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Engineering the speedup of quantum tunneling in Josephson systems via dissipation
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We theoretically investigate the escape rate occurring via quantum tunneling in a system affected by tailored
dissipation. Specifically, we study the environmental assisted quantum tunneling of the superconducting phase
in a current-biased Josephson junction. We consider Ohmic resistors inducing dissipation both in the phase
and in the charge of the quantum circuit. We find that the charge dissipation leads to an enhancement of the
quantum escape rate. This effect appears already in the low Ohmic regime and also occurs in the presence of
phase dissipation that favors localization. Inserting realistic circuit parameters, we address the question of its
experimental observability and discuss suitable parameter spaces for the observation of the enhanced rate.
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I. INTRODUCTION

The inevitable coupling of a quantum system to its sur-
rounding environment is a major obstacle for the accessibility
and usability of quantum behavior for quantum technologies.
Over the last decades, however, the perception of dissipative
couplings between the bath and the system changed, and the
openness of quantum systems has first been proposed [1–4],
and later been shown [5–7] to be also a resource. In particular,
by engineering coherent driving in the presence of specific
reservoirs, open systems can yield steady target states ex-
hibiting protected quantum behavior [8]. In these systems the
environmental degrees of freedom are a resource for quantum
behavior; however, the mentioned effects strongly rely on the
coherent control of the system and the specific form of the
environment.

Here, we propose a system that exploits the environment as
a resource by using basic Ohmic environments, without any
further coherent control. Specifically, we engineer a quantum
system that uses the environment to speed up the escape rate
occurring via quantum tunneling, an effect that is at the heart
of many quantum technologies, especially in superconduct-
ing circuits [9,10]. The first measurements of macroscopic
quantum tunneling of the superconducting phase in a current-
biased Josephson junction [11], paved the way for present-day
superconducting qubits [12–14]. Already in their seminal arti-
cle [11], Devoret et al. included dissipation in their theoretical
formula for the tunneling rate. They modeled the dissipation
via a resistor shunting the junction that leads to an exponential
suppression of tunneling. This result directly follows from the
Caldeira-Leggett model, where the detrimental effect of the
dissipation on the tunneling process was calculated via path
integral methods [15,16]. However, the dissipative coupling
favors localization only because it couples to the phase of the
junction. This coupling can be seen as a weak measurement of

the phase reducing its uncertainty and therefore the tunneling
rate. Since the phase and the charge of a Josephson junc-
tion are conjugate variables in the quantum regime, at zero
temperature the uncertainty relation must be fulfilled. Then,
if one manages to couple the charge to a dissipative bath,
the charge fluctuations are suppressed with the concomitant
enhancement of the phase fluctuations. Ultimately, this can
lead to a larger tunneling rate when, for instance, the phase
evolves in an effective energy potential with several minima.

The described theoretical framework was already stud-
ied in the more abstract context of dissipative position and
momentum couplings [17–27]. In this work, we engineer
the reservoirs for a current-biased Josephson system with
two distinct dissipative interactions affecting respectively the
phase and the charge variable. In this Josephson circuit, the
dynamics of the superconducting phase difference is set by
the so-called tilted washboard potential having (quantum)
metastable minima. We show that the escape rate of the
phase from a metastable minimum is enhanced as a function
of the dissipative coupling strength to the charge. Specifi-
cally, we consider the circuit in Fig. 1(a), where the shunted
resistance RS yields the standard phase dissipative interaction
and the resistance Rg in series with an (external) capacitance
C yields a charge dissipative interaction.

We structure our study as follows. In Sec. II, we first
introduce the Hamiltonian of the system and the theoretical
framework that we use to calculate the escape rate. In Sec. III,
we discuss the nature of the dissipative environments and
introduce a variational approach to approximately calculate
the escape rate in the presence of dissipation. We benchmark
the variational method by comparing it with an exact nu-
merical method (more details on the theoretical description
of the Ohmic environments and the comparison between the
variational and the numerical results are provided in the Ap-
pendices). Afterwards, we discuss our results on the impact
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FIG. 1. (a) Scheme of the current-biased Josephson junction. The
capacitance CJ is the intrinsic capacitance of the Josephson junction
which is connected in parallel to a shunt resistor RS and and to a
branch containing an external capacitance C and a resistance Rg.
(b) Sketch of the tilted cosine potential (solid line) V [ϕ] for the
superconducting phase difference across the junction and its cubic
approximation (dashed line).

of the dissipative couplings and work out their dependence
on the parameters of the Josephson circuit. We comment on
the experimental observability of our results in Sec. IV and
conclude in Sec. V.

II. THEORETICAL MODEL AND METHODS

A. Model Hamiltonian of the Josephson junction

For a current-biased Josephson junction with critical cur-
rent IC , a capacitance CJ , and shunted by a capacitance C
as displayed in Fig. 1(a) (with Rg = 0 and RS → ∞), the
junction Hamiltonian in the quantum regime reads [28,29]

ĤS = Q̂2

2Ctot
− h̄IC

2e
cos (ϕ̂) − �0Ib

2π
ϕ̂, (1)

with Ctot = CJ + C. The phase operator ϕ̂ describes the phase
difference between the two superconductors forming the junc-
tion and Q̂ is its conjugate charge operator [ϕ̂, Q̂] = i2e, i.e.,
the charge tunneling through the junction. e is the electron
charge and �0 = h/(2e) the flux quantum. The second and
the third terms in Eq. (1) form the tilted washboard potential
for the phase V [ϕ] [see Fig. 1(b)].

