any translation symmetry in the
transverse plane. Finally, we demonstrate the validity of the
PSM for a system in which electron spill-out effects are taken
into account through a more sophisticated model.

A. Second-harmonic generation in metal-
insulator-metal waveguides

Different types of metal-dielectric waveguides have been
presented theoretically and demonstrated experimentally (see,
e.g., Refs. [62–65]). Here, we study a symmetric configura-
tion, i.e., a thin dielectric layer of size g sandwiched between
two gold surfaces (with the metal extending indefinitely on
both sides of the dielectric), as shown in Fig. 1(a). We con-
sider the following parameters for gold: n0 = 5.7×1022 cm−3,
γ = 1.07×1014 s−1, and β = 1.27×106 ms−1 [29], while
the dielectric layer has a relative permittivity εd = 5.56. The
wavelengths considered for parametric interaction are λFF =
1550 nm and λSH = 775 nm at the FF and SH, respectively.
The MIM waveguide supports symmetric gap-plasmon modes
at both FF and SH wavelengths, denoted as TM1@λFF/SH,

FIG. 2. Magnetic field transverse component, Hy, of the particu-
lar solution and modes at the SH wavelength for the MIM waveguide.

and an antisymmetric SPP at SH, indicated as TM2@λSH (see
Fig. 1). We render the magnetic field profiles and the real part
of the effective indices of the modes in Figs. 1(b) and 1(c),
respectively. As shown in the latter figure, their dispersive
behavior holds for a wide range of gap sizes.

An efficient energy transfer from the mode at the FF to
that at the SH can be obtained if a gap size is chosen that
guarantees a phase-matching (PM) condition [41–45,66]. In
our case, as can be seen in Fig. 1(c), the PM occurs between
the symmetric mode TM1@λFF at FF and the higher-order
antisymmetric modes TM2@λSH at the SH wavelength for a
gap size of g ≈ 327 nm. For the validation of our method, we
consider two situations: (i) the just mentioned phase-matched
case, and (ii) a non-phase-matched case, with g = 270 nm.
We assume that the whole FF energy is in the TM1@λFF

mode, while the SHG can couple to both TM1@λSH and
TM2@λSH. In Fig. 2 we show the magnetic field profile of the
particular solution (PS) obtained by considering the nonlinear
polarization in Eq. (9), as well as the modes available at
the SH. It is easy to guess from the plot that most of the
SHG energy will be coupled to TM2@λSH, due to the modes’
symmetries. Indeed, this is confirmed by the evaluation of the
coefficients |bm|2 associated with the modes, which differ by
several orders of magnitude (see Table I).

By using Eq. (19), we can calculate the SHG power along
the waveguide, reported in Fig. 3 for the two studied cases,
considering an input power of 1 MW/m. As expected, in the
phase-matched case we observe the SH signal building up
until the losses in both the FF and the SH modes start affecting
the conversion process. The SHG peak is obtained at approx-
imately 10 μm. Conversely, in the non-phase-matched case,
the SHG is limited first by the short coherence length, and

TABLE I. Coefficients |bm|2 and energy flux Wp of the particular
solution for the MIM waveguide.

g (nm) |bTM1 |2 |bTM2 |2 Wp (W)

327 7.6×10−22 0.25 0.25
270 2.9×10−24 2.2×10−3 2.2×10−3
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FIG. 3. SHG intensity as a function of the propagation dis-
tance: (a) the phase-matched and (b) non-phase-matched case for
the MIM waveguide. Wave numbers of the interacting TM1@λFF

and TM2@λSH modes are κFF = 1.02×107 + 3.64×104i, κSH =
2.05×107 + 1.34×105i in (a) and κFF = 1.03×107 + 4.19×104i,
κSH = 1.99×107 + 1.49×105i in (b).

then by the metal losses. However, in both cases we obtained
perfect agreement with full-wave calculations [28,29,52], per-
formed by solving directly Eqs. (4) in the x-z plane (see
Fig. 3). These results shall lay a foundation for the appli-
cability of the PSM to characterize the SHG in a variety
of waveguides with hydrodynamic nonlinearities, as will be
shown in the following subsections.

