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Particle-hole symmetry broken solutions in graphene nanoribbons: A multi-orbital,
mean-field perspective
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Mean-field theories have since long predicted edge magnetism in graphene nanoribbons, where the order
parameter is given by the local magnetization. However, signatures of edge magnetism appear elusive in the
experiments, suggesting another class of solutions. We employ a self-consistent mean-field approximation within
a multi-orbital tight-binding model and obtain particle-hole symmetry broken solutions, where the local filling
plays the role of the order parameter. Unlike the magnetic edge solutions, these are topologically nontrivial and
show zero local magnetization. A small and a large doping regime are studied, and a free energy minimum for
finite hole doping is encountered, which may serve as an explanation for the absence of experimental evidence
for magnetic edge states in zigzag graphene nanoribbons. The electronic interaction may increase the finite
d-orbital occupation, which leads to a change of the effective Coulomb interaction of the dominant pz orbitals.
Our findings indicate that the nonmagnetic solution for finite hole doping becomes energetically preferred,
compared to the magnetic phases at half filling, once thermal fluctuations or unintentional doping from the
substrate are considered. This result persists even in the presence of the d orbitals and the Coulomb interaction
therein.
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I. INTRODUCTION

Graphene nanoribbons with zigzag edges belong to the
class of topological matter with insulating bulk and con-
ducting edges [1–3]. The Fermi level crossing states were
predicted to give rise to a novel type of magnetic ordering
[4], leading to appealing carbon-based magnetic materials and
stimulating a large number of proposals of novel graphene-
based spintronic devices [5–10]. Many experiments have ever
since claimed to prove the existence of magnetism at the edges
[11,12], but the accuracy of these findings allow for explana-
tions other than the occurrence of magnetic edge states [13].
A gap opening in the local density of states has been found,
which is consistent with magnetic ordering of the edge phases
[14–16], but experiments usually probe only either the edge
character of electronic states in graphene or the alignment of
the spin degree of freedom. This poses the first problem of
experimental verification of the topologically insulating phase
of graphene that is still unresolved: Is the ground state of
graphene nanoribbons truly nonmagnetic or has it just not
been measured yet?

The description of noninteracting graphene is usually per-
formed by employing the Kane-Mele model [17–19], which
distinguishes between a trivial and a nontrivial phase in terms
of external parameters. This is commonly extended to the
interacting Kane-Mele-Hubbard model [20–23]. While such
considerations apply to bulk graphene, coupling of the edge
states in terminated structures leads to an energy gap in the
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magnetic ground state [24–26], which can be described by
an interedge superexchange [27,28]. This mechanism predicts
a zero-spin ground state, where the magnetic edges show
opposite polarization. Different types of interedge magnetism
can occur in graphene nanoribbons at half filling [3,29],
namely, the antiferromagnetic (AFM) and the ferromagnetic
state (FM), but other states with different degrees of edge
magnetism are also possible once doping is considered [5,30].
The particle-hole symmetry (PHS) is broken in a doped sys-
tem, and a completely nonmagnetic phase is possible, as the
Fermi energy is located away from the magnetic instability.
This phase may play a central role in realistic structures, as
unintentional doping or commonly used substrates (SiO2 [31],
SiC [32], or h-BN [33]) has been shown to shift the Fermi
level off the half filling condition at the Dirac points (DPs),
and hence, broken PHS is expected in the experiments. Edge
states in graphene nanoribbons are commonly examined by
using density-functional theory (DFT) of the π orbitals in
graphene [34,35], where the mean-field method remains a
good approximation for realistic interactions [36].

The atomic or intrinsic d-orbital spin-orbit coupling be-
comes relevant for the size of the gap at the Dirac points of
graphene [37,38] and should not be neglected. Moreover, it
provides helicity to the edge states [18,39,40]. This leads to
the second problem of detecting edge magnetism in graphene,
namely, the influence of the electronic interaction of the
d-orbital electrons on the π orbitals in a realistic—or doped—
system, which has not been examined to this date.

