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Simple accurate model of silicon donor arrays
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Donors in silicon can now be positioned with an accuracy of about one lattice constant, making it possible
to form donor arrays for quantum computation or quantum simulation applications. However, the multivalley
character of the silicon conduction band combines with central cell corrections to the donor states to convert
small atomic scale imperfections in donor placement into strong interdonor hybridization disorder. We present
a simple model that is able to account for central cell corrections accurately, and use it to assess the impact of
donor positional disorder on donor array properties in both itinerant and localized limits. Our results show that
donor arrays in silicon simulate strongly disordered one-dimensional electrons.
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I. INTRODUCTION

One strategy for establishing robust solid state quantum
information processing hardware is to exploit the relatively
simple bound states that surround donors or acceptors in the
best understood semiconductor material, silicon [1,2]. Con-
siderable experimental progress has been made toward the
use the electron spin of a donor bound state in silicon, or
alternately the donor nuclear spin, as a qubit [3–20]. It has
been possible, for example, to achieve long coherence times
for both electron [21,22] and nuclear spins [23]. Additionally,
advances in the technology for deterministically implanting
donors in silicon [24–28] with high positional accuracy have
made it possible to form donor arrays [illustrated in Fig. 1(a)],
which are attractive for both quantum computation [29] and
quantum simulation [24,30,31] applications. However, the
physics of donor arrays in silicon is complicated by the pres-
ence of six valleys in the silicon conduction band, which
adds an unwanted valley degree of freedom to donor bound
electron envelope function Hamiltonians. The valley degen-
eracy is lifted by central cell corrections that couple valleys
[32,33]. There is still an unwanted complication, however,
since mixing between valleys makes the interactions between
donor levels extremely sensitive to donor positional disorder,
as we will discuss in this paper. Even the lattice constant scale
accuracy in donor positioning now achievable in a silicon
crystal [34] is not necessarily adequate.

To describe this physics, we introduce a model for the cen-
tral cell interactions that are responsible for the valley splitting
of donor levels in bulk silicon. The model is attractively sim-
ple and captures all the essential multivalley physics. We use
it to assess the effectiveness of recently proposed strategies
[35,36] to mitigate the influence of positional disorder on the
exchange coupling between two spin qubits in the localized
limit, demonstrating that they are less sensitive to positional
disorder when oriented along 〈110〉 rather than along 〈100〉.
In the itinerant limit, positional disorder localizes donor ar-
ray Bloch states. We show that this effect is also strongly

limited by placing the donor array along 〈110〉. Our calcula-
tions demonstrate that central cell corrections which separate
the A1 bound state [Fig. 1(c)] from other disorder levels play
a central role in determining donor array properties in both
localized and itinerant limits.

II. PERIODIC ARRAY OF DONORS

Donors in silicon have been well understood for decades
[37–42]. The donor levels are located in the semiconductor
gap, close to the bottom of the conduction band as illustrated
in Fig. 1(b). To estimate the binding energies relative to the
bottom of the conduction band, we employ an effective mass
approach [37,38] in which the wave function of an electron
bound to an isolated donor has the form

ψ (r) =
Nμ∑

μ=1

Fμ(r)φμ(r), (1)

where μ labels valley, Nμ = 6 is the number of valleys, Fμ(r)
is an envelope function, and φμ(r) = eik·ruμ(r) is a band
minimum Bloch function with periodic factor uμ(r).

When central cell corrections are neglected there is no cou-
pling between valleys, and donor bound states in each valley
are eigenstates of an effective mass Schrödinger equation [38]
with Hamiltonian

H =
∑

i

h̄2

2m∗
i

∇2
i + V (r). (2)

Here i = x, y, z, mi are effective masses, and V (r) =
−e2/ε|r|2 is the hydrogenic external potential induced by the
replacement of a Si atom by a donor ion at the origin. The
mass tensor in Eq. (2) is diagonal because the six conduction
band valleys in silicon are located along the principle cubic
axes, with a large mass mi for momentum along the valley di-
rection (longitudinal mass ml ≈ 0.98m0 where m0 is the bare
electron mass) and a small mass for perpendicular momentum
(transverse mass mt ≈ 0.19m0).
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FIG. 1. (a) One-dimensional donor array in a silicon crystal.
Kx/K̄x , Ky/K̄y, and Kz/K̄z label the six Si conduction band valleys
centered at Kμ = ±k0x̂, ±k0ŷ,±k0 ẑ, where k0 = 0.85π/a and a is
the lattice constant of silicon. (b) Donor level ED and (c) splitting
between A1, E , and T2 donor states.