Assuming to initialize the system to a state in which the
phase is localized around a minimum of the potential, we
calculate the decay rate of the phase in the metastable poten-
tial. We focus the analysis in the semiclassical limit, where
the height of the potential barrier is V0 � h̄ωI , with ωI being
the harmonic frequency of the well [30]. In this regime, the
ratio between Josephson and charging energy is of the order
of EJ/EC ∼ 105, with EC = 4e2/Ctot and EJ = �0IC/(2π ).
In this limit, at zero temperature [β = h̄/(kBT ) → ∞], the
escape rate takes the form [31,32]

�0 = K0e−S(S)
B /h̄, (2)

where S(S)
B = SS[ϕ(S)

B (τ )] is the Euclidean (imaginary time)
action of the system calculated on the saddle-point path
ϕ

(S)
B (τ ), namely, the limit path that minimizes the action

and that starts and ends at the minimum in the time range
τ ∈ [− β

2 ,
β

2 ] for β → ∞. The prefactor K0 is related to the
Gaussian fluctuations around this path. The Euclidean action

for the junction reads

SS[ϕ(τ )]=
∫ β/2

−β/2
dτ

[
Ctot�

2
0

8π2
ϕ̇2(τ ) + V [ϕ(τ )]

]
, (3)

with ϕ̇ = dϕ/dτ . Since we are interested in the decay out of
a metastable state, we approximate the tilted cosine potential
locally with the effective cubic potential

V [ϕ] � Ctot�
2
0

4π2

(
1

2
ω2

I ϕ
2 − 1

3
ω2

Jϕ
3

)
, (4)

where ωI =
√

2πIC
Ctot�0

[1 − (Ib/IC )2]1/4 and ωJ =
√

πIb
Ctot�0

. For

Ib → IC the cubic potential is known to serve as an accu-
rate approximation for all practical purposes if Ib/IC � 0.98,
which is chosen throughout this work. Further, the barrier
height normalized with respect to the frequency of the well
is determined by

V0

h̄ωI
=

√
2π ICCtot�

3
0

6π2h̄

[1 − (Ib/IC )2]
5/4

(Ib/IC )2
. (5)

To find the minimizing path ϕ
(S)
B , one inserts the ansatz ϕ(τ ) =

ϕ
(S)
B (τ ) + δϕ(τ ) into the action (3) and sets the terms propor-

tional to δϕ(τ ) to zero. This yields the following equation in
frequency space:

(
ω2+ω2

I

)
ϕ̃

(S)
B (ω)= ω2

J

2π

∫ ∞

−∞
dω′ϕ̃(S)

B (ω+ω′)ϕ̃(S)
B (ω′), (6)

where ϕ̃
(S)
B (ω) = ∫ ∞

−∞ dτ ϕ
(S)
B (τ )e−iωτ . The integral equa-

tion (6) has the known bounce solution

ϕ
(S)
B (τ ) = 3

2

ω2
I

ω2
J

1

cosh2
(

ωI τ
2

) , (7)

with the result S(S)
B = 108

15
V0
h̄ωI

.

B. Action in presence of dissipation

In the presence of dissipation, the functional form of the
escape rate does not change [15] and is still given by

� = Ke−SB/h̄. (8)

This rate now describes an environmental assisted quantum
tunneling through the barrier. Here SB is the Euclidean action
including the dissipative effect of the environment and evalu-
ated at its corresponding minimizing path SB = S[ϕB(τ )]. For
the circuit shown in Fig. 1(a) with the resistors, the Euclidean
action reads

S[ϕ(τ )] = SS[ϕ(τ )]+ 1

2

∫∫ ∞

−∞
dτ dτ ′F (ϕ)(τ − τ ′)ϕ(τ )ϕ(τ ′)

+ 1

2

∫∫ ∞

−∞
dτ dτ ′F (Q)(τ − τ ′)ϕ̇(τ )ϕ̇(τ ′). (9)

The second term is related to the shunt resistance with the
function F (ϕ)(τ ) which in frequency space is given by

F̃ (ϕ)(ω) = �2
0

4π2RS
|ω|. (10)

This kind of phase (Ohmic) dissipation was the subject of
many studies and its impact has been investigated in several
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systems [15,33]. To quantify it, it is useful to introduce the
parameter γ = 1/(RSCtot ) which represents the damping co-
efficient of the particle moving in the effective potential.

On the other side, the branch with the resistance Rg in
series with the external capacitance C leads to a qualitatively
different kind of dissipation. The effects of these elements
are described by the third term in Eq. (9) with the function
(kernel) F (Q)(τ ) which in frequency space reads

F̃ (Q)(ω) = −C�2
0

4π2

τp|ω|
1 + τp|ω| , (11)

with τp = RgC the relaxation time associated to the two ele-
ments that act as dissipative couplings. Note that the coupling
parameter τp is proportional to the resistance Rg. This kind of
dissipation, that we denote charge dissipation, can lead to a
suppression of the charge fluctuations [34]. For more infor-
mation on the theoretical background we refer to Appendix A
as well as to Ref. [34].