This paper is intended to address these two problems
by defining a multi-orbital tight-binding model with pz

and d orbitals, and is organized as follows: In Sec. II
we describe the multi-orbital tight-binding model and the
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TABLE I. Hopping matrix elements tαβ

i j . (l, m) are the directive
cosines connecting the neighboring sites i and j [37,41]. The corre-
sponding tight-binding parameters are given in Table II.

α, β pz dxz dxz

pz V ppπ lV pdπ mV pdπ

dxz −lV pdπ l2V ddπ + m2V ddδ lm(V ddπ − V ddδ )
dyz −mV pdπ lm(V ddπ − V ddδ ) m2V ddπ + l2V ddδ

self-consistent mean-field method. We present numerical re-
sults of the single-orbital and multi-orbital models in Sec. III,
by comparing the two magnetic phases and by examining the
nonmagnetic phase in detail. We summarize our results in
Sec. IV.

II. METHODS

The basis of our multi-orbital tight-binding model is
spanned by pz-, dxz-, and dyz orbitals localized at the sites
of the honeycomb lattice. The other three d orbitals couple
only weakly to the π bands via d-orbital spin-orbit coupling
(SOC) and thus can be neglected in the neighborhood of the
Fermi level. Hopping among nearest-neighboring sites 〈i j〉 is
enabled by a term

H0 =
∑

〈i, j〉,α,β,σ

tαβ
i j ĉ†

iασ ĉ jβσ , (1)

where the indices α, β ∈ {pz, dxz, dyz} label the different or-
bitals and ĉ(†)

iασ are the annihilation (creation) operators for spin
σ . The hopping matrix elements are given within the Slater-
Koster approximation [41], which are defined in Table I. The
corresponding parameters are presented in Table II. Owing to
symmetry, the intrinsic SOC is only nonzero for the d orbitals
that constitute the π band:

Hi
SOC = ξd

∑
α,β,σ,σ ′

〈�L · �S〉i
αβ ĉ†

iασ ĉiβσ ′ (2)

with ξd = 0.8 meV [37] and 〈�L · �S〉i
dαzdβz

= iεαβzsz, with sz

being the z component of the spin. Note that, although the
prefactor is very small compared with other energy scales of
the system, SOC introduces broken spin-rotations and defines
the quantization direction.

The on-site energy of the different orbitals is given by

Hi
E =

∑
α,σ

Eα ĉ†
iασ ĉiασ , (3)

where we choose for convenience Ep = 0, yielding Ed =
12 eV.

For the Coulomb interaction, it is convenient to express
the density operators n̂iασ = 〈n̂iασ 〉 + 	n̂iασ , where 〈n̂iασ 〉 is
the mean value of the density and 	n̂iασ its fluctuation. As
it is customary in the mean-field approximation, quadratic-in-
fluctuations terms are neglected, yielding for the interacting
Hamiltonian for site i:

Hi
ee =

∑
σ

U

2
(〈n̂ipσ̄ 〉n̂ipσ + 〈n̂ipσ 〉n̂ipσ̄ − 〈n̂ipσ̄ 〉〈n̂ipσ 〉) +

∑
λ,σ

[V (〈n̂ipσ 〉n̂iλσ̄ + 〈n̂iλσ 〉n̂ipσ̄ − 〈n̂ipσ̄ 〉〈n̂iλσ 〉)

+ J (〈ĉ†
iλσ̄ ĉipσ̄ 〉ĉ†

ipσ ĉiλσ + 〈ĉ†
ipσ ĉiλσ 〉ĉ†

iλσ̄ ĉipσ̄ − 〈ĉ†
ipσ ĉiλσ 〉〈ĉ†

iλσ̄ ĉipσ̄ 〉) + (V − J )(〈n̂ipσ 〉n̂iλσ

+ 〈n̂iλσ 〉n̂ipσ − 〈n̂iλσ 〉〈n̂ipσ 〉 − 〈ĉ†
ipσ ĉiλσ 〉ĉ†

iλσ ĉipσ − 〈ĉ†
iλσ ĉipσ 〉ĉ†

ipσ ĉiλσ + 〈ĉ†
iλσ ĉipσ 〉〈ĉ†

ipσ ĉiλσ 〉)], (4)