Because we are interested in a periodic array of donors, we
use a plane-wave expansion approach and place donors at the
center of three-dimensional supercells with dimension Lx ×
Ly × Lz. The donor array envelope functions then depend on
wave vector k in the array minizone and can be expanded in
the form

|Fμ(k)〉 =
∑

G

CG(k)|k + G〉, (3)

where k is the wave vector with ki ∈ (−π/Li, π/Li ) with
i = x, y, z. The supercell reciprocal lattice vectors G =
[nx2π/Lx, ny2π/Ly, nz2π/Lz], where nx, ny, nz are integers.
The plane-wave representation single-particle Hamiltonian
matrix is a sum of kinetic and potential energy contributions:

HGG′
μμ′ (k) = T GG′

μμ′ (k) + V GG′
μμ′ (k). (4)

The kinetic energy is dependent on the spatial orientation
of the donor array relative to the cubic axes. We limit our
attention to donor arrays that have their ẑ axis aligned with
the silicon ẑ direction, but allow for changes of orientation
θ of the donor array x̂ and ŷ directions relative to the silicon
crystal x̂ and ŷ axes. For this family of donor array orientations

T GG′
μμ′ = δGG′

μμ′
∑

i

h̄2

2m∗
i

[ ∑
j

(k j + Gj )Ri j (θ )

]2

, (5)

where δGG′
μμ′ ≡ δμμ′ δGG′ and Ri j (θ ) is the rotation matrix. The

external potential of the donor array[43] is that produced by
unit positive charges at the center of each supercell so that

V GG′
μ,μ′ (k) = − 1

�
δμμ′

4πe2

ε|G − G′|2 , (6)

where � is the supercell volume and ε ≈ 11.7 is the static
dielectric constant of silicon. In silicon, the effective Bohr
radius is aB = a0ε/m∗ ≈ 1.9 nm and Ry ≈ 32.6 meV. The
effective mass approximation is justified by the large value
of aB compared to a lattice constant and the small value of Ry
compared to the semiconductor gap. The approximate binding
energy is consistent with the experimental value [32,44,45].

As we show explicitly in Fig. 2, when all dimensions of the
supercell approach infinity, the envelope functions approach

FIG. 2. Bottom of a cubic donor array impurity band vs lattice
constant L, neglecting (blue curve) and including (green curve) the
Ewald correction (red curve). In the large-L limit, the band narrows
exponentially, and when the Ewald correction, required to set the
zero of energy correctly in the plane-wave expansion method we
employ, is included, it is centered on the energy of an isolated donor.
In silicon the Rydberg energy of a donor is Ry ≈ 32.6 meV and the
effective Bohr radius aB ≈ 1.9 nm.

hydrogenic wave functions and the donor binding energies
approach Ry = RH m∗/ε2, where RH ≈ 13.6 eV is the electron
binding energy of hydrogen in vacuum, and m∗ ≡ (m2

t ml )1/3

is the conduction band effective mass, which is ≈0.33m0 with
ml ≈ 0.98m0 and mt ≈ 0.19m0.

