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Electromagnetic theory of double Fano resonances in plasmonic nanostructures and metamaterials
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The ab initio electromagnetic theory of Fano resonances in resonant plasmonic nanostructures and metama-
terials, developed by Gallinet and Martin [Phys. Rev. B 83, 235427 (2011)], is generalized to the case of double
Fano resonances. A system is considered in which two uncoupled nonradiative modes interfere with a broad
radiative mode driven by incident electromagnetic radiation. Feshbach-Fano partitioning formalism is employed
to recover the formula for the double Fano resonance spectral line shape suggested by Fano phenomenologically
in his original work, and derive the exact microscopic expressions for the parameters governing the optical

response of the system.
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I. INTRODUCTION

The interference of a narrow discrete state with a broad
continuum band of states produces a narrow asymmetric
spectral line shape in the adsorption spectrum. This effect,
explained by Fano [1] and now known as Fano resonance, has
found numerous applications in photonics and nanotechnol-
ogy [2-12].

A variety of theoretical and numerical methods are used
to analyze Fano resonances in specific systems, including
the classical coupled oscillator model [13,14], coupled-mode
theory [15-18], Green’s function formalism [19], and various
computational electromagnetic methods [20]. The classical
description of the resonance profile o (¢) is provided by the
famous formula derived by Fano [1],

(g+¢)?
1+&2°

Here, g is the phenomenological parameter (known as asym-
metry parameter or Fano parameter) which describes the
degree of asymmetry of the line shape, ¢ = (E — Ey)/(I'/2)
is the normalized energy deviation from the resonance energy
Ey, and T is the resonance width. The Fano formula, Eq. (1),
can be applied to different types of optical spectra in different
systems.

A photonic structure of Fano-resonant metamaterials pos-
sesses, in analogy with the original atomic system considered
by Fano, a nonradiative (dark) mode with a weak coupling
to the environment and a long lifetime, coupled to a broad
radiative (bright) mode which is strongly coupled to inci-
dent electromagnetic radiation and has a short lifetime [21].
Considering Fano resonances in plasmonic systems where a
flat continuum of states is replaced with a broad plasmonic
resonance, Giannini et al. [22] gained insight into the role of
its width and the energy. Gallinet and Martin [23] employed
an ab initio electromagnetic approach to generalize the Fano
formula to the case of vectorial fields and lossy materials:

o(e) = (1)

In this formula, the reduced frequency k = (w* — 7 —

Awg)/T is shifted with respect to the frequency of the non-
radiative mode w,, and the values of the resonance width and
shift, ' and A, asymmetry parameter g, the nonresonance
transfer amplitude a, and the screening parameter b, all de-
pend on the degree of intrinsic material losses.

In the cases when more than one discrete state interferes
with a broad background, multiple Fano resonances are possi-
ble. Such a case was considered, in particular, by Fano [1]
to describe the excitation spectra of Rydberg atoms. Mies
[24] extended Fano theory to the case of many resonances
interacting with many continua and inelastic couplings be-
tween continuum states. Several methods for realizing and
controlling double Fano resonances have been recently re-
ported [25-35].

The resonant frequencies of different discrete states are
often well separated from each other. In such cases the spectra
can be described using a superposition of individual Fano
resonances [25],

(CL)Y (";‘Ij‘) , )
k

with several asymmetry parameters ¢; and reduced frequen-
cies &, = 2(w — wy)/T'y, where wy and I'; are the frequency
and width of the kth resonance.

It is, however, possible that the distance between the res-
onant frequencies of different discrete states is not large
compared to their widths. Such cases can be realized
and controlled by careful design of the geometry of the
plasmonic structure [29,36,37] or by utilizing plasmon hy-
bridization between subradiant modes [27,38,39]. In nearly
degenerate cases the spectra can no longer be accurately de-
scribed using a superposition of individual Fano resonances
[29,37].

The way to describe multiple resonances was outlined by

(g+«k)+b Fano in his original work [1]. In the case of two discrete
olw)=a—— T2 () states interfering with one continuum, the spectrum can be
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represented in the form [29,40,41]

(1+2+2)" 4 (&4 B) W
I+ (L + 1) ’

K1 K2

o(w) x

with two reduced shifted resonance frequencies, «; and «»,
and two asymmetry parameters, ¢ and ¢, each corresponding
to one of the two discrete states, and two screening parame-
ters, by and b,.

Dana and Bahabad [29] reported the results of numerical
simulations which confirm the validity of Eq. (4). Further-
more, the authors explore the differences between a single and
a double Fano resonance. At that, they obtain the values of the
parameters in Eq. (2) by least-squares optimization fitting to
the data of the numerical simulations.