The corresponding equation for the minimizing path ϕB(ω)
in Fourier space is given by(

ω2+ω2
I + 4π2F (ϕ)(ω)

Ctot�
2
0

+ 4π2F (Q)(ω)

Ctot�
2
0

ω2

)
ϕ̃B(ω)

= ω2
J

2π

∫ ∞

−∞
dω′ ϕ̃B(ω + ω′)ϕ̃B(ω′). (12)

From this equation, we can already get some insight into the
effect of charge dissipation on the system. By combining the
kinetic and the charge dissipation part of Eq. (12), we find

Ctotω
2 + 4π2F (Q)(ω)

�2
0

ω2 =ω2

(
Ctot −C

τp|ω|
1 + τp|ω|

)
(13)

and interpret the effect of charge dissipation as an effective re-
duction of the capacitance of the circuit in the high-frequency
region |ω|τp � 1. However, at finite frequency, the charge
dissipation has a dynamical effect beyond a simple renormal-
ization of the capacitance.

In order to calculate the bounce solution of the full dissi-
pative problem, we need to solve Eq. (12). Before we discuss
its exact numerical solution, we present a variational approach
yielding a good approximation to the exact result.

C. Variational bounce solution in presence of dissipation

We here present the variational approach used to find the
approximate solution ϕV (τ ) ≈ ϕB(τ ). Our ansatz for this pro-
cedure is a modified version of the nondissipative bounce path
of Eq. (7); a similar procedure was performed in Refs. [15,35].
We introduce variational parameters A and B such that

ϕ̃V (ω) = 3

2

ω2
I

ω2
J

∫ ∞

−∞
dτ

A

cosh2
(
B ωI τ

2

)e−iωτ (14)

defines a set of paths with the proper boundary conditions.
Inserting these paths into the full dissipative action, we find
the minimal action path by minimizing the latter with respect
to the parameters A and B, i.e., we set dSV /dA = 0 and
dSV /dB = 0, to determine the extremal solution (Ā, B̄). The

variational action evaluated at the minima Ā and B̄ then reads

SV = 27V0Ā2

2ωI

(
4B̄

15
+ 4

3B̄
− 16Ā

15B̄
+ γ κ

ωI
− f (τp, B̄)

2
(
1+ CJ

C

)), (15)

where κ = 12ξ (3)/π3, with ξ (x) the zeta function and
f (τp, B̄) given by

f (τp, B̄) = 16π

B̄4

∫ ∞

0
dx

τpωI x5

(1 + τpωI x)

1

sinh2
(

π

B̄ x
) . (16)

The parameter B̄ satisfies the following equation:

B̄2

(
4

9
− g(τp, B̄)(

1+ CJ
C

))
+B̄

(
2

3

γ κ

ωI
+ 5

3

f (τp, B̄)(
1+ CJ

C

) )
− 4

9
=0, (17)

where we defined the function

g(τp, B̄) = 16π

B̄6

∫ ∞

0
dx

τpωI x6

(1 + τpωI x)

coth
(
x π

B̄

)
sinh2

(
x π

B̄

) . (18)

The parameter Ā is determined by

Ā = 5

16

[
B̄2 8

15
+ 8

3
+ B̄

(
2
γ κ

ωI
− f (τp, B̄)(

1+ CJ
C

) )]
. (19)

In Eqs. (15)–(17), we see that the effect of charge dissipation
is suppressed by the factor (1 + CJ/C). This is due to the fact
that only the charge at C is affected by the resistance Rg, as
will be discussed in more detail in Sec. IV below.

D. Exact bounce solution in presence of dissipation

For the calculation of the exact bounce path ϕB(τ ), we use
the iterative technique introduced by Chang and Chakravarty
[36]. To perform the numerical computation, we define the
rescaled action S = 8π2S/(Ctot�

2
0ωIϕ

2
0 ) depending only on

dimensionless quantities, with ϕ0 = 3
2

ω2
I

ω2
J
. The corresponding

rescaled differential equation for the bounce path reads

z(x) = D−1(x)
3

2

1

2π

∫ ∞

−∞
dx′z(x′ + x) z(x′), (20)

where

D(x)=
(

x2+z(x)+ γ

ωI
|x|− x2(

1+ CJ
C

) τp|x|ωI

(1+τpωI |x|)
)

, (21)

with x = ω/ωI and z(x) = ϕ̃B(x)/ϕ0. We discretize Eq. (20)
to calculate the convolution numerically and solve the equa-
tion iteratively. Following Ref. [36], we avoid a dangerous
direction in the iterative procedure by substituting the factor
in front of the integral via λ0 = 3/(4π ) for the first ansatz
and rescale the obtained z1(x, λ0) to z1(x, λ1), where λ1 =
λ0[z0(0)/z1(0)]2. Continuing this procedure iteratively until
convergence yields the corresponding numerical solution for
the bounce path.

