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Split-ring resonator coupling-induced tunable acoustic second-order topological insulators
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The recent higher-order topological insulators (HOTIs) encoded with the tight-binding model (TBM) have
been demonstrated beyond traditional bulk-edge correspondence, which shows the exotic capability of sound
manipulation. However, the current waveguide resonator model with weak tunability in hopping controls has
been used as the most common method to construct the TBM directly in a realistic acoustic system. Here, we
present another carrier and methodology to realize the TBM based on split-ring resonators (SRRs) coupling
in a realistic physical platform and construct a second-order topological insulator (SOTI) based on it, where the
hopping and frequencies of the topological corner states can be easily tuned by adjusting the coupling strength of
the SRRs. Numerical analysis and experimental measurement demonstrated zero-dimensional topological corner
states in this acoustic resonant system. The findings provide a more flexible method for tunable acoustic HOTIs
realization.
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I. INTRODUCTION

As a rising topological materials, higher-order topologi-
cal insulators (HOTIs) have consumed the world’s attention
recently [1–4]. Different from the conventional topological
insulators, which support topologically protected states along
boundaries with one dimension lower than that of the bulk,
HOTIs host the topological corner states in a two-dimensional
(2D) or three-dimensional (3D) system, which obey the gen-
eralized bulk-edge correspondence principle. After the first
theoretical prediction of HOTIs [1,2], quadrupole topological
insulators were rapidly demonstrated in some real physi-
cal platforms, such as mechanics [5], electromagnetics [6],
photonics [7,8] and acoustics [9], based on the quantized
quadrupole momentum. Then, the Wannier-type second-order
topological insulators (SOTIs) were predicted and demon-
strated in a kagome lattice [10–13] and a square lattice
[14–19] characterized with quantized dipole momentum. In
addition, other SOTIs were also presented based on crystalline
symmetries [20,21], valley degree of freedom [22], or Dirac
vortices [23].

In particular, the tight-binding model (TBM) [24–26] as a
key to obtain the system’s Hamiltonian plays a vital role in
the developing process of HOTIs, where controlling hopping
between neighboring lattice sites is very crucial to construct
HOTIs. In photonics, hopping controls for HOTIs can be eas-
ily realized experimentally by changing the distance between
neighboring dielectric rods [27,28]. But in an acoustic sys-
tem, this easy hopping–control strategy can only be available
when the acoustic impedance of the scattering rods is lower
than that of the air yet without experimental demonstration
[29,30]. Therefore, the waveguide resonator model (WRM)
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was used to be an analogy of the TBM in the realistic system
of acoustics, but with limited degrees of freedom in adjusting
the hopping [31–34]. Thus, it is essential to find another car-
rier, with a more flexible method of adjusting the hopping, to
construct the TBM in a realistic physical platform.

Here, the sonic crystal (SC) consisting of split-ring res-
onators (SRRs) [35–42] is demonstrated as an analogy of
the TBM. The coupling of SRRs plays a key role in flexible
hopping manipulation, which can be used to realize acous-
tic HOTIs. Different from the previous WRM-based acoustic
HOTIs, the TBM based on SRRs can control the hopping by
changing the split’s direction of the unit, and the working fre-
quency can be tuned by changing the distance of neighboring
SRRs. Furthermore, the zero Berry curvature and quantized
dipole momentum are calculated to verify the effective anal-
ogy between the resonant SC and the TBM. The topological
corner states are demonstrated experimentally by constructing
a superstructure composed of two topologically distinct SCs
forming box-shaped boundaries.

II. ACOUSTIC TOPOLOGICAL MODEL
COMPOSED OF SRRs

The square-lattice model used to construct 2D SOTIs is
plotted in Fig. 1(a) and the unit cell is marked by the black
dashed square with lattice constant a = 30 mm. The unit cell
is formed by arraying one SRR (outer radius R = 5 mm, inner
radius r = 3.5 mm, and width of the split t = 3 mm) circling
the center of the unit cell every 90°, which makes this SC own
C4 symmetry. These four SRRs are positioned on the diagonal
lines of the unit cell, and the distance between the SRRs with
the center can be expressed as D = √

