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Anomalous Bloch oscillation and electrical switching of edge magnetization
in a bilayer graphene nanoribbon
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Graphene features topological edge bands that connect a pair of Dirac points through either sector of the
one-dimensional Brillouin zone depending on edge configurations (zigzag or bearded). Because of their flat
dispersion, spontaneous edge magnetization can arise from Coulomb interaction in graphene nanoribbons, which
has caught a remarkable amount of interest in graphene spintronics. We find an anomalous Bloch oscillation
in such edge bands, in which the flat dispersion freezes electron motion along the field direction, while the
topological connection of the bands through the bulk leads to electron oscillation in the transverse direction
between opposite sides or layers of a bilayer ribbon. Our Hubbard-model mean-field calculation shows that this
phenomenon can be exploited for electrical switching of edge magnetization configurations.
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I. INTRODUCTION

The existence and behavior of edge states are always at-
tractive in the study of solid-state physics due to their distinct
properties in contrast to bulk states. Monolayer graphene
(MLG) has a zero-gap band structure where the conduction
and valance bands touch at the Dirac points [1–6]. Edge states
in the MLG ribbon appear as flat bands at the Fermi level,
connecting the bulk Dirac points through either sector of
the one-dimensional (1D) Brillouin zone depending on edge
configurations (zigzag or bearded) [1,2,7–11]. When the bulk
gap is opened, these flat-band edge states can be continuously
tuned into gapless chiral edge modes through bias control on
the edge [7]; these gapless chiral edge modes have a simi-
lar origin to that of the topological domain wall modes in
bilayer graphene (BLG) [12–14]. In view of their nontrivial
topological properties and relation to the bulk valley transport
[7,15], these chiral modes have also been explored in other
contexts such as the laser-induced Floquet system [16] and
gapped nanomechanical graphene [17].

The flat edge band, on the other hand, promises the emer-
gence of magnetism when electron interaction is taken into
account [18–21]. In zigzag MLG nanoribbons, the repulsive
on-site Coulomb interaction is shown to introduce ground-
state spin polarization (SP) on the edges, which can be either
antiferromagnetic (AFM) or ferromagnetic (FM), i.e., the lo-
calized magnetic moments at the opposite edges of the ribbon
are antiparallel or parallel [19–21], turning the system into a
semiconductor or a conductor (metal), respectively [18,19].
Based on this phenomenon, some interesting applications in
spintronics have been proposed such as half-metallicity in-
duced by an in-plane electric field [19,22] and control of the
spin transport by introducing defects [23]. Similar magnetic
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effects have also been found in nonstandard-shaped MLG
ribbons [24,25].

Compared with MLG ribbons, magnetism in BLG mate-
rials and nanostructures is less studied. Most earlier works
focused on the half-metallicity and related magnetic effects
in zigzag BLG nanoribbons [26–29] or the bulk BLG system
[30].

In this paper, we focus on the motions of electrons corre-
lated with the edge states in bearded-zigzag (bea-zig) BLG
(the top and bottom layer of a BLG ribbon have zigzag and
bearded edges, respectively; the atomic structure and band
structure are shown in Fig. 1). The ribbon hosts flat edge bands
in the entire 1D Brillouin zone [31]. Under interlayer bias,
we find that gapless chiral modes appear in the ribbon bulk
near the Dirac point, connecting states localized on opposite
edges and layers. Bloch oscillation in the edge bands driven by
an electric field along the ribbon has an unusual form in the
real space, where the electrons predominantly oscillate in the
transverse direction. This brings both edge charge oscillation
and layer charge oscillation.