Although most studies on double Fano resonances in
photonics have employed empirical interpretations using the
approximated fitting formula (4) or a numerical analysis, there
are certain advantages in a rigorous theoretical analysis com-
pared to simplified analytical tools widely used in photonics,
such as the coupled mode theory [17,18]. In the case of single
Fano resonance, such an analysis can reveal the role played by
the electromagnetic modes and material losses in the system,
provide physical insight into the parameters describing the
spectra [23], enable descriptions of the spectra without using
any fitting parameters [22], and engineering nanostructures
and metamaterials in which Fano resonances play an impor-
tant role [42].

The aim of this paper is to generalize the electromagnetic
theory for Fano resonances in plasmonic nanostructures and
metamaterials by Gallinet and Martin [23] to the case of dou-
ble Fano resonances. We use the Fano-Feshbach partitioning
formalism to obtain the analog of formula (4) and derive
expressions for the parameters it contains.

II. THEORY

In this section we derive the formula for the spectral line
shape of double Fano resonance, Eq. (4), from first principles.
We consider the scattering of electromagnetic radiation, de-
scribed by the frequency-dependent electric field E = E(w) =
Eoe ™, on a dielectric or metallic object in a dispersive
dielectric medium with relative dielectric permittivity € (r, w).
Our derivation follows Gallinet and Martin [23] very closely.
The main difference with Ref. [23] is that we assume there is
not one but two nonradiative (dark) modes interacting with a
radiative (bright) mode.

A. Wave equation

Maxwell’s equations allow us to represent the wave equa-
tion for the vectorial wave function |E) in the form

(M, — @’ )|E) = 0, ®)

with the frequency-dependent differential operator

c?

e(r, w)
and the identity operator I.

VxVx (6)

o =

B. Solution of wave equation

In order to facilitate the solution of the wave equation, we
employ Feshbach-Fano partitioning formalism [43-45] and
introduce two complementary projection operators, P and Q,
which divide the wave function |E) into bright and dark parts:

|E) = PIE) + Q|E). (N
The projection operators are idempotent, i.e., they satisfy
P? = P and Q° = Q. Substituting decomposition (7) in the

wave equation (5), and applying the projection operators, we
obtain two coupled equations for P|E) and Q|E):

(PM,P — &’T)P|E) = —PM,Q|E), ®)

(OM,,Q — @’1)Q|E) = —QM,P|E). €))

We study the system in the frequency range which covers
the resonance frequencies of two dark modes. In this fre-
quency range these two modes form a complete set, hence we
can decompose the projection operator Q as

0= kB =01+ 0 (10)
k=1
where |Ey, ) are the eigenfunctions of Q, defined by
O|Ey) = [Eq,), (1)
satisfying the equations
OM,, O|Es) = ¢|Eq,), (12)
and normalized as
|(Ea[Eq )| = 1. (13)

with the inner product defined by

(E\|Ez) = fET(r)-Ez(r)d3r- (14)

The quantities zx = wy + iy, are generally complex, with wy
and y; being the resonance frequency and intrinsic damping
of the kth mode, respectively.

We use operators Oy defined by Eq. (10) to project Eq. (9)
in the subspaces corresponding to each dark mode:

1
QIE) = wz—_z%lEdl)(Ed, |ML,P|E), (15)

1

—Z%

}EdZ)(Edz

D [E) = — M,P|E). (16)
w

Inserting these equations in the decomposition given by
Eq. (10), and then in Eq. (8), yields the equation for P|E):

(PM,,P — »’I)P|E)

1

= 5——PM, |Eq,)(Eq M, P|E)
Zl —

1
+5— zPMw|Ed2)(Ed2|MwP|E). (17)
Zz —

We define the bright wave function |PE,) to satisfy
Eq. (17) with both dark modes |E,, ) removed:

(PM,,P — »*)|PE,) = 0. (18)
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Double Fano resonance for the total wave function |E) results
from interference between the bright mode |PE;) and two
dark modes |Eg,).