2 × (0.25a + �d ). The
direction of the SRRs can be denoted as α. Thus, the SC can
be described with �d and α. For example, when α = 45 ◦ and
�d = −1.5 mm, the SC can be defined as (45, −1.5).
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FIG. 1. Acoustic model and corresponding band structures. (a)
Schematic of the square-lattice SC with the unit cell surrounded by
the black dashed box. Inset: The first Brillouin zone. (b) The cor-
responding 2D acoustic SSH model. Band structure of nontrivial SC
(45, −1.5) (c) and trivial SC (−135, 1.5) (d). The +/− signs indicate
the odd and even modes at the high-symmetry points, respectively.
Insets: The corresponding unit cell.

This type of SC can be approximated by a 2D Su-
Schrieffer-Heeger (SSH) model [43] considering the next-
nearest neighbor (NNN) coupling [Fig. 1(b)], where γ is the
intercell hopping, μ is the intracell hopping, and g is the NNN
coupling. The Hamiltonian in momentum space of the 2D
SSH model can be described as [17]

H (k) = (−1)∗

⎡
⎢⎣

0 h12

h∗
12 0

h13 h14

h23 h24

h∗
13 h∗

23
h∗

14 h∗
24

0 h34

h∗
34 0

⎤
⎥⎦, (1)

where h12 = h34 = μ + γ exp(−ikx ), h13 = h24 = μ + γ

exp(−iky), h14 = gexp(−ikx−iky), and h23 = gexp(ikx−iky).
The atomic sites in the unit cell are numbered from 1 to 4, as
shown in Fig. 1(b).

In a realistic SC, μ, γ , and g are related to �d and α of
the SRR. The bulk dispersions of two different SCs defined as
(45, −1.5) and (−135, 1.5) are demonstrated in Fig. 1(c) and
(1d), respectively, and are calculated using an eigenfrequency
analysis in the “Acoustics” module of COMSOL Multiphysics
software and are very similar to the band structures calcu-
lated using the tight-binding Hamiltonian in Eq. (1) with
μ �= γ , g �= 0 (see Supplemental Material Note S1 [44]).
And one absolute band gap emerges from 4735 Hz to 5141 Hz.
Although these two types of SCs cannot be distinguished by
band structures alone, they own different topological invari-
ants of the first band gap. Because of the special point group
symmetry of this acoustic system, the bulk polarization P, the
corresponding topological invariant, can be obtained from the
parities of the eigenstates (see Supplemental Material Note S2
[44]) at the high-symmetry points in the first Brillouin Zone

[see the inset in Fig. 1(a)] [45]:

Pm = 1

2

(∑
qn

mmod 2

)
, (−1)qn

m = ηn(Xm)

ηn(�)
, (2)

where the summation is carried over all the occupied bands
below the first band gap, ηn denotes the parity associated with
π rotation of the nth-band eigenstates at the high-symmetry
point, and m stands for the direction of x or y. Here, Px = Py

because of the symmetry of this acoustic system. From the
parities labeled in Fig. 1(c) and 1(d), for SC (45, −1.5), we
can obtain P = (1/2, 1/2), indicating it is nontrivial; for SC
(−135, 1.5), P = (0, 0), indicating it is trivial. To verify fur-
ther the effective analog between the acoustic model with the
2D SSH model, we numerically calculate the Berry curvature
and Wannier centers of the lowest band. The Berry curvature
can be defined as

� = ∇k × Ak (kx, ky) (3)

where Ak (kx, ky) = i〈u(k)|∇k|u(k)〉 is the Berry connection,
with u(k) being the Bloch wave function of the lowest band.
The bulk polarization of the lowest band can be calculated
as [11]

P = − 1

(2π )2 ∫ Ak (kx, ky )dkxdky. (4)

The two components of the bulk polarization can be ob-
tained by a Wilson loop approach [46],

Pi = 1

2π

∫
vi(k j )dk j, i = x, y, j = y, x, (5)

where the integration is carried out over the projection of the
first Brillouin zone along k j , and vi(k j ) is the Berry phase
along the loop ki for a fixed k j . Because of the coexistence
of time-reversal symmetry and inversion symmetry, the Berry
curvature vanishes everywhere for trivial and nontrivial SCs,
as shown in Figs. 2(a) and 2(b), respectively. However, the
scatter diagrams in Figs. 2(a) and 2(b) indicate the Wannier
centers of the trivial SC and the nontrivial SC are different
from each other, with 0 for the trivial one and 1/2 for the
nontrivial one, which is consistent with the parity analysis at
the high-symmetry points in the first Brillouin zone.