In Sec. II we present and discuss our numerical simu-
lation result for the anomalous Bloch oscillation. Such a
phenomenon represents an interesting aspect of Bloch oscil-
lation in real space due to the spatial character of topological
edge bands. It is well known that the Chern-number-protected
topological edge states also bring Bloch oscillation along
the transverse direction [32,33]. However, the phenomena we
present in this paper are distinct from those phenomena from
several perspectives. (1) The topology involved is different.
The anomalous Bloch oscillation presented in this paper is
related to a winding number instead of a Chern number, as
discussed in our earlier work [31]. In the Chern-number-
protected case, the edge states on opposite layers live in the
same momentum region, and they belong to different energy
bands [32]. They cross each other to connect the bulk bands.
In our system, edge states of opposite edges belong to the
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FIG. 1. A schematic illustration of the atomic structure of bea-zig BLG ribbons and related bulk chiral modes. The number of atoms in
one unit cell of the ribbon is chosen to be 120 for each layer for all plots. (a) The atomic structure of bea-zig BLG ribbons. The unit vectors
are denoted by �a1 and �a2. Ribbons are assumed to be infinite along the x, viz., �a1, direction. (b) The band structure for the bea-zig BLG ribbon
with no bias. Two edge bands are highlighted by the solid red lines. The zoomed-in band structure in the black dashed circle is shown next to
(b), and the energy difference between two edge bands (red solid lines) is presented below. (c) The band structure for the biased bea-zig BLG
ribbon. Two bands of edge states are highlighted by the solid red lines. (d) The real space polarization of the wave function, where the wave
function is in the form |ϕ〉 = ∑

φi|i〉 with i labeling sites along the �a2 direction. This wave function depicts the higher of the two red bands,
with dashed (solid) lines referring to the distribution on the top (bottom) layer. (e) The real space distribution of the wave function of one of
the edge states (the higher flat band) with different kx values, as marked in (c) and (d). The blue (red) solid line refers to the distribution on the
top (bottom) layer. The parameters are the interlayer bias U1 = 0 (b) and U1 = 0.1t (c). t = 3.16 eV for all plots.

same band. They live in a different momentum region and
are connected with each other near the Dirac points by bulk
modes. One consequence of this difference is that the period
of oscillation in the momentum space is different: 4π for the
Chern-number-protected case and 2π for our case [32]. (2)
The winding-number-generated edge bands are flat in most
parts of momentum space. The nondispersive nature of the
bands makes it possible to freeze the motion along the longi-
tudinal direction, in contrast to the dispersive topological edge
states [34]. (3) There is an additional layer degree of freedom
in our system compared with the Chern-number-protected
case. As will be shown, both edge charge oscillation and layer
charge oscillation can be observed in our system.

In Sec. III we include interaction between electrons and
discuss possible applications. With Hubbard interaction in-
cluded through the mean-field approach, we show that the
reported anomalous Bloch oscillation can be exploited for
electrical switching of the edge magnetization configuration.
This points to a possibility of spintronics control. Finally, we
give a summary of our findings in Sec. IV.

II. ANOMALOUS BLOCH OSCILLATION

The electronic properties of the biased bea-zig BLG can be
described by the tight-binding Hamiltonian [31]

HBLG = H1
bea + H2

zig + Hint + Hbias, (1)

where

Hl
bea/zig = −t

∑
〈i, j〉,σ

(c†
l,i,σ cl, j,σ + H.c.) (2)

represents the tight-binding Hamiltonian of MLG with
bearded or zigzag edges and l = 1, 2 are labels of the bottom
and top layers, respectively. t denotes the nearest-neighbor
(NN) hopping in MLG with c†

i,σ (ci,σ ) being the creation
(annihilation) operator of a σ -spin electron on site i in the
ribbon, and

∑
〈i, j〉,σ only sums over NN pairs. Since there is

no Hubbard interaction, i.e., no interaction between different
spins, the index σ can be ignored.

Hbias =
∑
l,i,σ

(−1)l U1

2
(c†

l,i,σ cl,i,σ + H.c.) (3)

refers to the interlayer bias U1. The van der Waals interaction
between two layers [1,35] is described by Hint. In this paper
we only consider the NN interlayer coupling γ1 for simplicity.
Here, we take t = 3.16 eV and γ1 = 0.381 eV as typical
experimental values for AB-stacked BLGs [36].