We find that the variational path and action reproduce in
an excellent way the exact numerical results in the parameter
ranges discussed in this work. As an illustrative example, we
report a comparison between the variational bounce and the
exact solution in Fig. 2, both for pure charge and pure phase
dissipation, together with the nondissipative case. Therefore,
hereafter we consider the variational action for the discussion
of the results.
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FIG. 2. Bounce path in the presence of pure charge dissipation
(RS = ∞) in (a) and pure phase dissipation (Rg = 0) in (b). ϕV (τ )
shows the variational treatment (solid line), ϕB(τ ) corresponds to the
numerical values (dots), and ϕS (τ ) denotes the nondissipative bounce
(dashed line). Parameters: Ib/IC = 0.985, IC = 21 μA, Ctot = 6 pF,
and CJ/C → 0.

III. RESULTS

We here present the results on the effects of the resistors
on the escape rate. Our analysis is restricted to the impact on
the exponential part in Eq. (8), which represents the leading
contribution. Specifically, we study the quantity �/�0, where
�0 denotes the decay rate without dissipation, and further
approximate the prefactor K to be independent of the dis-
sipation K/K0 ≈ 1. This assumption is justified also by our
findings in a previous work, where we showed that the change
in the prefactor does not have a significant influence on the
qualitative behavior [23].

Therefore, we describe the influence of dissipation on the
tunneling rate via the quantity

E = e−(1/h̄)(SV −S(S)
B ), (22)

where S(S)
B = SS[ϕ(S)

B ] is the nondissipative action on the
bounce path and SV the variational solution defined in
Eqs. (15)–(19).

For E > 1, the dissipative couplings speed up the escape
through the barrier, while they suppress it for E < 1. In the
following sections, we analyze the different cases using realis-
tic parameters. In the presented results, we use a fixed value of
Ctot = 6 pF for simplicity. However, we will consider changes
of the potential form by varying Ib and IC and analyze the
limit CJ/C → 0. The influence of the finite ratio CJ/C will be
discussed in Sec. IV.

A. Fixing the barrier height V0/(h̄ωI )

We first consider a fixed barrier height of V0/(h̄ωI ) = 4
[see Fig. 3(a) for the corresponding potential form]. By chang-
ing the ratio Ib/IC , we can adjust the steepness of the potential
barrier: larger ratios Ib/IC lead to narrower (and steeper) bar-
riers. Note that, in order to keep the barrier height fixed, IC is
different for different ratios Ib/IC , as shown in Fig. 3(b).

In Fig. 3, we further show the results for E for pure phase
dissipation in (c) and pure charge dissipation in (d), for the
potentials of Fig. 3(a). For the pure phase dissipation (Rg = 0)
displayed in Fig. 3(c), the well-known behavior is reproduced:
the presence of the shunt resistance RS yields a suppression of
quantum tunneling. This effect was exposed by Caldeira and
Leggett in their seminal work [15]. Apart from using a vari-
ational approach to approximate the dissipative bounce path,
inserting the unperturbed bounce path ϕ

(S)
B into the dissipative

action can be used as a first-order correction (see also [15]).
We see that for pure phase dissipation, using the undamped
bounce provides a good approximation. This holds also for
the variational treatment, since the exact bounce path is not
substantially altered by the presence of the phase dissipation.
As a consequence, the unperturbed bounce solution ϕ

(S)
B is

sufficient to describe the effect of phase dissipation in this
regime. We also find that the effect of phase dissipation be-
comes more significant for broader barriers, an effect detected
also in previous studies [35].

For pure charge dissipation, representative results are re-
ported in Fig. 3(d). In this case, we find exactly the opposite
behavior: By increasing the resistance Rg, the escape rate is
enhanced. Moreover, the effect is more pronounced when the

(c)

FIG. 3. (a) Cubic potential for a fixed ratio V0/(h̄ωI ) = 4 and different values of Ib/IC . For larger ratios Ib/IC the barrier becomes narrower
and hence steeper. (b) Values for Ib and IC for a fixed barrier height. Each color combination of dot and line in (b) corresponds to the respective
barrier in (a). (c) and (d) Results for E as a function of dissipation, for fixed V0/(h̄ωI ) = 4 and different ratios Ib/IC . The respective values for IC

can be read in (b). The symbols display the results using the unperturbed path ϕ
(S)
B in the dissipative action (undamped-bounce approximation;

see text). Panel (c) is for pure phase dissipation: suppression of the tunneling as a function of R−1
S , and (d) for pure charge dissipation:

enhancement of the tunneling as function of Rg. Capacitance Ctot = 6 pF and CJ/C → 0.
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FIG. 4. Landscape plot of E as a function of both resistances RS

and Rg for V0/(h̄ωI ) = 4. The red area corresponds to the region
where the exponential factor is enhanced due to dissipation; the
blue is instead where the tunneling rate is suppressed. The other
parameters are Ib/IC = 0.99, IC = 32 μA, and Ctot = 6 pF.

barrier becomes steeper. Already resistances of a few ohm
(Rg ≈ 1 �) lead to a dramatic increase of the escape rate. We
also note that inserting the unperturbed bounce solution ϕ

(S)
B

into the dissipative action (we call this the undamped-bounce
approximation) results in being a drastic approximation that
strongly underestimates the effect of charge dissipation.