The one-dimensional donor array case is modeled by
choosing large values for two of the supercell lattice constants.
The donor states then form one-dimensional bands, and have
band dispersion that is strongly valley dependent as illustrated
in Fig. 3, and sensitive to the spatial orientation of the donor
array relative to the cubic axes. Band dispersion in a valley
is weakened in directions close to the longitudinal direction
for that valley because of the large longitudinal masses. The
hopping parameters in Fig. 3 are extracted from near-neighbor

FIG. 3. Valley and orientation dependent near-neighbor hopping
parameters for cubic donor arrays with lattice constants L. The ±x,
±y, and ±z labels specify the Si conduction band valleys centered
at Kμ = ±k0x̂, ±k0ŷ, ±k0 ẑ, where k0 = 0.85π/a and a is the lattice
constant of silicon.
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tight-binding-model fits to the donor array bands. For the sake
of definiteness, we consider donor arrays that are oriented
along a direction in the x̂-ŷ plane specified by orientation
angle θ . Hopping within the ±z valleys is insensitive to the
rotation angle θ because its effective mass tensor is invariant
under rotations about ẑ. For the ±x or ±y valleys, on the
other hand, hopping on the array depends strongly on the
the orientation angle. For a 〈110〉 orientation the x-valley and
y-valley hopping processes have identical amplitudes that are
one order of magnitude smaller than for z-valley hopping.
Note that hopping is diagonal in valleys, whereas the cen-
tral cell corrections considered in the following section mix
valleys. The interplay between valley mixing at donor cites
and valley-dependent tunneling between valleys is responsible
for the sensitivity of donor pair and donor array properties to
donor placement that we focus on in this paper.

III. CENTRAL CELL CORRECTIONS

So far we have neglected the central cell corrections that
are important in silicon and yield donor bound states that
couple different valleys. The binding energies observed ex-
perimentally are 45.59 meV for the singly degenerate 1s (A1)
level [32,44,45], 32.58 meV for the doubly degenerate 1s (E )
level, and 33.89 meV for the triply degenerate 1s (T2) level.
If we ignore the small difference between the 1s (E ) and
1s (T2) levels, we can approximate the central cell correction
correction to the single-particle Hamiltonian as the product of
a single valley splitting energy scale εvs ≈ 12 meV [32,46], an
attractive delta function −εvsδ(r − R) at the donor site R, and
a projection onto the donor states,

Hvs(R) = −εvs

Nμ�

∑
k′k
μ′μ

|k′μ′〉〈kμ| ei(Kμ+k−Kμ′ −k′ )·R, (7)

where Kμ = ±k0x̂,±k0ŷ,±k0ẑ are valley momenta in bulk
silicon, k0 = 0.85(2π/a), and a = 0.543 nm is the conven-
tional cubic lattice constant of bulk silicon. Because Kμ −
Kμ′ is comparable in size to a reciprocal lattice vector, the
valley splitting Hamiltonian changes substantially even for
changes in R that are on the atomic length scale. Note that
Eq. (7) contains μ′ 
= μ terms that couple different valleys.

In order to calculate the parameters of a generalized Hub-
bard model for the donor array, we first Fourier-transform the
wave functions in the lowest energy band back to real space:

|Rμσ 〉 =
∑
k,G

Cμσ

kG e−ik·R|k + Kμ + G〉|σ 〉, (8)

where μ labels valley, σ labels spin, R is the position of
the donor, and we have chosen CkG=0 to be real and posi-
tive at each value of k. The single-particle Hamiltonian in
the Wannier representation defines the donor array hopping
parameters tμμ′

RR′ , which are a sum of kinetic energy (TRR′ ) and
external potential (V ext

RR′) contributions, with details shown in
Appendix B.

In Figs. 4(a) and 4(b) we plot hopping parameters for the
±x and ±y valleys as a function of donor separation and
the spatial orientation of the donor array relative to the x

FIG. 4. Hopping parameters and on-site interactions of the sil-
icon donor array Hubbard model vs donor separation and spatial
orientation of the donor array relative to the crystal x axis. The
color scale plots in (a) and (b) show the hopping parameter vs donor
separation L and spatial orientation θ . (c) Decay lengths vs θ for
valley ±x, ±y, and ±z. (d) Hubbard U and hopping parameters for
donor arrays along the 〈100〉 and 〈110〉 directions.

axis. We see here that at small donor distances minima of
the hopping parameters appear at θ ≈ π/8 for ±x valleys
and at θ ≈ 3π/8 for ±y valleys, while for the ±z valley,
the hopping parameters are independent of θ and the decay
lengths of the hopping parameters extracted from the valley
wave functions are nearly independent of θ . In the 〈100〉 direc-
tion both ±y and ±z effective masses are transverse (mt ) and
therefore have the same decay length, which is larger than the
±x valley decay length which has the longitudinal effective
mass ml . Similar results apply for the ±x and ±z valleys in
the 010 direction. Along the 〈110〉 direction (θ = π/4) the
decay lengths of the ±x and ±y valleys are identical since the
wave functions have equal contributions from transverse and
longitudinal mass components.