We take the x direction as the infinite direction of the BLG
ribbon. For this specific structure, it has been shown in our
earlier work [31] that there are two degenerate nondisper-
sive edge bands in the whole kx region when U1 = 0. They
are related with an interlayer-coupling-protected topological
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FIG. 2. The numerical simulation of the motion of electrons in real space based on the edge states of the biased bea-zig BLG. The dynamics
of electrons is simulated by using Gaussian wave packets in the momentum space, following the procedure outlined in Ref. [37]. (a) Top panel:
a schematic illustration of the BLG ribbon on which the simulation is conducted. The x direction is the periodic direction, while y is the finite
direction. It is chosen that the length (width) of the ribbon [x (y) direction] is 4800a, and there are 64 atoms in each layer. a is the lattice
constant of graphene. The red box shows the plot range of the simulation, which covers a length of 800a. Middle panel: schematic illustration
of the movement of electrons in the y-z plane perpendicular to the applied external electric field Ex . Bottom panel: band structure of the BLG
ribbon used in the simulation. The gap between the red bands and the blue bands (bulk) is around 0.05t . (b) The result of the numerical
simulation when the electron on the edge band moves to different positions in kx space, as shown in the two rows of panels at top. The color
represents the magnitude of the wave function in real space, increasing from blue to yellow. The parameters used are Ex = −1.7 × 10−2 and
−2.8 × 10−3 V/nm for the two rows of panels at top and the two rows of panels at bottom, respectively. The color scale is matched within
each set of graphs but may vary from set to set. The lower one of the two edge bands is used in the simulation.

phase transition between two nontrivial topological phases
characterized by winding number W = −1 and W = 1 when
crossing the Dirac point.

When U1 �= 0, topological edge states still exist in the
whole kx region with different energy when crossing the Dirac
point. They are connected by a pair of bulk chiral modes,
as shown in Fig. 1(c). The degeneracy between edges is
lifted due to the broken chiral symmetry, as discussed in
Ref. [31]. The bulk chiral modes connect states residing on
opposite edges of different layers. The connection must be
done through the bulk, hence the name.

The fact that these connecting chiral modes are bulk states
is by itself interesting in terms of transport. It is often the
case that the bulk part of the material is an insulator, so that
all electrical transport is dependent on topologically protected
edge states. However, in the system we discuss here, transport
is done by two special pairs of chiral bulk states, one at each
valley. These special bulk states at the Fermi level are present
only because there are edge states populating different areas
of the momentum space. They are not obtained by discretizing
the bulk spectrum of the BLG, e.g., the blue bands in Fig. 1(c).

An interesting application of these bulk chiral modes is
Bloch oscillation in the edge bands [32,37–41]. When apply-
ing an electric field eEx = ∂A(t )

∂t along the infinite direction

(the x direction in our assumption) of the ribbon, the motion of
electrons in the edge states can be approximately described by
semiclassical equations of a wave packet. The wave vector of
the electron will evolve according to k̇x = −eEx/h̄, as shown
in Fig. 2. Because of the existence of the bulk chiral modes
connecting two opposite edges of two different layers, the
transition of electrons from the left edge of one layer to the
right edge of the other layer is possible, giving rise to a Hall-
effect-like behavior of electrons, as illustrated in Fig. 2(a).

The naive conjecture above may be undermined by the
smallness of the gap opened by the bias. Numerically, a bias
as large as U1 = 200 meV can open a gap of around 5 meV
between two edge bands in the flat part. Landau-Zener tunnel-
ing may cause the electrons to transit between different edge
bands, breaking down our conjecture based upon a single-
band picture. However, such a transition is suppressed by the
fact that there is no spatial overlap between the wave functions
of two flat edge bands, i.e., 〈edge band 1|HEx |edge band 2〉 ≈
0 [42]. The bulk state, i.e., the blue bands as shown in Fig. 1,
is also not relevant here since (1) Landau-Zener tunneling
between the edge states and bulk states is proved to be highly
suppressed [44] and (2) the gap between the bulk bands and
the edge bands for the ribbon we use in this simulation is
around 0.05t for the ribbon used in Fig. 2, which is too large
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for the electrical field we use to cause interband transition.
Due to these results, we can employ the single-band approxi-
mation in our simulation.