B. Nonplanar waveguides with hydrodynamic nonlinearities

Nonplanar waveguides, characterized by an index profile
n that is a function of both transverse coordinates, are the
most used in device applications. There are many examples
of these kinds of structures, differentiated by the distinctive
features of their index profiles [11–14]. Here, we consider
a nonplanar waveguide whose cross-section is shown in the
inset of Fig. 4(a), together with its dispersion characteristics.
The structure consists of a ridge made of high-index dielectric
material (Si) grown over a rectangular nanowire metallic core
(which will act as a nonlinear medium) surrounded by a low-
index dielectric material placed on top of a SiO2 substrate.
The index contrast of the waveguide’s constituents enforces
the electromagnetic energy to be confined in the core-region
of the ridge, which can be exploited to enhance nonlinearities
present in that region while reducing losses associated with a
typical plasmonic waveguide.

The waveguide is designed to support the FF mode at
λ1 = 1300 nm, while generating at λ2 = 650 nm. We present
the modal structure of the waveguide in Fig. 4. The variation
of the mode effective indices as a function of the height
h of the metallic core is reported in Fig. 4(a), while the
norm of the electric field of the supported modes is shown
in Figs. 4(b)–4(d). We observe that a lower-order hybrid
mode of the nonplanar waveguide appears at both the FF
and SH wavelength (see the trends EH00@λFF/SH in Fig. 4),
whereas the modal dispersion of the guided modes dictates
that the higher-order hybrid modes indicated as EH10/01@λSH

are excited only at the SH wavelength. The PM condition
occurs between EH00@λFF and EH01@λSH for h = 89.5 nm
for fixed geometrical parameters of the design [see the inset
of Fig. 4(a)].

FIG. 4. Nonplanar waveguide: (a) Tuning of the effective refrac-
tive indices as a function of the height of the metallic core, h, and
(b)–(d) electric field profiles of modes supported by the structure
at distinct wavelengths; the inset in (a) shows a schematic of the
nonplanar waveguide; dimensions are in nanometers. The dielectric
constants used are εSi = 12.25, εSiO2 = 2.0, and εl = 3.422 for the
low-index dielectric. The dashed-line plots represent the dispersion
characteristics of the interacting modes corresponding to the local
response approximations.

Let us consider a pump input power of 1 W and start
quantifying the contribution of each of the modes at the SH
interaction wavelength to the SHG. Based on the calculated
|bm|2 of each of the modes at the SH wavelength, we con-
clude that both of the modes EH00@λSH and EH01@λSH

can contribute to the SHG (see Table II). The single-mode
contributions and the total SHG power as a function of the
propagation distance are reported in Fig. 5(a). Interestingly,
the phase-matched mode (blue line) contributes almost negli-
gibly to the overall SHG energy, which couples mostly into the
non-phase-matched mode (green line). This counterintuitive
result is due to the interplay between the waveguide losses
and the SHG buildup speed. To understand this mechanism,
let us artificially reduce the metal losses in the waveguide
by one order of magnitude. SHG along the waveguide length
for such a case is shown in Fig. 5(b). We observe that, al-
though at small propagation distances the non-phase-matched
EH00@λSH carries more SHG energy than the phase-matched

TABLE II. Coefficients |bm|2 and energy flux Wp of the particular
solution for the nonplanar waveguide under TF approximations.

γ (s−1) |bEH00 |2 |bEH10 |2 |bEH01 |2 Wp (W)

1.07×1014 1.1×10−8 1.5×10−20 1.4×10−8 1.5×10−7

1.07×1013 1.1×10−8 1.5×10−20 1.4×10−5 1.4×10−5
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FIG. 5. Evolution of SHG intensity along the nonplanar waveg-
uide. Red line, total and individual SH modes contributions; green
line, EH00; and blue line, EH01: (a) original system and (b) the
case of reduced losses. The wave numbers of the mode involved are
κFF = 1.30×107 + 2.38×105i, κEH00 = 3.53×107 + 5.34×105i, and
κEH01 = 2.60×107 + 3.84×105i.

mode, it diminishes quickly, whereas the contribution from
the phase-matched mode slowly builds up, peaking at a dis-
tance of around 25 μm. Then we partially retrieve the results
for the ideal case without losses in which the SHG in the
phase-matched mode increases until saturation of the pump.
This example shows that, in general, the optimal device length
is not determined by the coherence length of the phase-
matched mode, but it requires evaluating the contributions of
all relevant modes. This is particularly relevant with hydrody-
namic nonlinearities since most of the surface contributions
drive strong evanescent fields that can easily couple to non-
phase-matched modes.