The on-site Hubbard U can be calculated using Uμμ′ =
〈Rμσ, Rμ′σ |Vc|Rμσ, Rμ′σ 〉 where |Rμσ 〉 is a Wannier
function and Vc = e2/εr2. In Fig. 4(d) we compare hopping
parameters for donor arrays along the 〈100〉 and 〈110〉 direc-
tions At small donor separation, valleys with transverse mass
have larger hopping parameters that are large compared with
U. However on-site electron-electron interaction strengths
exceed the hopping parameters at larger donor separations;
the ratio reaches ∼10 when the donor separation is around
12 nm.

IV. VALLEY INTERFERENCE AND EXCHANGE
INTERACTIONS

Using the Hubbard model parameters discussed above,
we now assess the influence of valley degeneracy and donor
placement on the exchange interactions between neighboring
sites of a donor array. To calculate the exchange interactions
we study a two-site Hubbard model which includes hop-
ping, valley splitting, and on-site electron-electron interaction
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FIG. 5. Exchange interaction between two donors calculated
with a two-site six-orbital Hubbard model. In explicit calculations,
we place one of the two donors at the origin and the other at L =
L(1, 0, 0), where L is the distance between two donors, and rotate
the host-crystal cubic lattice by angle θ . The mapping from an L-θ
grid to the plotted Lx-Ly grid leads to some (white) regions in which
there are no data. The white line labels the 〈110〉 direction.

terms:

H =
∑

ν

tμ(c†
1μσ c2μσ + H.c.) + εvs

∑
i,μμ′

Pi
μμ′c†

iμσ ciμ′σ

+
∑

iμμ′σσ ′
Uμμ′c†

iμσ ciμσ c†
iμ′σ ′ciμ′σ ′ . (9)

Here tμ is the intersite hopping amplitude within valley
Kμ, c†

iμσ (ciμσ ) is a creation (annihilation) operator, Pi
μμ′ =

ei(Kμ−Kμ′ )·R is the operator that applies a central cell energy
shift at site R to the donor state, and Uμμ′ is the on-site
electron-electron interaction, which can be accurately mod-
eled as valley independent. For one electron per donor, the
charge excitation sector is gaped and low-energy states are
formed from spin degrees on each site. The exchange inter-
action between spins can therefore be defined in terms of
the energy difference between the lowest-energy two-electron
singlet and triplet states: J = ET − ES .

In Fig. 5 we plot the exchange interaction vs donor sep-
aration magnitude and direction. In our explicit calculations
we place one of the two donors at the origin and the other
at L = L(1, 0, 0), where L the distance between two donors,
and rotate the host-crystal cubic lattice by angle θ . The ±z
valleys always have a transverse effective mass mt , which
leads to large intersite hopping amplitudes. Because the dis-
placement L is perpendicular to the ±z valley momenta Kμ,
the phase factors in the (±z,±z) blocks of the valley-splitting
Hamiltonian always vanish (i.e., ẑ · L = 0, with L ≡ R − R′).
For general θ both the ±x and ±y blocks of the valley split-
ting Hamiltonian at L have nontrivial phase factors, which
change in value when L changes on an atomic length scale,
and appear in the hopping amplitude between the two A1

exciton levels. For θ = 0 (θ = π/2), ±x (±y) valley hopping
is longitudinal, and is therefore dominated by ±y (±x) and