where p labels a pz orbital and λ ∈ {dxz, dyz} labels a d or-
bital, with σ and σ̄ indicating opposite spin. Here, U is the
Hubbard term, that is, the on-site Coulomb repulsion for the
pz orbitals, whereas V denotes the Coulomb repulsion and
exchange, respectively, between a pz and a d orbital. U is
on the order of V ppπ , which has been obtained by compar-
ing single-orbital tight-binding models with DFT calculations
[43,44]. As prognosed by Hubbard [45] and employed else-
where [46], V is on the order of U , while J is around an
order of magnitude smaller. V and J serve here as parameters
to quantify their influence on the characteristics and internal
energy of the different phases, as these cannot be obtained
from experiments [5]. It is worth noting that the nonlocal
Coulomb interactions in the zigzag nanoribbons considered
here are strongly screened by the edge states [47] and hence,

we restrict the interactions to the local Coulomb terms de-
scribed in Eq. (4). We note that the broken spin rotations
introduced by the Coulomb interaction of Eq (4) renders the
SOC term irrelevant in most of our calculations, however, it
avoids numerical ambiguities.

Combining all terms described above, the total Hamilto-
nian for this multi-orbital tight-binding model reads

H = H0 +
∑

i

(
Hi

E + Hi
SOC + Hi

ee

)
, (5)

where the first term is off-diagonal, while the rest contain
on-site terms only. It is thus advantageous to Fourier transform
Eq. (5) and solve the eigenvalue problem self-consistently via
direct diagonalization, where periodic boundary conditions
are applied along the edges of the nanoribbon [see inset of

TABLE II. The tight-binding parameters for graphene as used in the Slater-Koster approximation [37,42].

V ppπ V pdπ V ddπ V ddδ V ppσ V pdσ V ddσ Ed Ep

−3 eV −0.69 eV −0.3 eV 2.25 eV −8.1 eV 3.6 eV 3 eV 12 eV 0 eV
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FIG. 1. Dispersion relation of a Kramers pair of the different solutions to the mean-field problem for a N = 12 ribbon computed for the
single-orbital model. The bands are colored by edge (E1/E2) and real spin (↑ / ↓). The Kramers pairs can be obtained by TR symmetry.
(a) AFM phase. (b) FM phase. (c) The PHS broken nonmagnetic phase with δn = 0.08. Lower inset in [(a),(b)] depict the corresponding local
magnetization or local additional occupation of (c). Note that periodic boundary conditions are applied along x (vertical direction in the insets).
(d) Local magnetization 〈m〉 for the ground state of (a) and local density 〈n〉 corresponding to (c).

Fig. 1(a)]. The density of states is then numerically obtained
by sampling 801 points across the Brillouin zone, where a
Gaussian broadening is optimized after a convergence study.
A temperature of kBT = 3.45 × 10−4 eV is defined for con-
vergence purposes, allowing the computation of the Fermi
energy EF [48].

III. NUMERICAL RESULTS

A. Three different phases

As it is habitual in self-consistent methods, the character
of the converged solution reflects that of the initial guess.
Breaking time-reversal (TR) symmetry by starting with par-
allel spin edges leads to a magnetic phase with a finite total
spin-magnetic moment, whereas an initial state with polarized
edges of opposite sign leads to a solution with broken spin
rotations and zero total spin. In both cases, half filling is im-
posed. Another possibility (although commonly ignored), is to
consider TR-symmetric solutions with broken electron-hole
symmetry, namely, a doped solution. This can be achieved
by an initial state with an excess of holes or electrons, and
usually converges to a nonmagnetic phase. In what follows,
we distinguish between magnetic and nonmagnetic solutions.
The former occurs at half filling, 〈ni〉 = 0.5, whereas the
latter has no local magnetization. The order parameter of
this nonmagnetic, PHS broken solution is given in terms
of the local doping δni, giving the local occupation per spin of
〈ni〉 = 0.5 + δni, whereas the magnetic phase is characterized
by a finite local magnetization 〈mi〉.