Although we have so far considered nonlocal effects (un-
der the TF approximation), the PSM can also be applied to
the case in which the nonlinear response is due to purely
surface currents. Under the well-known local response ap-
proximations (LRA) [62], it possible to define purely surface
nonlinear susceptibilities [67,68] (see Appendix A) on top of
the bulk contributions, such as the Lorentz term and part of
the convective term [29,69]. Note that even within the LRA,
the presence of effective magnetic currents generates sharp
variations of the electric field at the metal surface, requiring
a very fine mesh to avoid numerical artifacts. This makes it
computationally demanding to numerically calculate SHG in
a conventional three-dimensional full-wave setup. In Fig. 4(a),
we provide the dispersion relation of the system under the
LRA (dashed lines). Interestingly, we observe almost no dif-
ference between the SHG intensities obtained in the presence
of a hydrodynamic pressure and in the LRA (see Fig. 5). As
we will show in the next section, this is due to the fact that
nonlocal optical effects are more pronounced at structure sizes
below 20 nm [53,55–57]. In the current waveguide, the wire
has a much larger size, and its SHG is virtually unaltered by
the presence of nonlocal effects.

C. Electron spill-out

In this section, we further demonstrate the generality of the
PSM by incorporating electron spill-out at the metal surfaces.
In writing Eq. (2), we assumed a specific approximation for

FIG. 6. (a) Schematic of the strip waveguide embedded in a
dielectric medium with εd = 5.56. The sharp corners are rounded
off with a radius of curvature of 1.5 nm. (b) The equilibrium charge
density n0(r) normalized by the charge density in the bulk, nb, and
(c) the density profile near the metal-dielectric interface along the
white line shown in (b). (d) Real part of neff as a function of the
guide width w, considering h = 5 nm.

the energy functional G[n] = TTF[n], i.e., the Thomas-Fermi
approximation with the hard-wall boundary conditions (i.e.,
no electron spill-out). In the following, we express the func-
tional in a more general form: G[n] = TTF[n] + TvW[n,∇n] +
EXC[n], where TvW is the von Weizsäcker correction to the
TF kinetic energy, and EXC is the exchange-correlation energy
functional. The ∇n-dependent correction in the kinetic energy
functional allows us to take into account the electron spill-out
(spatial variation of charge density) at the metal interface.
This approach is generally known as quantum hydrodynamic
theory (QHT).

Equation (6b) can then be generalized to

− ∇ × ∇ × E j − χ (ω j )k2
j

e
∇

(
δG[n]

δn

)
j

+ εr (ω j )k
2
j E j

= −μ0ω
2
j P j,NL, (20)

where j = 1, 2 and P1,NL = 0 (undepleted pump approxima-
tion). The nonlinear polarization P2,NL must be enriched with
nonlinear terms associated with the space-dependent density
as well as to the more complex expression of G[n]. Detailed
expressions for the linear functionals and P2,NL can be found
in Refs. [50,53].

To show an example of the proposed formulation with
electron spill-out within the framework of QHT, we study
SHG in a metal strip waveguide of width w and height h
immersed in a dielectric medium with a dielectric constant
εd , as depicted in Fig. 6(a). We compute the space-dependent
equilibrium electron density n0(r) self-consistently using the
zeroth-order QHT equation (see Refs. [53,70] for more de-
tails). The color map and line plot of n0, showing the electron
spill-out from the metal-dielectric interface, are presented in
Figs. 6(b) and 6(c), respectively. Considering a fixed waveg-
uide height h = 5 nm, this configuration supports the hybrid
mode EH00@λFF at a pump wavelength λFF = 1550 nm and
two hybrid modes EH00@λSH and EH01@λSH at the SH wave-
length λSH = 775 nm. The real part of the effective indices of
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FIG. 7. Electric field profile (Ey-component) of the (a) funda-
mental mode EH00@λFF, (b) the first mode EH00@λSH, (c) the
second mode EH01@λSH at the SH wavelength, and (d) the partic-
ular solution (PS). (e) SHG intensity as a function of propagation
distance along with the individual contribution of each mode. The
propagation constant of EH00@λFF is κFF = 4.62×107 + 2.88×107i,
whereas those of EH00@λSH and EH01@λSH are κEH00 = 1.6×108 +
8.7×106i and κEH01 = 9.23×107 + 2.44×107i, respectively.

these modes as a function of waveguide width w is plotted in
Fig. 6(d).

The PM between the symmetric mode EH00@λFF and
the antisymmetric mode EH01@λSH occurs for the waveg-
uide width w = 21.85 nm. The associated mode profiles
(Ey-component) at the FF and SH are depicted in Figs. 7(a)–
7(c) and the field profile of the particular solution (PS) is
shown in Fig. 7(d). To explore the contributions from each
mode at the SH to the generated signal, it can be noted that
the nonlinear source field, i.e., the particular solution, see
Fig. 7(d), overlaps well with the symmetric mode EH00@λSH,
and therefore a major contribution to the generated power
comes from this mode, as shown in Fig. 7(e). Indeed, we can
observe that there is no overlap between the nonlinear source
(PS) and the EH01@λSH mode due to its antisymmetric nature,
resulting in virtually zero contribution to the SHG from this
mode.