Here, we use a wave packet to simulate the motion of elec-
trons in real space. It shows the expected trajectory, as shown
in Fig. 2(b). The evolution of the wave packet as demonstrated
in Fig. 2 is done by following the procedure of Ref. [37]. The
wave packet |ψ〉 is expanded in the Bloch state basis |φk〉 of
energy E (k) with time-dependent coefficients c(k, t ):

|ψ (t )〉 = c(k, t ) |φk〉 ,

c(k, t ) = c(k + Ft/h̄, 0) exp

(
i

F

∫ k

k+Ft/h̄
E (k′)dk′

)
,

F ≡ eEx. (4)

For the scenario demonstrated in Fig. 2, Ex is negative. The
initial wave packet is a Gaussian wave packet centered around
the initial momentum k0 ≈ 0.3π with the width of the wave
packet σ ≈ 0.02:

c(k, 0) = exp

(
− (k − k0)2

σ 2

)
. (5)

We note that in the transition between edges, i.e., in the
second and the fourth columns of Fig. 2(b), there are two mass
centers of the wave packet. This results from our choice of
σ . A decrease in σ is observed to eliminate such a feature.
Due to this observation, we can attribute the presence of this
two-mass-center behavior to the breathing mode of Bloch
oscillation [37], i.e., when the wave packet is broad enough
in the momentum space, the wave packet will have a constant
mean position 〈x(t )〉 with an oscillating width 〈	x(t )〉.

It should be noted that the major physics we would like
to stress in this section is that the wave packet oscillates
in the transverse direction due to the topological property
of the bea-zig BLG. This anomalous oscillation is present
independent of the choice of σ and k0. Results with a narrower
width and without two mass centers are demonstrated in the
Supplemental Material [45].

In a full cycle, i.e., the momentum kx evolves from 0 to 2π ,
a wave packet will move both in the x direction and in the y
direction. The motions in these two directions are different.
Since only the part of the edge bands near the Dirac points
(bulk chiral modes) has nonvanishing group velocity and the
time of the wave packet staying in this region is inversely
proportional to the field strength, the range of motion of the
wave packet in the x direction is inversely proportional to the
electric field strength Ex, which can be observed in Fig. 2(b).
Also, this range is proportional to the bias as it determines how
dispersive the connecting bulk modes are. Thus the motion
in the longitudinal direction can be frozen by either using a
smaller bias or using a larger field, as shown in the Supple-
mental Material [45].

However, the range of motion of the anomalous oscillation
in the transverse direction, i.e., the y direction, is indepen-
dent of the field strength, which must be the whole width
of the ribbon. Here, we have used U1 = 200 meV in the
numerical simulation of Fig. 2. Similar phenomena can still
be observed for smaller U1 or even for U1 ≈ 0, where the
motion in the x direction is frozen, leaving the oscillation in

the transverse direction unaffected [45]. It should be noted
that these phenomena are unique to this bea-zig BLG ribbon,
as there are edge bands detached from the bulk bands in the
whole Brillouin zone. It is not possible to observe it in the
BLG zigzag-zigzag ribbon, as all four of its edge bands only
exist in a partial region in momentum space.

III. ELECTRICAL SWITCHING OF EDGE
MAGNETIZATION

Magnetic effects of the edge states in the BLG ribbon can
be described by self-consistent mean-field calculation when
adding the Hubbard interaction HU to the usual tight-binding
Hamiltonian HBLG of the BLG ribbon [18]:

H = HBLG + HU , HU = U
∑

i

ni,↑nı,↓. (6)

The Hubbard interaction HU represents the electron-electron
interaction in the form of the repulsive on-site Coulomb
interaction. ni,↑(↓) ≡ a†

i,↑(↓)ai,↑(↓) is the occupation number
operator, and U > 0 describes its magnitude. We take U =
1.2t in this paper [18].

Since the interaction between different spins is no longer
zero, the spin degrees of freedom σ should be considered. We
show the band structure of H for both spins in Figs. 3(a) and
4(a). The calculation details and a brief review of the model
can be found in the Supplemental Material [45]. Bulk modes
connecting edge modes appear that are similar to those arising
in the non-Hubbard spinless bea-zig BLG ribbon, as shown
in Fig. 3(a). The SP configurations are not limited to two
simple types (AFM or FM)as found in the MLG ribbon in
Ref. [18]. There are eight inequivalent types of SP for BLG
cases, as shown in Table I. For simplicity, in Fig. 3(a) we
demonstrate only two types of band structures corresponding
to configuration 4 in Table I.