We consider first a single-orbital (pz) model in a nanorib-
bon with N = 12 rows and 4 columns, using U = 0.6t .
States with local ferrimagnetic spin polarization close to the
edges have already been theoretically obtained [4,6,26,49–
51], where the edges may exhibit parallel (FM) or antiparallel
(AFM) spin alignment with respect to each other. Figure 1
contains the dispersion relation of the mid-bands, where
bright color indicates edge-localized state. These bands are
mainly located at the edges (E1, E2) of the sample, such that
the components of these Kramers pairs are localized at the
opposite edge [51]. The AFM solution in (a) corresponds to a
trivial insulator, with a gap arising from the broken rotational
symmetry [52]: From a symmetry perspective, the E2 ↑ state

is degenerate with the E1 ↓ one and vice versa, but these states
are not related by a rotation. From an interaction picture,
the AFM exchange interaction acts as a staggered sublattice
potential, which introduces a spin-dependent gap for states
localized at different edges [18,53]. Figure 1(b) shows the
FM solution, where two states with opposite spin cross the
band gap. The coupling mechanism of states localized at two
opposing edges can be described in analogy to the super
exchange mechanism [27,54]. From a topological standpoint,
chiral symmetry is the reason for the occurrence of gap-
crossing states [2] of opposite Fermi velocity [55], whereas
from a group symmetry perspective, these solutions maintain
invariance with respect to the twofold axis, unlike the AFM
case.

An additional phase is encountered in this paper, namely,
a nonmagnetic PHS-broken solution, see Fig. 1(c), where the
additional pz-orbital occupation shifts the Fermi energy above
U/2. The electronic occupation is symmetrically distributed
along the edges of the sample, maintaining the original C2v

point group of the lattice. This results in a topologically
nontrivial phase, just like in the noninteracting spin-Hall
insulating case [17]. The corresponding order parameters
are depicted in Fig. 1(d), that is, the on-site magnetization
〈mi〉 = 1

2 (〈n̂i,↑〉 − 〈n̂i,↓〉) for the magnetic phases and the
occupation for the PHS-broken solution, 〈ni〉 = 1

2 (〈n̂i,↑〉 +
〈n̂i,↓〉). Values are plotted as a function of the site index i in
sequence that follows columns (left to right) and rows (top to
bottom) of the unit cell depicted in the insets of Figs. 1(a)–
(c). For the FM solution, the magnetization is largest at the
edge sites, with an exponential decay towards the bulk. The
AFM phase (not shown) has similar magnetization, only with
opposite sign at each edge. The PHS broken solution lacks
of magnetic moments, however, the electronic occupation off
half filling shows a similar behavior as 〈m〉 in the magnetic
solutions. We stress that a similar solution with negative oc-
cupation off half filling (or hole-doped) is also found when
the initial state has a filling slightly below half filling, where
the occupation of the edge’s sites is, respectively, 〈nE 〉 ∼
0.5 ± 0.1.

It is worth mentioning that the topologically trivial AFM
solution minimizes the free energy when the half-filling con-
dition is imposed. However, dopants change this criterion and
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FIG. 2. Energy differences of FM and AFM phases for (a)
N = 8, 12 and 20 as a function of U and (b) for U/t = 0.6 and
U/t = 1, as a function of number of rows N . The dashed lines are
polynomial fits (see text).

allows for a PHS broken state. In what follows we examine
the free energy, the local magnetization, and the occupation
of these three solutions as a function of ribbon size and inter-
action parameters in single and multi-orbital approach.

B. Energetic considerations

Lieb’s theorem states that the ground state at half filling has
zero spin-magnetic moment [56]. It follows that the ground
state at half filling is always the AFM edge phase, regardless
of ribbon size and for all U > 0. However, Lieb’s theorem
does not apply for doped systems, allowing for a ground
state without any local spin-magnetic moment. We first com-
pute and analyze the free energy of the three phases within
the single-orbital model, and extend our computation to the
multi-orbital model.