In the presence of both resistors, we find a large parameter
space favoring the speedup of quantum tunneling. This is
illustrated in the landscape plot for E as a function of both
resistances RS and Rg [for V0/(h̄ωI ) = 4; see Fig. 4]. The red
area corresponds to the region where the exponential factor is
enhanced due to dissipation, while the blue area corresponds
to the region where the tunneling rate is suppressed.

B. Fixing the critical current IC

In order to explore the full parameter space, we also con-
sider different barrier heights. By varying the ratio Ib/IC , for a
fixed value of the critical current of IC = 21 μA, the potential
barrier changes as shown in Fig. 5(a). We note that all pa-
rameters used here are comparable to the experimental values
of Ref. [12]. The corresponding results for E are reported in

FIG. 6. Enhancement of E in the presence of both resistors, for
τpω

2
I /γ = const. The two panels display two different regimes of

enhancement (or suppression) of the tunneling. From top to bottom:
τpω

2
I /γ = 3.43, 2.98, 2.43 in (a) and τpω

2
I /γ = 6.47, 5.61, 4.59 in

(b), for CJ = 0 (solid lines) and CJ/C = 0.02 (dashed lines). The
other parameters are IC = 21 μA and Ctot = 6 pF. In (b) for every
1/RS , the value Rg is larger than in (a). Therefore, the enhancement
is larger in (b) than in (a). This is also reflected by larger values of
τpω

2
I /γ for the same Ib/IC .

Fig. 5, both for pure phase dissipation in (c) and pure charge
dissipation in (d). For pure phase dissipation, we again find
a suppression of the tunneling and that the influence of RS

slightly decreases for more shallow barriers (red curves). As
discussed above, using the unperturbed bounce path ϕ

(S)
B in

the dissipative action is a good approximation in this regime.
In Fig. 5(d), the results for pure charge dissipation are

shown. Here, we find qualitatively the same behavior for the
dissipative influence of Rg which decreases for more shallow
barriers. However, the enhancement is still significant even
for Ib/IC = 0.99 that approximately describes the experimen-
tal setup and parameters of the Josephson circuit used in
Ref. [12]. We also see that the use of the unperturbed bounce
solution in the dissipative action (undamped-bounce approx-
imation) underestimates the effect of charge dissipation, as
already noted in the previous section.

Finally, we discuss the results for having both kinds of
dissipation shown in Fig. 6 (for τpω

2
I /γ = const.). Instead

of plotting E as a function of the two resistors, we illustrate

(c)

FIG. 5. (a) Change of the barrier for a fixed IC and variable Ib. (b) Barrier height for different values of Ib/IC for fixed IC = 21 μA. The
colors correspond to the barriers displayed in (a). (c) and (d) Results for E for a fixed IC = 21 μA and different ratios Ib/IC . The respective
values for the ratio V0/(h̄ωI ) can be found in (b). The symbols display the results using the unperturbed path ϕ

(S)
B in the dissipative action

(the undamped-bounce approximation; see text). Panel (c) is for pure phase dissipation: suppression of the tunneling as a function of R−1
S , and

(d) for pure charge dissipation: enhancement of the tunneling as function of Rg. Capacitance Ctot = 6 pF and CJ/C → 0.
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the results by fixing the ratio between the dissipative coupling
strengths in order to identify parameter regimes where E > 1
or E < 1. We also illustrate the change of E by varying the
values of Ib/IC , and compare also the limit CJ = 0 (solid lines)
with a finite Josephson capacitance of CJ/C = 0.02 (dotted
lines). The two panels display two different regimes: In (b)
for every 1/RS , the value Rg is larger than in (a). Therefore,
the enhancement is larger in (b) than in (a), which is also
reflected by larger values of τpω

2
I /γ for the same Ib/IC . For the

dependence on CJ , as long as CJ 
 C, the results for a finite
Josephson capacitance are comparable to the case CJ = 0.

IV. REMARKS CONCERNING
THE EXPERIMENTAL REALIZABILITY

In this section, we critically discuss the possibility to ex-
perimentally observe the enhancement of the quantum escape
rate in Josephson circuits and provide some more quantitative
information on experimental relevant parameters.

First, we examine the effect of the junction capacitance.
Due to its presence, the dissipative interaction only affects
a part of the total charge of the circuit and, therefore, the
influence of charge dissipation is suppressed. This is evident
in the Fig. 7 where we plot E for different ratios CJ/C. We
emphasize that, in a current-biased junction, the regime dis-
cussed here, C � CJ , is a common situation. Even if the two
capacitances are comparable, CJ ∼ 0.5C, the enhancement of
the escape is still significant.