The essence of the result in the spinless model is that an
external field Ex can push electrons through the momentum
space and cause corresponding motion in the real space. In
a spinless model, the occupation of the electrons in the mo-
mentum space does not affect the band structure, while the
band structure of the Hubbard model is dependent on the
momentum space distribution of electrons [18,45]. Thus not
all configurations in the momentum space are self-consistent
ground states at equilibrium. In fact, as listed in Table I, there
are only 16 (8 × 2) self-consistent solutions of the model. Any
unstable configurations should relax into one of them.

An electric field Ex will push the system out of equilib-
rium by shifting the position of the electrons in momentum
space. If the shift is small, it is reasonable to expect that the
system should relax to the initial configuration. However, if
the shift is large enough in momentum space, the system may
relax to another ground state when trying to reach equilib-
rium. The idea of this procedure is schematically illustrated in
Fig. 3(b) [46].

Numerically, this is verified by giving different initial con-
figurations to the electron’s momentum space distribution,
which would stably converge to a different ground state, as
illustrated in Figs. 3(a) and 3(b). Initially, spin-up and spin-
down electrons occupy distinct regions in the momentum
space. If the electrons are pushed to the positive kx direction
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FIG. 3. (a) Band structure of two self-consistent ground states of the bea-zig BLG ribbon in the Hubbard model, corresponding to
configuration 4 in Table I. The black dashed line is the Fermi level. Black solid lines are bulk bands. Blue (red) solid lines are edge bands of
spin-up (spin-down) electrons. (b) Schematic illustration of the Bloch oscillation in the same system. Condition (2) [(4)] corresponds to the
top (bottom) panel of (a). Condition (1) [(3)] is an intermediate state where the deviation from the initial state, i.e., the top panel of (a), is
small (large). The black circles are electrons occupying bands. (c) Top panels: SP configurations corresponding to (a) [the left (right) panel
corresponds to the top (bottom) panel of (a)], which are defined by the magnetic moment Mi [50]. The black (green) solid line represents the
situation on the top (bottom) layer. The horizontal axis is the site index, increasing along the finite direction of the ribbon. The top-layer atoms
constitute the first half, while the bottom-layer atoms constitute the second half. Bottom panels: schematic illustration of the SP in real space,
corresponding to the SP configurations shown in the top panel. A transition between these two configurations can be induced by the process
illustrated in (b).

by a small distance, they will stably converge to the initial
state, i.e., the top panel of Fig. 3(a). If electrons are pushed
further away from their initial state, they will stably converge
to an equilibrium state that differs from their initial state by
an exchange of spin, i.e., the bottom panel of Fig. 3(a). The
corresponding real space change is illustrated in Fig. 3(c).
This is an intraconfiguration transition between ground states,
i.e., configuration 4 of Table I. The result in the real space is
the exchange of spin polarization between two layers of the
ribbon, as shown in Fig. 3(c).

Moreover, we found that the interconfiguration transition
between ground states is possible by following a similar
process. This is shown in Fig. 4, where configuration 3 in
Table I can be transformed into configuration 8 through the
exchange of spins between the same edges of different layers.
The switch of edge magnetization only happens between two
partially filled bands since there are always finite gaps (around
20 meV) between these two bands and the other two bands,
i.e., one empty edge band and one fully filled edge band. The
gaps are shown in Fig. 4(a).

TABLE I. Summary of self-consistent solutions of bea-zig BLG ribbons. Here, “+” and “−” indicate the sign of the magnetic moment at
the corresponding edge; tu (td) represents the up (down) edge of the top layer, while bu and bd are for the edges of the bottom layer (“up” and
“down” are relative to the y direction as shown in Fig. 1). SC and C, semiconductor and metal (conductor), respectively. There are altogether
16 configurations; the remaining eight configurations are obtained from these by an exchange between spin-up electrons and spin-down
electrons.