1. Single-orbital model

We first employ a single-orbital (pz) model, where
ti j = V ppπ ≡ t in Eq. (1), and with the Hubbard term being
the only interacting term. We compute the free energy of the
ground state for the different solutions. In Fig. 2(a) the energy
differences of the two magnetic phases at half filling for three
different ribbon sizes N = 8, 12, and 20 is shown as a function
of U , where the AFM phase is found to always be lower
in energy. As expected, the energy separation between both
phases increases with the interaction parameter U . For N = 8,
the reduced edge separation results in a relative lower energy
of the AFM due to the interedge super exchange mechanism
[27]. For larger N this energy gain becomes smaller and a law
∼Nc with c < −1 is reproduced for moderate U . Figure 2(b)
shows the behavior of the energy separation EFM − EAFM as
a function of the sample width N . The fittings (dashed lines)
correspond to a power law aNc for N > 10, to avoid finite
size effects. The exponents c = −3.41 and c = −2.74
are extracted for U = 0.6 and 1, respectively. Note that
finite-size effects within a mean-field model causes a devi-
ation from the value reported by Jung et al. [27], c = –2.
Hence, it is to be expected that in the thermodynamic limit
N → ∞ both magnetic phases become equally probable, as
|EFM − EAFM|  kBT .

We consider next the PHS broken solutions, where the
Stoner criterion justifies the absence of magnetism in doped
systems, as an increase of the Fermi energy above the peak in
the density of states removes the magnetic instability [28,46].

FIG. 3. The energy of the PHS broken phase for different
amounts of doping ρ for N = 8 (yellow) and N = 12 (green) with
U/t = 0.6 in the single-orbital model.

We examine the behavior of the energy of the nonmagnetic
phase as the filling is shifted by an amount δn off half filling.
Figure 3 shows the free energy as a function of doping for
a N = 8 (yellow) and N = 12 (green) nanoribbon, with U =
0.6. Here, the doping is expressed in cm−2 units, ρ = δn/S
where S = 8.38 × 10−15 cm2 is the area of the ribbon. For
low δn, the free energy obtained numerically has a quadratic
dependency on the doping,

F (U, n) = UN
(

1 + ρS

4N

)2

, (6)

which corresponds to the interacting term of Eq. (4). It is
worth noting that the Coulomb interaction breaks PHS, that
is, the minimum of the total energy is no longer expected
at half filling. For small hole doping values, the orbitals
at the atomic edges become less populated at lower ki-
netic energy cost, as their coordination number is lower,
whereas the Coulomb repulsion is lowered. For larger doping,
|ρ| > 200 × 1012 cm−2 or 〈n〉 � 0.6, a stronger dependency
on ρ is observable, as the bulk bands become doped and
the kinetic energy gain decreases. This occurs as the bulk
occupation becomes comparable to the preferred occupation
at the edge [see Fig. 1(d)], which is reduced as N increases
(see below). Note that the kinks in the curve of Fig. 3 separates
the small and large doping regimes, or equivalently, the edge
and bulk doping regimes.

Figure 4(a) shows the Fermi energy as a function of U/t ,
where the two doping regimes are visible. The separation
between the small and large doping regimes occurs around
|ρ| ≈ 200 × 1012 cm−2. This is consistent with the peak of
the density of states (DOS) around half filling (see Appendix).

For larger doping, however, the Fermi energy has a differ-
ent functional (see Appendix). This dependency is still visible
when U/t is varied between 0.2 and 1.6 for dopings up to
ρ = 1015 cm−2, as shown in Fig. 4(b). We note that the con-
ventional square root functional that corresponds to a linear
dispersion can be recovered at this regime. While these results
have been obtained in small systems, this behavior should
scale to larger ribbons. The amount of doping at which the
bulk states become filled in larger nanoribbons is reduced, as
the band separation decreases with a power law [57] of ∼1/N .
This argument can also serve to interpret Fig. 3: The kink
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FIG. 4. The Fermi energy of the PHS broken solution for N = 8
and different U/t . The horizontal bar indicates the Fermi energy of
the two magnetic phases at half filling. (a) For smaller doping the
Fermi energy is fitted with a different functional (solid lines) as for
the larger doping (dashed lines, see text). (b) Fermi energy within
the large doping regime for four different Hubbard parameters:
U/t = 0.2, 0.6, 1.0, and 1.6.

separating small and large doping regime appears at lower ρ

as N increases. This suggests that in larger graphene nanos-
tructures, the doping required to reach the energetic minimum
decreases, which may serve as an explanation to the elusive
measurement of magnetic edges in graphene ribbons, which
was previously unaccounted for. Note that the absent curves
for U/t = 1.6 and 0.2 of Fig. 4(a) are numerically costly and
adds little information, and hence, are omitted from this paper.