In order to estimate the escape rate �, we approximate the
prefactor in Eq. (8) with K � K0 and use K0 = aqωI/(2π ),
where aq ≈ 52.1

√
V0/(h̄ωI ) [11]. In a previous work (see

Ref. [22]), we found that the prefactor follows the qualitative
behavior of enhancement/suppression for charge/phase dissi-
pation, respectively. Hence, by assuming K to be independent
of the dissipation, we find a lower bound of the effect of
dissipation for the case of pure charge and pure phase dis-
sipation. The escape rate � obtained in this way is reported
in Fig. 8, as a function of Ib/IC and for different values of
Rg, with the parameters CJ/C = 0.02 and RS = 100 �. For a
realistic experimental setup, the rate should not be too small

FIG. 7. Enhancement of E as a function of Rg, for different ra-
tios of the two capacitances CJ/C = 0, 0.01, 0.2, 0.5, 1 from top to
bottom. The other parameters are Ib/IC = 0.99, RS = 100 �, IC =
21 μA, and Ctot = 6 pF.

FIG. 8. � as obtained by using K = K0 for the prefactor, for
CJ/C = 0.02, RS = 100 �, and different values of Rg. The other
parameters are IC = 21 μA and Ctot = 6 pF. For Rg = 0, we also
show the uncertainty induced by a 10% experimental uncertainty of
the capacitance Ctot (gray area). Increasing Rg leads to a significant
enhancement of the escape rate. For larger Ib/IC the increase due to
charge dissipation becomes smaller, as can be seen from the three
lines getting closer. For the observation of the effect, the ratio Ib/IC

must be determined with an accuracy of the order of δ(Ib/IC ) <

0.002 for Rg = 4 �.

and also not too large, hence the bias current should be in
a parameter range where � ∈ [10−3, 1] s−1 yielding Ib/IC ∈
[0.985, 0.988]. We find that for larger Ib/IC the three lines
become closer to each other. This is reminiscent of the barrier
dependence of the respective dissipative couplings discussed
above. The solid line in Fig. 8 shows the rate without charge
dissipation and the surrounding gray area the experimental
uncertainty of the capacitance δC/C ∼ 10%. We find that the
rate affected by charge dissipation exceeds this uncertainty
interval. However, the main obstacle for the observability
of the rate enhancement introduced by the resistance Rg is
represented by the experimental uncertainty of IC . In fact, the
rate of the circuit for a resistance Rg = 4 � reaches the value
1 s−1 around Ib/IC ∼ 0.986 (dashed line). This is the same
value of the curve Rg = 0 but with a bias curent Ib/IC ∼ 0.988
(solid line), namely, when the real current bias may be shifted
to larger values with respect to the nominal current in the
experiment. This implies that the ratio between Ib and IC must
be determined within an accuracy of δ(Ib/IC ) ∼ 10−4.

With these premises, it is not surprising that the described
effect has not been observed in the experiments done so far.
Although Rg leads to a substantial enhancement, its effect
might easily be absorbed into the experimental uncertainties
without further notice. More importantly, the here described
effect of charge dissipation is only accessible if Rg couples to
the phase-coherent part of the junction. Hence, such a resistor
must be localized very close to the Josephson system and
generate a distinct influence compared to other resistors and
noise sources located further away from the junction on the
experimental Josephson circuit. In other words, to observe
the described effect by varying Ib, one needs to manufacture
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TABLE I. Parameters used in Fig. 8 to explain the observability
of the effect (Ib/IC = 0.985, Ctot = 6 pF, CJ/C = 0.02). We choose
a moderate RS to model unwanted dissipative effects on the phase
variable. With respect to the nondissipative case the enhancement of
the escape rate is E ∼ 104; specifically, the rate changes from � ∼
10−5 s−1 to � ∼ 10−1 s−1.

IC CJ Ib C RS Rg E

21 μA 0.12 pF 20.69 μA 5.88 pF 100 � 4 � 2.1 × 104

two junctions with very accurately determined parameters and
add the resistor close to each of them. However, the effect
is clearly observable if one engineers a tunable resistance in
order to study the dependence on Rg directly (in situ).

For larger Rg also the change in the functional dependence
of the rate on Ib/IC becomes more substantial and might offer
a possibility to measure the effects of Rg.

V. CONCLUSIONS

We theoretically studied a Josephson junction circuit in
the presence of two different kinds of dissipative environ-
ments. Specifically, we investigate a dissipative interaction
that enhances the phase fluctuations—that we denoted charge
dissipation—in combination with the usual dissipative inter-
action that suppresses such fluctuations and that acts in favor
of the localization of the phase. These two kinds of dissipation
are determined by the two resistances, RS and Rg, shown in
the circuit of Fig. 1. We analyze their effect on the escape
rate of the phase from a metastable state of a current-biased
Josephson junction. Considering realistic circuit parameters,
we find that the escape rate can be enhanced by the dissipa-
tion affecting the charge when such dissipative interaction is
dominant.

The experimental observability of the described effect
strongly depends on the circuit parameters. For this reason,
we estimate a possible parameter space in Sec. IV for which
the effect is measurable and suggest specific values in Table I.

Although we have analyzed the enhancement of the escape
rate due to the environmental assisted tunneling in a specific
experimental system, such effects can be observed even in
other platforms. For example, the dissipative stabilization of
quadrature squeezing has been recently experimentally re-
ported [5]. There the enhanced uncertainty/fluctuations of the
antisqueezed quadrature could qualitatively yield the same
effect described here, leading to a speedup in the tunneling
process from a metastable well.
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FIG. 9. Transmission line circuit used to calculate the dissipative
kernels for the Ohmic resistors in Fig. 1.