±z valley components. It follows that the exchange energy
is not sensitive to atomic scale position variations along the
direction of the array, since both ŷ · L (x̂ · L) and ẑ · L are
0. However, there is a strong sensitivity to donor position
variations in the direction perpendicular to donor array. In
the 〈110〉 direction, the sensitivity of exchange interactions
to donor placement is reduced in all in-plane directions since
both ±x and ±y valley hopping strengths are reduced relative
to ±z valley hopping. These results are consistent with recent
experiments which have demonstrated a valley filtering effect
on exchange interactions [35,36], which is captured with a
very simple model in this paper. As we explain in more detail
in the next section, the lowest-energy states become more
concentrated in A1 valley-split states at large donor separation,
where εvs is larger than the hopping energies. The problem
of exchange splitting has been considered previously [47]
using the approximation, valid at large L, that the impurity
state Hamiltonian can be projected onto the A1 basis, with
qualitatively similar results for the large-L limit.

V. DISORDERED ONE-DIMENSIONAL ELECTRONS

Donor placement in silicon often errs by a lattice constant
or more. Even when a regular one-dimensional donor array is
intended, the actual positions are Ri = (niNi + δi )ar̂i, where
δi = 0, ±1 randomly. Here i = x, y, z and r̂i = x̂, ŷ, ẑ are unit
vectors along cubic axes, and Ni is the intended superlattice
length in units of the silicon lattice constant a. As we see from
Eq. (7), the random displacements introduce random phase
factors exp i(Kμ − Kμ′ ) · R in the off-diagonal matrix ele-
ments of the valley-splitting Hamiltonian (see the appendices
for further details). These phase factors account for changes in
the positions at which the system gains energy by establishing
constructive interference between valleys. The phase factors
are sensitive to atomic scale placement inaccuracy because
valley momenta are comparable in size to microscopic silicon
primitive reciprocal lattice vectors, and much larger than the
donor array superlattice primitive reciprocal lattice vectors. To
study the influence of donor positional disorder on electronic
properties we neglect interactions and calculate localization
lengths using transfer matrices [48] for a model in which the
exp(iKμ · R) (μ = x, y) factors are modeled as independent
random phase factors with phases �μ. �z = 0 because the
vertical component of the donor position is not expected to be
disordered.

The Bloch state spectrum of donor arrays placed in the
〈100〉 and 〈110〉 directions are shown in Fig. 6(a). In the
L = 12 nm case, illustrated in Fig. 6(b), we see that the A1

subband (lowered by εvs) is split out, and that the width of
this subband corresponds to an effective hopping amplitude
that is intermediate between the longitudinal and ẑ-direction
values, which will be discussed further below.

The donor array orientation dependence of our results is
most easily understood in the large-εvs limit, where we can
truncate the Hilbert space to the A1 donor levels. The ampli-
tude for hopping between A1 levels is

tA1 = 1

6

∑
μ

tμ exp(i�μ) (10)
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FIG. 6. (a) Bloch state spectrum vs valley splitting strength εvs =
12 meV. Energies are in units of the hopping energy tz. The corre-
sponding donor separation L is indicated along the upper horizontal
axis. The green and red dashed lines specify the band edges for
donors placed along the 〈110〉 and 〈100〉 directions, respectively,
and the orange regions are inside at least one of the six donor array
bands for one of the two orientations. (b) Quasi-1D band structures
for L = 12 nm donor arrays along the 〈100〉 and 〈110〉 directions,
respectively. The lowest energy (valley-split) A1 band is singly de-
generate in both cases. In the 〈100〉 (〈100〉) case the top dispersive
(middle flatter) band with width of 4tz (4tx/y) has degeneracy of 3.

with �z = 0 and �x and �y imposed by random x̂-ŷ plane po-
sitional shifts of the two donors. Averaging over these phases
we find that 〈tA1〉 = tz/3 and the coefficient of variation (the
square root of the variance divided by the mean) is

Cv
A1 = σA1

〈tA1〉 =
√

t2
x + t2

y

tz
. (11)

Here σ 2
A1 is the variance of tA1 and 〈tA1〉 is its average value.