The implications of the mean-field level results obtained
in this section can be summarized as follows: (i) A finite
hole doping minimizes the energy functional, and hence, the
half-filled state is no longer the most favored one and (ii)
under realistic conditions, larger nanoribbons onto acceptor
substrates would not necessarily show magnetism, but rather
a hole, PHS broken state.

2. Multi-orbital model

We consider next the multi-orbital model by including the
dxz and dyz orbitals, which breaks PHS even at a single-particle
level. These bands are known to have a finite occupation and
yield relevant effects [37]. Note that the magnetic solutions
observed so far appear only at half filling, within the PHS
condition, and thus, are not guaranteed in an implicitly bro-
ken PHS system. Moreover, including these orbitals allows
us to elucidate the role of the interacting parameters V and
J of Eq. (4) on the different solutions, which are absent in
the single-orbital model. We define δnp and δnd as the pz-
and d-orbital doping, respectively, such that ρ = δnp + δnd .
The half-filling condition reads δnp = −δnd , where the orbital
occupation per spin is given by np = 0.5 + δnp and nd = δnd ,
respectively. This leads to a renormalization of the orbital
energies, namely,

Eα (δnα ) =
∑

σ

[Ed + δnα (2V − J )]n̂ασ , (7)

where we can infer that a decreased energetic separation of pz

and d orbitals lead to enhancement of the d-band occupation
and vice versa.

Figure 5 shows nd as a function of the interacting parame-
ters in units of t . When V and J are kept constant, an increased
U leads to a larger occupation of the d orbitals [see Fig. 5(a)],

FIG. 5. Total d-state occupation of a ribbon with N = 8 plotted
for different interacting parameters. Both FM and AFM phase have
identical occupation.

as the Coulomb repulsive interaction is larger at the occupied
pz orbitals. For negative V or positive J , the d-orbital occupa-
tion becomes larger, as the d-orbital energy shift is reduced, as
is shown in (b) and (c), respectively. Finally, Fig. 5(d) shows
that typical positive V values yield small d-band occupation
for any J , whereas negative V results in d occupation up to
two orders of magnitude larger. We stress, however, that the
repulsive (physical) Coulomb interaction yields V, J > 0.

Figure 6 shows the local magnetization and orbital dop-
ing of a 48-sites ribbon in the AFM phase, with U = 1.6t
and J = 0.5t . An attractive d-orbital Coulomb interaction
V = −2t (red) results in an enhanced d-orbital magnetization
at the sites next to the edge, whereas the single orbital results
are recovered for a repulsive d-orbital Coulomb interaction
V = 2t (black). Finally, we consider the multi-orbital doped
solution. Figure 7(a) shows the d-orbital doping as a function
of total doping, ρ = (δnp + δnd )/S for positive (green), zero
(purple), and negative (yellow) p-d Coulomb interaction V . A
quadratic law is observed for the latter, whereas a slow, linear

FIG. 6. The expectation value of the magnetization mp/d and
occupation np/d per site and spin for a ribbon with N = 12 in the
AFM phase, where U = 1.6t and J = 0.5t , with V = −2t (red) and
V = 2t (black).
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FIG. 7. Results for a nanoribbon with N = 8, for U/t = 1 and
J/t = 1. (a) Total d-state occupation and (b) energy of the nonmag-
netic phase for different doping strengths n for V/t = 1, 0, and −1.

increase in d-orbital occupation occurs for the former. The
free-energy functional at low doping results now in

F (ρ,U,V, J ) = UN

(
1 + δnp

4N

)2

+ (2V − J )npδnd , (8)

where np = ρS − δnd . The first term dominates, and was al-
ready observed in the single-orbital model [see Eq. (6)]. For
larger dopings, the kinetic energy raises, and the single-orbital
results are recovered, with the total minimum appearing for
similar doping values. The inclusion of d orbitals does not
lead to qualitative differences for the free energy or the charac-
ter of the ground state, compared to the single-orbital model,
unless for the negative V case. We stress that both AFM and
FM solutions are encountered also when PHS is implicitly
broken, which was not clear a priori.