In order to solve Eq. (17) for P|E), we introduce the dyadic
Green’s function G, of Eq. (18), which satisfies the equation

(PM,P — 0*)G, = 1. (19)

For the self-adjoint operator PM,, the set of solutions |PE;)
of Eq. (18) can be selected which forms an orthogonal basis
of modes. Expanding Gy, in this basis as

P/ IPEb(w) PEb(w)I

2 2

, (20)

where P denotes the Cauchy pr1n01pal value of the integral,
we can write the solution to Eq. (17) as

. (Eq, [M,PIE)
PIE) = P|E;) + ————5—G,PM, |Eq,)
2

E,, |M,P|E)
+( dz 2| |E)
Zz -
Multiplication of Eq. (21) on the left by (E;|M, and
(Eq,IM, results in a system of two linear equations for
(Eq,IM,P|E) and (E4, |M,,P|E). Substituting the solutions to
these equations back in Eq. (21), we obtain

P|E) = P|E) + K,G,PM, [Ey,) + K,G,PM, [Ey,),  (22)

where

GPM, |Ey,). (1)

1
K, = Z[(Edl |Mw|PEb>(Z§ —w*+ W A7)

+(Eq,

M| PEy)(Eq, [M,G,PM,, |Eq)],  (23)
1
K, = Z[(Edz‘Mw|PEb>(Z% —w*+ w1 Ay)
+(Eq, |Mo|PEy)(Eqg, M, G,PM, [Eg )], (24)

L=(z — o +o1A)(53 — & + 0A,)
— (E4, M, GpPM,, |Eg, )(Eq, M, G,PM,, |Eg, ), (25)

and the quantities

1
Ap = —w—k<Edk}MwPGbPMw’Edk> (26)

would, in the absence of cross terms [see Eq. (34)], be the
shifts in the resonance positions wy due to the field overlap
between the continuum |PE,) and |Eg4 ). With the help of
formulas for the projection operators, Egs. (10), (15), (16),
and (22), we obtain the expression for |E):

|E) =|PE,) + K1 (G,PM, |Eq,) — [Eq))

+ K> (GyPM,|Ey) — |Es)). (27

The wave function |E) can be related to |E) by requiring
the correct asymptotic behavior in the far field. This relation
is given in the following section by Eq. (38).

C. Optical response

The optical response of the system to an external excitation
is described by the transition operator T between an initial

excited state |g) and a final state |E). It can be represented as a
ratio of the transition probability |(g|T|E)|? to the probability
|{(g|T|PE,)|? of the transition to the continuum state:

l(gIT |E)[*

- 28
[(g|T|PEy)|* 8

In order to derive the explicit formula for o, we start with
writing the ratio of the matrix elements corresponding to the
field |E), given by Eq. (27), and to the continuum, |PE,), as

(gITIE) _ (8IT |Ed,) — (8T GyPM, [Eq,)
(3IT|PE) (8IT|PE)
(8IT [Es) — (AT GoPML[Es)
(gIT |PE)

or, equivalently,

(B M IPE,)
20(z3 — 0? + w1Ay) :

(QTIE) _
(6T |PE,)

(B [MLIPEL)
20(5 — @ + Wy Ay) :
B (Eq, ML, |PE,)(E4, [M,G,PM,, |Eq,)
L
(8T G»PM,|Eq,)
(8IT|PE,)
_ (Eq, [Mo|PE,)(Eg, M, Gy PMo|Ed,)
L
(¢IT[Eq,) — (gl TG,PM, |Eqg,)
(8IT |PE,)

(8T |Eq) —

. (30

with the dimensionless intrinsic damping parameters

2
E,; M, |PE,)| A

A = (Eq, M, |PEy)| kz’ 31)
Zwk(w,% —w? + kak)

where
)\.k = Zwkyk. (32)

The quantities g, given by the ratios between the matrix el-
ements corresponding to the respective perturbed dark modes
and the continuum, have the form

_ 2w
W (B ML IPE,))
(8IT |Eq,) — (T G,PM, [Eg)
(TIPEy) + (4 |M.GoPM, |, )Es, ML GoPML [E,, )

2wt Al) (z% —u)2+u)2A2)

(33)

Since plasmon interactions between dark modes are rare
[27], we henceforth assume the dark modes to be uncoupled
from each other in the sense that

(E4 |M,GpPM,,|Ey) =0 fork # 1. (34)
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This reduces Eq. (30) to
- 2

(gIT|E) |
(|T |PEy)

|(Eq, M, |PE,)
Zw(z% —w?+ a)lAl)

|(Eq, | ML, |PEs)
250(1% —w? 4+ szz)

| 2

92, (35)

with

20((gIT |Eq,) — (8]T G,PM,, |Ey,))

* (36)
((Eq, ML, |PE,)) (g T | PEs)

gk =

The requirement for the wave function |E) to have the same
asymptotic behavior as |E;),
lim [P[E)|* = lim |P|E)[%, (37)
r—00 r—00
leads to the following relation between |E) and the wave
function |E), given by Eq. (27),