The coefficient of variation for tA1 is dominated by the larger
of tx and ty, and therefore reaches a minimum when θ = π/4
since both tx and ty are reduced compared to tz in this case. In
Fig. 7(a) we plot Cv

A1 vs θ for a series of L values. Here we
see that the coefficient of variation of the hopping amplitude
is close to 1 at θ = 0, but reaches a minimum that drops with
donor separation L at θ = π/4. Hopping disorder is weaker
for donor arrays aligned along 〈110〉 directions.

As a result of this reduced disorder, the localization lengths
of the A1 band electrons reach a maximum at θ = π/4. The
localization lengths are defined as the inverse of the small-
est positive Lyapunov exponent averaged over phase disorder
realizations: ξloc = 〈γm〉−1

avg
(see the appendices for further de-

tails). In Fig. 7(b) we plot localization lengths calculated at an
energy 0.5tz from the center of the disordered A1 band, with
�x/y sampled from the interval (−�m,�m) and �m = π/2;
we see that the localization lengths maximize at 〈110〉 direc-
tion. The A1 band localization lengths are plotted vs energy
and �m for L = 12 nm in Figs. 7(c) and 7(d) for the 〈100〉 and
〈110〉 directions, respectively. For 〈110〉-orientation donor ar-
rays, localization lengths remain long near the center of the A1

band, even for strong donor-placement disorder.

FIG. 7. (a) Coefficient of variation for hopping between A1

states. Note that disorder is increasingly minimized at θ = π/4 as
L increases. (b) Localization in donor separation units vs donor
separation L and the orientation of the donor array relative to the
x axis θ at an energy E = 0.5tz above the middle of the disordered
A1 band. (c) and (d) illustrate the dependence of A1 band localization
length on disorder strength and energy for L = 12 nm. The dashed
lines in (c) and (d) mark E = 0.5tz, the energy used in (b).

VI. DISCUSSION

In this paper, we have considered the valley physics of
donor pairs and donor arrays in bulk silicon in which the
valleys are sixfold degenerate. As we have explained in de-
tail, the combination of central cell interactions that couple
valleys and valley-dependent tunneling amplitudes between
donor sites yields valley interference effects responsible for
undesirable sensitivity to atomic length scale errors in donor
placement. The complications introduced by the valley degree
of freedom in silicon donor qubit design can be, and are
in practice, mitigated in a variety of ways. In fact lattice-
matching strain effects and positioning of donors very close
to the surface fully lifts the valley degeneracy. Even so, these
valley splittings are often not large, allowing valleys to play a
role in setting the size and orientation dependence of exchange
interactions which remain sensitive to atomic scale place-
ment uncertainty. The approach taken in this paper provides
a practical but accurate theoretical model that applies equally
well when valley degeneracy is lifted, and may be valuable
in achieving a quantitative understanding of the properties of
donor systems used for quantum information processing.

Our model is based on the observations that there is an
increase in donor binding energy εvs when all valley compo-
nents of the donor wave function are in phase at the donor
site. For donor separations less than ∼4 nm, all six silicon
valleys play an important role in low-energy many-electron
states. At larger L, valley-splitting exceeds hopping energies
and the low-energy physics can be approximated by an A1

one-band model. Because the valley wave vectors are well
separated in silicon, valley splitting leads to strong disorder
in the hopping amplitude between the most strongly bound
donor states, even when inaccuracy in donor placement is only
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at the microscopic silicon lattice constant scale. It follows
from our model that silicon donor arrays provide an excellent
quantum simulator to study the combined influence of strong
interactions and strong disorder in one dimension.