Configuration tu td bu bd SC or C

1 + + + + C
2 + + + − C
3 + + − + C
4 + + − − C
5 + − + + C
6 + − + − SC
7 + − − + SC
8 − + + + C
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(a) (b)

FIG. 4. (a) Band structure of two self-consistent ground states of the bea-zig BLG ribbon in the Hubbard model, corresponding to
configurations 3 (top panel) and 8 (bottom panel) in Table I. The black dashed line is the Fermi level. Black solid lines are the bulk bands. Blue
(red) solid lines are edge bands of spin-up (spin-down) electrons. The zoomed-in band structures in the blue dashed box are shown next to
it, and the related energy difference (around 20 meV) between the nearly degenerate parts is presented above each zoomed-in band structure.
(b) Top panels: SP configurations corresponding to (a) [the left (right) panel corresponds to the top (bottom) panel of (a)], which are defined
by the magnetic moment Mi [50]. Bottom panels: schematic illustration of the SP distribution in real space, corresponding to the two SP
configurations shown in the top panels. A transition between these two SP configurations can be induced based on a process similar to that
shown in Fig. 3(b).

IV. CONCLUSIONS AND DISCUSSION

In summary, we study the motions of electrons related to
the edge states in bea-zig BLG, with and without Hubbard
interaction. The bulk chiral modes connecting two sectors
of the Brillouin zone are unconventional. They connect two
nontrivial topological phases and are related to the change of
topology between sectors.

When applying an electric field along the infinite direc-
tion of the ribbon, the motion of electrons in the edge states
can be described by Bloch oscillation based on semiclassi-
cal equations of wave packets. This leads to layer charge
oscillation and edge charge oscillation since the bulk chi-
ral modes connect opposite edges of different layers. Both
oscillations are transverse to the field. For the same system
with the Hubbard interaction, the Hall-effect-like behavior
persists when the electric field is applied, protected by the
spatial character of the topological edge bands. Besides, we
also exploit the possibility of electrical switching of edge
magnetization in the Hubbard model using this bulk mode.
With recent progress in the bottom-up approach, synthesizing
a long or narrow atomically precise graphene ribbon with
well-defined edges has become possible [51–53]. This makes

the testing of edge-induced magnetism in a graphene ribbon,
as well as various properties associated with edge topology
in a graphene ribbon, possible in the near future. Since all
these dynamical effects are related to the bulk chiral states
connecting edge states of the system, we can generalize our
study to other 2D materials with strong edge effects such as
transition metal dichalcogenides [54–56] and materials having
kagome [57] or triangular [58,59] lattice structure. All of these
are potential directions for further study.

ACKNOWLEDGMENTS

T.T. would like to thank Z. A. Hu and J. W. Li for their
generous support in completing this work. C.L. would like
to thank D. W. Zhai, B. Fu, and T. Y. Yang for useful dis-
cussions. This work was supported by the University Grants
Committee/Research Grant Council of the Hong Kong SAR
(AoE/P-701/20), Guangdong-Hong Kong Joint Laboratory
of Quantum Matter, the HKU Seed Funding for Strategic
Interdisciplinary Research, and the Croucher Senior Research
Fellowship.

[1] N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Elec-
tronic properties of disordered two-dimensional carbon, Phys.
Rev. B 73, 125411 (2006); A. H. Castro Neto, F. Guinea,

N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The
electronic properties of graphene, Rev. Mod. Phys. 81, 109
(2009).

045405-6

https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109


ANOMALOUS BLOCH OSCILLATION AND ELECTRICAL … PHYSICAL REVIEW B 106, 045405 (2022)

[2] V. Meunier, A. G. Souza Filho, E. B. Barros, and M. S.
Dresselhaus, Physical properties of low-dimensional sp2-
based carbon nanostructures, Rev. Mod. Phys. 88, 025005
(2016).

[3] P. R. Wallace, The band theory of graphite, Phys. Rev. 71, 622
(1947).

[4] V. P. Gusynin and S. G. Sharapov, Unconventional Integer
Quantum Hall Effect in Graphene, Phys. Rev. Lett. 95, 146801
(2005).