APPENDIX A: MODELING QUANTUM DISSIPATION VIA
TRANSMISSION LINES

In this Appendix, we give some details of the theoretical
origins of the Ohmic kernels, Eqs. (10) and (11). We discuss
the more fundamental circuit in Fig. 9, where we neglect the
capacitance of the junction CJ for simplicity.

1. Phase dissipation

The resistor affecting the phase can be interpreted as an
admittance shunting the Josephson junction. The dissipative
kernel Eq. (10) can be found via coupling an infinite number
of LC resonators in parallel to the junction (blue circuits in
Fig. 9) [37]. Denoting the inductances of the resonators LS

and the capacitances CS we find the Caldeira-Leggett type
Euclidean Lagrangian

L(ϕ)
B = �2

0

8π2

M−1∑
i=0

(
CSϕ̇

2
x,i + (ϕx,i − ϕ)2

LS

)
, (A1)

where the bath degrees of freedom ϕx,i couple to the phase
operator ϕ. Integrating out the phases of the bath and letting
M → ∞, we insert phenomenologically the Ohmic spectral
density describing the resistance RS and obtain the standard
dissipative kernel in Eq. (10) [33,34].

2. Charge dissipation

Since the dissipative kernel to the charge is by far less
explored as compared to the coupling to the phase, we pro-
vide a more detailed explanation here (for further details, see
Refs. [24,34]). To obtain the kernel Eq. (11), we couple a
transmission line consisting of capacitances Cg and induc-
tances Lg (see Fig. 9).

The corresponding Euclidean Lagrangian (system and
charge environment) is L = LS + L(Q)

B , with

LS = C�2
0

8π2
(ϕ̇ − ϕ̇∗)2 − EJ cos (ϕ) − Ib�0

2π
ϕ. (A2)

We emphasize that the time derivative of the phase ϕ̇ is lin-
early coupled to the time derivative of the phase ϕ̇∗ of the
chain. This term represents the charge energy associated to
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the capacitance C. The Lagrangian L(Q)
B reads

L(Q)
B = �2

0

8π2Lg
(ϕ∗ − ϕp,1)2

+
M−1∑
n=1

[
Cg�

2
0

8π2
ϕ̇2

p,n + �2
0

8π2Lg
(ϕp,n−ϕp,n+1)2

]
, (A3)

where the dissipative environment ϕp,n affects the phase ϕ∗,
which in turn is capacitively coupled to the charge ϕ̇. To sim-
plify the discussion, in contrast to the main text, we calculate
the partition function and not density matrix elements in this
Appendix. Within the path integral formalism this yields

Z =
∮

D[ϕ]
∮

D[ϕ∗]e−(1/h̄)
∫ β

0 LSdτ

×
∏

n

∮
D[ϕp,n]e−(1/h̄)

∫ β

0 L(Q)
B dτ , (A4)

where the underline denotes that the product only acts on
the integrals and not on the exponential. To obtain the kernel
for momentum dissipation, we have to perform the last part
of Eq. (A4)–which corresponds to integrating out the bath
degrees of freedom—and also the integrals over the paths
ϕ∗(τ ). In order to perform this integration, we diagonalize the
semi-infinite transmission line via the eigenfunctions

ϕp,n =
√

2

M

M−1∑
k=1

sin

(
πkn

M

)
φk (A5)

yielding

L(Q)
B = �2

0

8π2Lg

[
ϕ2

∗ − 2ϕ∗
M−1∑
k=1

εkφk

]

+ �2
0Cg

8π2

M−1∑
k=1

[
φ̇2

k + �2
kφ

2
k

]
, (A6)

where εk = √
2/M sin( πkn

M ), �2
k = 4ω2

g sin2( πk
2M ), and ωg =√

1/LgCg. Performing a Fourier transform from imaginary
time to Matsubara frequencies ωl = 2π l/β [where β =
h̄/(kBT )], we find for the corresponding action of the bath∫ β

0
dτ L(Q)

B = S∗ + SB,0 + S(Re)
B,1 + S(Im)

B,1 , (A7)

where

S∗ = �2
0

4π2LS
β

(
ϕ2

∗,0

2
+

∞∑
l=1

|ϕ∗,l |2
)

(A8)

is the part only containing ϕ∗,

SB,0 =β
�2

0CS

8π2

M−1∑
k=1

�2
k

(
φk,0 − ω2

0εkϕ∗,0
)2

− β
�2

0CS

8π2

M−1∑
k=1

ω4
0ε

2
k

�2
k

ϕ2
∗,0 (A9)

and the parts S(Re)
B,1 and S(Im)

B,1 read

S( j)
B,1 = β�2

0Cg

4π2

M−1∑
k=1

∞∑
l=1

(
ω2

l +�2
k

)[
φ

( j)
k,l −

ω0εk(
ω2

l + �2
k

)ϕ
( j)
∗,l

]2

− β�2
0Cg

4π2

M−1∑
k=1

∞∑
l=1

ω4
0ε

2
k(

ω2
l + �2

k

)(
ϕ

( j)
∗,l

)2
. (A10)

In this form, we can integrate out the phases φk . The path
integral measure transforms to Matsubara space via∮