Next, the evolutions of bulk polarization with α and �d are
demonstrated in detail. When �d = 0 mm, the evolutions of
the first band gaps and the corresponding bulk polarization
with α are shown in Fig. 2(c). Here, the first band gap is
defined by the difference between the lowest frequency of
the second band and the highest frequency of the first band,
and they are located at X point and M point, respectively, as
shown in Fig. 1(c). The absolute band gap forms only when
α is located in two ranges: From −164° to −106° and from
16° to 74°, and they own different bulk polarizations. When
α deviates from these two ranges, the absolute band gap van-
ishes [Fig. 2(d)], which can lead to the disappearance of the
corner states because they will hybridize with the bulk states.
The influences of �d on bulk polarization when α = 45◦ and
α = −135◦ are demonstrated in Figs. 2(e) and 2(f), respec-
tively. The distance between neighboring SRRs cannot change
the bulk polarization of the SC, but it can change the width
and central frequency of the first band gap, which provides a
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FIG. 2. Demonstration of topological phase transition and frequency tunability. The calculated Berry curvature at the first Brillouin zone
and Berry phase vy as a function of kx for a trivial SC (a) and a nontrivial SC (b) of the first band. (c) The variation of the first band gap and bulk
polarization with the rotational angle α when �d = 0. (d) The band structure of the SC when α = 90◦, where the first band gap disappears.
The variation of the first band gap and bulk polarization with the distance of the neighboring SRRs when α = 45◦ (e) and α = −135◦ (f).

theoretical basis to tune the frequency of topological corner
states.

III. DEMONSTRATION OF ACOUSTIC SOTIs

We construct a box-shaped structure consisting of a 6a∗6a
nontrivial SC (45, −1.5) surrounded by a trivial SC (−135,
1.5) with a thickness of 5a to demonstrate the topological
corner states, as shown in Fig. 3(a). The frequencies of eigen-
states of this box-shaped structure indicate that the four nearly

FIG. 3. Observation of topological corner states. (a) Schematic
of the box-shaped structure composed of a 6a∗6a nontrivial SC
surrounded by a trivial SC with a thickness of 5a. (b) Calculated
eigenfrequency distributions of the superstructure. The distribution
of absolute pressure field of corner states at 4921 Hz (c), edge states
at 4622 Hz (d), and bulk states at 4249 Hz (e).

degenerate corner states appear in the band gap and the edge
states appear both in the band gap and below the band gap [see
Fig. 3(b)]. These in-gap corner states can also be predicted
using the tight-binding model considering the NNN coupling
(see Supplemental Material Note S1 [44]). The incomplete de-
generacy of these corner states results from the interactions of
corner states in different positions. The absolute pressure field
profiles of corner states at 4921 Hz, edge states at 4622 Hz,
and bulk states at 4249 Hz are demonstrated in Figs. 3(c),
3(d), and 3(e), respectively, which clearly show the different
pressure confinement characteristics of these modes.

A discussion on the tunability and robustness against de-
fects of the corner states can be found in Supplemental
Material Note S3 [44]. To reveal the pressure distributions
of different modes further, the normalized density of states
(DOS) [21] of the corner region, edge region, and bulk region
are calculated (see Supplemental Material Note S4 for more
details [44],) as presented in Fig. 4(a), and the inset demon-
strates the chosen regions of corner states, edge states, and
bulk states. Note that the partial frequencies of edge states
are lower than the lower boundary of the first band gap and
mix with bulk states, which can be explained by calculating
the band structure of the one-dimensional (1D) ribbon-shaped
structure (see Supplemental Material Note S5 [44]).