1 .
|E) = ——=IE), (38)
/a2 +ﬂ2
with
LA YY)
a=1+ , (39
XP+HA X3+
i X2
B= , (40)
Xi+A G+
where
2
E; \M,|PE
r, — |(Eq, [M,|PE,)| @1
2a)k
and
_ 2 2
Xk = 0" — w; — wiAg. 42)

Following Huang et al. [46], we assume that the asymmetry
parameters g; are real. By accounting for this, we can substi-
tute Egs. (38)—(40) into Eq. (35) and use Eq. (28) to obtain the

formula
1 Cixqu Taxaqa \
a=:[(1+ g | oo “3)
& Xi A7 X5 + A5
NP A 2
+< 21 16112+ 222‘122) ]’ (44)
Xi tAT X+
where
- Ci+r)? T+ a)
Xi +47 X+ 23
— MA 2T AMA
(xix2 122 + 20 T) (i xe + A1Az) (45)

(xf +27) 0 +23)

The parameters in Eq. (43), which determine the reso-
nance shape, depend on the physical nature of the transition
described by the operator 7.

D. Resonance parameters

The formula for the optical response of the system to
an external excitation, Eq. (43), can be represented in the

numerical simulation — ——-
old formula -
1t new formula 1

700 750 800 850
A (nm)

FIG. 1. The results of the numerical simulation of the transmis-
sion profile in a plasmonic double grating structure, presented by
Dana and Bahabad [29] (the dashed line) fitted by Eq. (43) (the
continuous line; the parameters are listed in Table I). The dotted line
represents the best-fit line shape obtained by Dana and Bahabad [29]
using Eq. (4).

classical form, Eq. (4). However, in this case the parameters
which enter Eq. (4) would be frequency dependent, and hence
the resonance profile given by Eq. (43) would differ from
that given by Eq. (4). This difference is illustrated in Fig. 1,
where the transmission profile in a plasmonic double grating
structure, obtained by a numerical simulation by Dana and
Bahabad [29], is fitted by both Egs. (43) and (4).

In principle, it is possible to calculate the parameters
in Eq. (43) using various model approaches. For example,
Gallinet and Martin [42] derive closed-form expressions for
the parameters of the formula for single Fano resonance in the
particular case when the bright mode is assumed to generate
a continuum of radiative waves |PE;) with the Lorentzian
distribution

Ly |PEy(wp))

PEy(@)) = ——22
PEN@) =

(46)
where wy, is the frequency of the highest amplitude and I,
the width of the distribution. In the case of double Fano
resonance, the derivation is applicable to each dark mode
separately. As a result, the parameters in Eq. (43) are given
by the formulas

2 2
_ (,L)k — Cl)b
gk = r, 47)
__dltan
207[ (0 — @})” + T3]
4 2 2)\?2 2102
A= yk[(w’z‘ Zwb) i dig (49)
Ck (“’k - “)b)
ZFZ
= 2 2Ck2 : 2 ’ (50)
2o [(wf — w})” + T2](1 = Ag)
where
¢k = [{PEy(wp)| M, |Eg )| (5D
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TABLE 1. The parameters obtained by the least-squares opti-
mization fitting of Eq. (43) to the numerical simulation data by Dana
and Bahabad [29].

k A (THZ?) Ty (THZ?) q, wi (THZ) A, (THz)
1 55452 309 451158 2297 0.778
2 216955 1428 449113 2342 0.913

are the coupling strengths between the bright mode and the
kth dark mode.

III. CONCLUSION

We have generalized the electromagnetic theory for Fano
resonances in plasmonic nanostructures and metamaterials
by Gallinet and Martin [23] to the case of double Fano

resonances. Using Fano-Feshbach partitioning formalism, we
have obtained the formula, Eq. (43), for the spectral line shape
of the system in which two uncoupled nonradiative modes
interfere with a broad radiative mode, and derived expres-
sions for the parameters in terms of the transition operator
which describes the optical response of the system. The more
accurate fit of the numerical simulation data by Dana and
Bahabad [29], presented in Fig. 1, illustrates that the result
in Eq. (43) can go beyond the double Fano result known in
the literature and be applied to realistic systems with material
losses not necessarily small. In principle, our approach can be
used to further generalize the theory to include more than two
resonances.

The results of this work, aimed at facilitating control of
double Fano resonances, can potentially be useful for the
design of plasmonic nanostructures and metamaterials with
the desired properties.
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