IV. CONCLUSIONS

We have examined three different edge phases in terms of
local magnetization and local orbital occupation, both in the
single and in the multi-orbital model, of graphene nanorib-
bons with zigzag edges. For half filling and finite interaction
strengths the interedge super exchange mechanism results in
a lower free energy of the AFM phase compared to the FM
phase, as expected. The PSH symmetry broken phase shows a
minimum in the free energy at the boundary between the small
and the large hole doping regime. In the former regime, the
local doping occurs exclusively at the edge atoms, lowering
the energy via exchange, whereas in the latter, the doping
spreads throughout the bulk, lowering the kinetic energy and
hence, increasing the free energy. These result are unchanged
in a multi-orbital model, where a magnetic solution is also
encountered in the broken PHS system. We observe, however,
that the d bands acquire a prominent role for certain values
of the Coulomb interaction, V and J . Thus, the multi-orbital
computations confirm that the single-orbital description re-
mains a good approximation for the energy gap of the two
magnetic phases, whereas the d-band occupation is sensitive
to the Coulomb interaction parameters. In the thermodynamic
limit (large N , small interactions) the free energy of the three
edge phases coincide, and hence, observation of a magnetic
state would require very low temperatures, small ribbon sizes,
and specific low-interacting, acceptor substrates.

FIG. 8. DOS of a graphene nanoribbon (black curve). The zero of
the energy is conveniently defined at half filling ρ = 0, where a peak
due to the edge bands is apparent (see Fig. 1). A fit to this peak is
encountered with the function g(E ) = g0[1 + (χE )2]−1 (red curve)
for |E | < E1. We find the fitting function h(E ) = h0[cos2 (χE )]−1

for E1 < |E | < E2 (blue dots), with Em ∼ (E2 − E1)/2. For larger
energies, E2 < E < t the DOS is roughly linear (green line).
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APPENDIX: DENSITY FUNCTIONAL OF THE
FERMI LEVEL

We define for convenience the zero energy at half filling
Ehf = 0. The DOS of the nanoribbon is plotted in Fig. 8
(black curve): A peak around Ehf is due to the edge bands
[see Fig. 1(c)] and is fitted for |E | < E1 with g(E ) = g0[1 +
(χE )2]−1 (red curve), with g0, χ being unimportant parame-
ters for this discussion. For E1 < E < E2 the fitting function
h(E ) = h0 cos−2 (χ (E − Em)) can be encountered (blue dots),
whereas for E > E2, which is roughly the bandwidth of
the edge bands, the DOS increases linearly with energy,
DOS(E ) � E0 + βE (green line), which is typical for the
Dirac dispersion.

It follows that the Fermi energy can be obtained by direct
integration. In the low doping regime, |EF | � E1 we have

ρ(EF ) =
∫ ∞

0
f (E )DOS(E )dE �

∫ EF

0

a

1 + (χE )2
dE

= g0

χ
arctan {χEF },

where we have employed the low temperature limit, f (E ) �
(E − EF ). We thus concur that a possible Fermi energy’s
density functional is a tangent,

EF ∝ tan

(
ρχ

g0

)
.
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For E1 < |EF | < E2, as in Fig. 8, the doping corresponds to
the shaded area below the curve, that is

ρ(EF ) � g0

χ
arctan (χE1) +

∫ EF

E1

h0

cos2 (χE )

= g0

χ
arctan (χE1) + h0

χ
(tan χEF − tan χE1),

giving now a different functional

EF ∝ arctan
(ρχ

h0

)
.

The boundary between both regimes corresponds to
E1 � 0.3t , which explains the switching behavior of Fig. 4(a).
For Fermi energies larger than E2 we would recover the
linear dispersion, yielding the usual squareroot density func-
tional for the Fermi energy, which behaves similarly as the
arctan one within the doping values considered in this paper.
We stress that the functionals obtained above are arbitrary,
as similar ones can be derived. The important fact and the
aim of this Appendix is to illustrate the change of behavior
due to the finite size effects, which manifest here as edge
population.
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