The importance of interactions in silicon donor array states
can be judged by evaluating the on-site Hubbard U . U ∼
10 meV exceeds the hopping parameters at larger donor sep-
arations, reaching a ratio of ∼10 when the donor separation
is around 12 nm. In this limit only spin degrees of freedom
are relevant. Donor arrays are thus an attractive platform
of quantum simulator to study the physics in one or two
dimensional disordered many-body models, such as random
field Heisenberg models [49] and one-dimensional Hubbard
physics with hopping disorder [50–52]. In the limit of large L
disorder can be weakened, but not eliminated, by orienting the
donor array along the 〈110〉 direction.
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APPENDIX A: EWALD CORRECTIONS

Subtleties arise in using a momentum space approach to
obtain energy spectrum of electrons attracted to a donor array
because the long-range of the Coulomb interaction forces used
to exclude the G = 0 term in the external potential. Correc-
tions in momentum space and real space can be combined into
an Ewald correction [43]

δE =
∑
R 
=0

e2

R
e−κR −

∫
ne2

r
· dr, (A1)

where R = |R| with R = [nxLx, nyLy, nzLz], r = |r|, n = 1
�

,
� = Lx × Ly × Lz is the volume of the supercell, and κ is a
convergence parameter that can be set to zero at the end of
the calculation. The first term in Eq. (A1) is summed over
nonzero array lattice vectors. The factor e−κR is introduced
to regularize the Coulomb interaction, which is recovered by
letting κ → 0. By employing the identity

1

R
=

(
η

π

) 1
2
∫ ∞

0
dt t− 1

2 e−ηtR2
, (A2)

which holds for any positive value of η, the first term in
Eq. (A1) can finally be written as

δE = −6n
1
3 +

∑
R 
=0

φ− 1
2 (πn

2
3 R2 )

+
∑
G 
=0

φ0

(
G2

4πn
2
3

)

+
∫

dR
ne2

R
, (A3)

where φμ(z) ≡ ∫ ∞
1 dt e−zt tμ is the Misra function. Note that

the last term in Eq. (A3) is divergent, but cancels the second
term in Eq. (A1) [43]. The Ewald correction to the donor band

levels is then

δE = −6n
1
3 +

∑
R 
=0

φ− 1
2 (πn

2
3 R2 )

+
∑
G 
=0

φ0

(
G2

4πn
2
3

)
. (A4)

The Ewald correction has a 1/L dependence [43] as shown in
Fig. 2. When the Ewald correction is k = 0 the donor band
state is close to the hydrogenic binding energies for supercell
dimensions that exceed around 10aB . For the small donor
separations, the donor bands disperse and the k = 0 state is
at the bottom of the donor array band.

APPENDIX B: WANNIER BASIS

Without considering the valley splitting, the Wannier func-
tions are defined as

|R〉 = 1√
Nk

∑
k,G

C(1)
k,Ge−ik·R|k + G〉. (B1)

Here we can choose C(1)
k,G to be real and positive for G = 0 and

the superscript (1) denotes the ground state. R is the lattice
vectors of supercell. The basis projected onto the real space is
then

〈r|R〉 =
∑
k,G

C(1)
k,Ge−ik·R〈r|k + G〉. (B2)

It is easy to show that the Wannier functions are orthogonal,
i.e., 〈R′|R〉 = δR′R. Here we used the fact that

〈k′ + G′|k + G〉 = δk′kδG′G. (B3)

When we include valley and spin freedom, the Wannier
function becomes

|Rμσ 〉 =
∑
k,G

Cμσ

k,Ge−ik·R|k + kμ + G〉|σ 〉. (B4)

The single-particle Hamiltonian in the Wannier representation
defines the donor array hopping parameters tμμ′

RR′ , which are
contributed by the kinetic energy (TRR′ ) and external potential
(V ext

RR′). The kinetic term contribution is

T RR′
μμ′ = δμμ′

Nk

∑
ikG

|CkG|2 h̄2

2mi
(ki + Gi )

2eik·(R−R′ ), (B5)

where i = x, y, z, Nk is the total number of sampling points
in the Brillouin zone, and CkG is the momentum space Bloch
state eigenvector. And the external potential contribution is

V RR′
ext = 1

Nk

∑
kGG′

C∗
kG′CkGeik·(R′−R)V (G′ − G), (B6)

where V (G′ − G) = 2πe2/ε|G′ − G| is the external potential
from the donors. Note that the Wannier representation single-
particle Hamiltonian is independent of the gauge choice made
in defining the Wannier functions.