IV. EXPERIMENTAL VERIFICATION OF TOPOLOGICAL
CORNER STATES

To verify experimentally the corner states, edge states, and
bulk states, we fabricate a box-shaped structure by photocur-
able 3D printing and measure the different frequency response
of corner detector, edge detector, and bulk detector (experi-
mental setup can be found in Supplemental Material Note S6
[44]). The normalized frequency spectra are demonstrated in
Fig. 4(b), which are consistent with the calculated normalized
DOS. Note that the measured frequency of corner modes is
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FIG. 4. Experimental validation of topological corner states. (a) Calculated normalized DOS of corner region, edge region, and bulk region.
Inset: Schematic of the corner region, edge region, and bulk region. (b) Experimentally measured normalized sound transmission at the corner
states, edge states, and bulk states. (c) Photograph of the fabricated sample, with one source (red star) nearing the corner and three different
directions for measuring the spatial pressure field distribution of the corner states at 4954 Hz: Red line (horizontal), blue line (vertical), and
black line (diagonal). (d) Experimental demonstration of the spatial sound pressure field distribution along three different directions in (c),
where 13 detecting points are placed in these three directions with equal spacing. Inset: Enlarged view for detecting points from 8 to 12. (e)
Simulated sound pressure profiles for corner states at 4921 Hz. Inset: Enlarged view of the sound pressure profiles in the corner. (f) Measured
absolute pressure at some specific points in the simulation are the same as those in the experiment.

located at 4954 Hz with 0.67% deviation, with the calculated
one at 4921 Hz, which is caused by the sample’s manufacture
errors and inevitable environmental losses. However, the mea-
sured frequency responses are not able to verify adequately
the appearance of corner modes. Here we further measure
the spatial sound pressure distributions along with the three
directions at 4954 Hz. The experimental setup to measure the
corner states is demonstrated in Fig. 4(c), where the source
is indicated by a red star, and three different directions to
measure the spatial sound pressure are marked by the red,
black, and blue lines. The heads (near the source) and ends of
these lines are located in the corners, and 13 detecting points
with different position numbers are placed in these lines with
equal spacing. The measured spatial sound pressure along
these three directions is presented in Fig. 4(d). The maximum
sound pressure occurs at the corner near the source except
for the second point along the diagonal, which is the position
of the source. Although the sound pressure decreases overall
away from the corner near the source, obvious increases can
be found at other corners, as shown in the inset of Fig. 4(d),
which indicates that the source can excite all the corner states.
The simulated maximum sound pressure occurs at the inner
cavity of the SRR located at the corner, as shown in Fig. 4(e),
where the velocity of sound in air is 343 + 343 × 0.01i m s–1

to simulate the lossy environment. However, due to the equiv-
alent size between the inner radius of the SRR and the radius
of the 1/4-inch microphones (B&K Type 4958A), we cannot
accurately measure the sound pressure of the inner cavity of
the SRR. Thus, we only measure the outer sound pressure near
the split of the SRR, which is the reason why the measured

sound pressure at the corner is lower than that at the source. As
shown in Fig. 4(f), the extracted normalized absolute sound
pressures in the points that are the same as those in the
experiment [see Fig. 4(d)] are consistent with experimental
measurements, which further verify the experimental reliabil-
ity. Note that the sound pressure profiles along the horizontal
and those along the vertical are the same in simulation because
of the symmetry of the system, as shown in Fig. 4(f). However,
they are different in experimental measurements [Fig. 4(d)]
due to operational and manufacturing errors.

V. CONCLUSIONS

In conclusion, we have systematically investigated the rela-
tionship between a SC consisting of SRRs and the 2D TBM.
SRR coupling offers another carrier and flexible methodol-
ogy to realize the TBM and construct an acoustic SOTI in
a realistic physical platform. The direction and distance of
the SRRs have an impact on the hoppings, and the topo-
logical phase transition can be realized by easily rotating
the SRRs. In addition, the frequency can be controlled by
translating the SRRs. This SRR system is more convenient
to control intercell and intracell hopping than the traditional
WRM. To verify the effectiveness of this SRR system, the
novel zero Berry phase and bulk polarization have been cal-
culated and the corner states have also been demonstrated
in simulation and experiment. Our work may provide more
effective methods of constructing the TBM in an acoustic
system and may open a new way to design tunable acoustic
HOTIs.
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