Finally, we show a comparison between the aforemen-
tioned approaches in order to show the impact of the
nonlocality and quantum spill-out on the mode indices on
the SHG power. In particular, we consider the metal strip
waveguide with the same material and geometrical parameters
as considered in Fig. 6. The effective mode indices computed
within the conventional approach, which neglects the electron
pressure and spill-out, i.e., the LRA, and TFHT, which only
neglects spill-out effects, are compared against the QHT, as
shown in Fig. 8(a). The dispersion curves show that the hybrid
modes at the SH wavelength are considerably influenced by
the nonlocal and spill-out effects. The calculated SHG inten-
sity along the waveguide is plotted in Fig. 8(b) under different

FIG. 8. (a) Effective mode indices as a function of guide width w

computed using the conventional methods, LRA and TFHT (without
electron spill-out), and they are compared against the QHT (with
electron spill-out). (b) SHG intensity plotted along the direction of
mode prorogation under different approximations. The waveguide
width considered in each case is indicated by the vertical dotted line
shown in Fig. 8(a).

approximations. It can be seen that while TFHT overestimates
the SHG intensity as compared to the LRA, the QHT due
to electron spill-out predicts much lower intensity. From this
example, we can appreciate how important it is to have access
to arbitrarily precise models to evaluate exact SHG along
waveguides. In fact, a traditional optimization technique, i.e.,
the PM technique, might not always provide the most efficient
design.

IV. CONCLUSIONS

We have derived and employed a method to study SHG
originating from FE hydrodynamic nonlinearities in plas-
monic waveguides. Our technique enables calculation of SHG
arising from arbitrary sources and distinguishes itself from
conventional approaches, which often neglect electron pres-
sure effects and other quantum hydrodynamic corrections to
surface nonlinear contributions. Indeed, such elements play
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a pivotal role in nonlinear interactions, as shown in [29,50].
Moreover, the numerical nature of the PSM allows us to easily
calculate the response of purely surface nonlinear sources
providing a valuable and flexible tool for nonlinear guided
optics, even when not considering nonlocal or spill-out ef-
fects. In particular, our formalism can be applied to explore
FE nonlinearities in mid-IR plasmonic waveguides made of
heavily doped semiconductors [71–77], which have emerged
as promising high-quality and tunable plasmonic materials in
this range of wavelengths, with many potential applications
in IR detection, sensing, optoelectronics, and light harvest-
ing [78]. Indeed, although FE optical nonlinearities have
mostly been observed in metals, analogous effects may also
occur in heavily doped semiconductors, and, when coupled
with plasmonic enhancement, these nonlinearities could be up
to two orders of magnitude larger than conventional semicon-
ductor nonlinearities [52,79].

APPENDIX: SECOND-ORDER SURFACE
SUSCEPTIBILITIES

Centrosymmetric media such as noble metals and amor-
phous solids do not allow bulk second-order nonlinear
processes [36]. However, the center of inversion can be broken
at the materials surface, giving rise to the second-order non-
linear contributions. The two nonzero surface susceptibilities,

following Ref. [29], are defined as

χ
(2)
⊥⊥⊥ = − ε0

4n0e

3ω1 + iγ

2ω1 + iγ
, (A1)

χ
(2)
‖⊥‖ = − ε0

2n0e
χ2

1 , (A2)

where n0 is the equilibrium charge density, −e is the elec-
tron charge, ε0 is the permittivity of free space, and ε1 is
the relative permittivity of the centrosymmetric materials at
fundamental frequency ω1. The two surface nonlinear polar-
ization components, then, can be expressed as

P⊥ = ε0χ
(2)
⊥⊥⊥E2

⊥, (A3)

P‖ = ε0χ
(2)
‖⊥‖E‖E⊥. (A4)

These polarization components can be linked to the two sur-
face currents: the electric surface current Je and the magnetic
surface current Jm defined as [67,68]

Je = ∂P‖
∂t

, (A5)

Jm = 1

ε0ε(ω2)
n × ∇‖P⊥, (A6)

where Je and Jm are parallel to the surface. We have imple-
mented the currents Eqs. (A5) and (A6) in Comsol by adding
a customized surface weak contribution integral.
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