[5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Two-dimensional gas of massless Dirac fermions in graphene,
Nature (London) 438, 197 (2005); M. I. Katsnelson, K. S.
Novoselov, and A. K. Geim, Chiral tunnelling and the Klein
paradox in graphene, Nat. Phys. 2, 620 (2006); K. S. Novoselov,
Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler,
J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Room-
temperature quantum Hall effect in graphene, Science 315,
1379 (2007).

[6] Y. B. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Experimen-
tal observation of the quantum Hall effect and Berry’s phase in
graphene, Nature (London) 438, 201 (2005).

[7] W. Yao, S. A. Yang, and Q. Niu, Edge States in Graphene: From
Gapped Flat-Band to Gapless Chiral Modes, Phys. Rev. Lett.
102, 096801 (2009).

[8] P. Delplace, D. Ullmo, and G. Montambaux, Zak phase and the
existence of edge states in graphene, Phys. Rev. B 84, 195452
(2011).

[9] K. Nakada and M. Fujita, Edge state in graphene ribbons:
Nanometer size effect and edge shape dependence, Phys. Rev.
B 54, 17954 (1996).

[10] S. Ryu and Y. Hatsugai, Topological Origin of Zero-Energy
Edge States in Particle-Hole Symmetric Systems, Phys. Rev.
Lett. 89, 077002 (2002).

[11] L. Brey and H. A. Fertig, Electronic states of graphene nanorib-
bons studied with the Dirac equation, Phys. Rev. B 73, 235411
(2006).

[12] I. Martin, Ya. M. Blanter, and A. F. Morpurgo, Topological
Confinement in Bilayer Graphene, Phys. Rev. Lett. 100, 036804
(2008).

[13] M. Zarenia, J. M. Pereira, Jr., G. A. Farias, and F. M. Peeters,
Chiral states in bilayer graphene: Magnetic field dependence
and gap opening, Phys. Rev. B 84, 125451 (2011).

[14] L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, J. Velasco, Jr, C. Ojeda-
Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, J. Analytis,
and F. Wang, Topological valley transport at bilayer graphene
domain walls, Nature (London) 520, 650 (2015).

[15] D. Xiao, W. Yao, and Q. Niu, Valley-Contrasting Physics
in Graphene: Magnetic Moment and Topological Transport,
Phys. Rev. Lett. 99, 236809 (2007); W. Yao, D. Xiao, and Q.
Niu, Valley-dependent optoelectronics from inversion symme-
try breaking, Phys. Rev. B 77, 235406 (2008).

[16] P. M. Perez-Piskunow, G. Usaj, C. A. Balseiro, and L. E. F. Foa
Torres, Floquet chiral edge states in graphene, Phys. Rev. B 89,
121401(R) (2014).

[17] X. Xi, J. Ma, S. Wan, C.-H. Dong, and X. Sun, Observation
of chiral edge states in gapped nanomechanical graphene, Sci.
Adv. 7, eabe1398 (2021).

[18] O. V. Yazyev, Emergence of magnetism in graphene materials
and nanostructures, Rep. Prog. Phys. 73, 056501 (2010).

[19] Y. W. Son, M. L. Cohen, and S. G. Louie, Half-metallic
graphene nanoribbons, Nature (London) 444, 347 (2006).

[20] F. Muñoz-Rojas, J. Fernández-Rossier, and J. J. Palacios, Gi-
ant Magnetoresistance in Ultrasmall Graphene Based Devices,
Phys. Rev. Lett. 102, 136810 (2009).

[21] M. Slota, A. Keerthi, W. K. Myers, E. Tretyakov, M.
Baumgarten, A. Ardavan, H. Sadeghi, C. J. Lambert, A. Narita,
K. Müllen, and L. Bogani, Magnetic edge states and coherent
manipulation of graphene nanoribbons, Nature (London) 557,
691 (2018).

[22] S. Dutta, A. K. Manna, and S. K. Pati, Intrinsic Half-Metallicity
in Modified Graphene Nanoribbons, Phys. Rev. Lett. 102,
096601 (2009).
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