APPENDIX C: CENTRAL CELL CORRECTION

The central cell correction Hamiltonian is approximated as

Hvs = −
∑

R

εvsδ(r − R); (C1)
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here R is the lattice vector of impurities supercell and εvs is
the valley splitting. The matrix elements in momentum space
are then

Hvs(k) = 〈k + K′
μ + G′|Hcc|k + Kμ + G〉δσσ ′

= − εvs

Nμ�

∑
R

ei(Kμ−Kμ′ )·Rδσσ ′ . (C2)

Here Nμ = 6 is the number of valleys. The calculations of∑
L ei(Kμ−Kμ′ )·R strongly depend on the inaccuracies of po-

sitions of donors. In silicon the position of the valley is
Kμ = ±k0x̂,±k0ŷ,±k0ẑ. For perfect periodic impurities, the
matrix elements coupling different valleys should be − εvs

Nμ�
;

the matrix is then

Hvs(k) = − εvs

6�

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

. (C3)

When the periodicity of impurities is not perfect, the diagonal matrix elements are still all 1. However, the off-diagonal matrix
elements are ei�, in which � is a random phase; the matrix is

Hvs(k) = − εvs

6�

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ei2�x ei(�x−�y ) ei(�x+�y ) ei(�x−�z ) ei(�x+�z )

e−i2�x 1 ei(−�x−�y ) ei(−�x+�y ) ei(−�x−�z ) ei(−�x+�z )

ei(�y−�x ) ei(�y+�x ) 1 ei2�y ei(�y−�z ) ei(�y+�z )

ei(−�y−�x ) ei(−�y+�x ) e−i2�y 1 ei(−�y−�z ) ei(−�y+�z )

ei(�z−�x ) ei(�z+�x ) ei(�z−�y ) ei(�z+�y ) 1 ei2�z

ei(−�z−�x ) ei(−�z+�x ) ei(−�z−�y ) ei(−�z+�y ) e−i2�z 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (C4)

APPENDIX D: LOCALIZATION LENGTH

With the Wannier basis, the general form of the Hamilto-
nian is

H =
∑

iμ, jμ′
tiμ, jμ′ |iμ〉〈 jμ′| + εvs

6

∑
iμμ′

Pi
μμ′ |iμ〉〈iμ′|, (D1)

where |iμ〉 labels the states that lie at the ith site and μ is
the valley freedom, tiμ, jμ′ are the hopping parameters, εvs

is the valley splitting, and Pi
μμ′ is the projector operator as

ei(Kμ−Kμ′ )·R, which is modeled as three random phases shown
in Eq. (C4). The localization length is calculated with a trans-
fer matrix method; the Schrödinger equation can be rewritten
as

−ti−1,iχi−1 + viχi − ti,i+1χi+1 = Eχi, (D2)

where ti j is the hopping matrix between the sites i and j, vi

is the valley matrix at site i, and χi are the wave function
components, while the wave function of the Hamiltonian is
� = [χ1χ2 · · · χi · · · χN ]T . The 2Nμ × 2Nμ transfer matrix is

Mi =
[
t−1

i,i+1(vi − E1) −t−1
i,i+1ti−1,i

1 0

]
. (D3)

When considering only the A1 state, the transfer matrix is

Mi =
[

E/tA1 −1
1 0

]
, (D4)

with tA1 = 1
6

∑
μ tμ exp(i�μ). The transfer matrix product for

the whole system of length N is

M =
N∏

i=1

Mi, (D5)

and then we can write[
χN+1

χN

]
= M

[
χ1

χ0

]
. (D6)

According to Oseledec’s theorem [53], the eigenvalues λ j of
the matrix

� = ln(MNM†
N ) (D7)

obey the following:

γ j = lim
N→∞

λ j

2N
, (D8)

which are called Lyapunov exponents. The smallest positive
Lyapunov exponent averaged over a random configuration is
the inverse of localization length:

〈γm〉avg = 1

ξloc
; (D9)

then we can get the localization length as

ξloc = 〈γm〉−1
avg

, (D10)

where 〈 〉avg denotes the configuration average of disorder.
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