D[φk] →
∫

dφk,0√
8π3 h̄β

�2
0Cg

∞∏
l=1

∫ dφ
(Re)
k,l dφ

(Im)
k,l

4π3 h̄
β�2

0Cgω
2
l

. (A11)

After performing the path integral, we obtain the effective
action for ϕ∗:

SB,e f f = �2
0β

8π2Lg

ϕ2
∗,0

M
+ �2

0β

4π2Lg

∞∑
l=1

|ϕ∗,l |2
(

1

M
+ ωlYl

)
,

(A12)

where we defined the admittance

Yl = 2
ωl

M

M−1∑
k=1

(
1 − �2

k
4ω2

g

)
(
ω2

l + �2
k

) . (A13)

Substituting xl = ωl
2ωg

and ϑ = πk
2M , we can rewrite this and

find in the limit M → ∞ the integral

Yl = xl

ωg

2

π

∫ π/2

0
dϑ

1 − sin2 (ϑ )[
x2

l + sin2 (ϑ )
] = 1

ωg
fc(ωl ), (A14)

where f (ωl ) is a high-frequency cutoff function. Performing
the limit of M → ∞, the first two terms in Eq. (A13) vanish
and we find that the effective action affecting ϕ∗ reads

SB,e f f = �2
0β

4π2Lg

∞∑
l=1

|ϕ∗,l |2ωlYl (A15)

= h̄

2π

Rq

Rg
β

∞∑
l=1

|ϕ∗,l |2ωl fc(ωl ), (A16)

where we used that
√

Lg/Cg is the characteristic impedance of
the semi-infinite transition line acting as an Ohmic resistor and
therefore introduced Rg = √

Lg/Cg. Further, Rq = h/(4e2) is
the resistance quantum. We will set f (ωl ) = 1 in the follow-
ing, because its contribution is irrelevant for the problem at
hand. The remaining path integral to solve reads

Z =
∮

D[ϕ]
∮

D[ϕ∗]e−(1/h̄)
∫ β

0 LSdτ+SB,e f f , (A17)

where the first part in the exponential contains the Lagrangian
of the charging part L(1)

S = C�2
0(ϕ̇ − ϕ̇∗)2/(8π2). We again

perform a transformation to Matsubara frequencies for ϕ and
ϕ∗ and integrate out the latter one. With this we obtain the
remaining action

SR = C�2
0

4π2
β

∞∑
l=1

ω2
l |ϕl |2 − C�2

0

4π2
β

∞∑
l=1

τpω
3
l

[1 + τpωl ]
|ϕl |2,

(A18)
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where we introduced τp = CRg. The action in Eq. (A18) is the
effective action of the phase variable of the system affected by
the resistor Rg and therefore the Fourier-transformed version
of Eq. (9) in Matsubara frequencies for pure charge dissipa-
tion. Hence, we find for the dissipative kernel in Eq. (11),

F (Q)(τ ) = − C�2
0

8π2β

∞∑
l=−∞

τp|ωl |
1 + τp|ωl |eiωl τ . (A19)

APPENDIX B: DISCUSSION BETWEEN THE NUMERICAL
AND ANALYTICAL RESULTS

In Sec. II, we discussed different techniques to calculate
the bounce path minimizing the action.

First, there is the approximation of Caldeira and Leggett.
They treat the weak-coupling limit and insert the nondissi-
pative solution for the bounce path into the action to obtain
approximate results. In the case of pure phase dissipation,
this appears to be an excellent approximation as shown in
Fig. 3(c). Therefore, it is not surprising that also the numerical
results and the variational results coincide in the parameter
space considered in this work. However, as we discuss in
the main text, using the nondissipative bounce underestimates
the effect of charge dissipation as we saw in Figs. 3 and 5.
Here, we show a comparison between the variational and the
numerical treatment. In Fig. 10(a), we see that the variational
treatment yields a very good approximation to the exact nu-
merical result in the case of pure charge dissipation, in the
considered parameter range. As expected, the quality of the
approximation depends on the coupling strength (∝Rg in our
case). In the presence of both dissipative couplings, we use
larger values of Rg in Fig. 6(b). We show the differences

FIG. 10. Comparison of the three different techniques to calcu-
late the action minimized by the bounce path. We show the results
for the exact numerical (dots) and the variational (solid line) results,
together with the solution using the nondissipative bounce approxi-
mation (dashed line). (a) Pure charge dissipation. (b) Both dissipative
couplings and the variational treatment.

between the three techniques in Fig. 10(b). For larger Rg,
the variational treatment becomes less accurate, although the
qualitative behavior and the order of magnitude are still in
good agreement. Using the nondissipative bounce strongly
underestimates the effect of charge dissipation. The only plot
in the main text that yields a noticeable difference in the
results is Fig. 6(b), as Rg is of the order of 10 �. We show
in Fig. 10(b) that the variational treatment yields results of the
same order of magnitude (in contrast to the Caldeira-Leggett
approxmation). Further, we see that the variational treatment
underestimates the exact result and can be seen as a lower
bound of the effect of Rg. The parameters used in (b) coincide
with the blue solid curve in Fig. 6(b).
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