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Determination of the acoustic phonon deformation potentials in diamond
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The interaction between acoustic phonons and electrons in diamond has been investigated by comparing
state-of-the-art time-of-flight drift velocity measurements with Monte Carlo simulations. We use a multivariable
anisotropic description of acoustic deformation potential scattering. The phonon-electron interaction is the
limiting factor for the carrier mobility in ultrapure single crystal diamond. Hence, having a correct description
is necessary for both device simulations and for predicting the maximum device performance. The experiments
were performed at low temperature and using ultrapure diamond to minimize the influence of other scattering
sources. The electronic valley polarization in diamond at low temperatures enables determination of both uniaxial
and dilatation deformation potentials in the same experiment. The uniaxial and dilatation deformation potentials
are found to be 18.5 ± 0.2 and −5.7 ± 0.3 eV, respectively.
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I. INTRODUCTION

Diamond is an outstanding semiconductor material, with
high thermal conductivity, breakdown voltage, electron and
hole mobility and remarkable mechanical properties. This
makes diamond an excellent candidate for, e.g., transistors
for power electronics [1], single-photon sources [2], radiation
detectors [3] and deep ultraviolet light-emitting diodes [4]. A
limiting factor for many of these devices is the charge carrier
mobility, which, for high quality single crystal chemical va-
por deposited (CVD) diamond, is limited by phonon-electron
interactions. These interactions depend on the electronic and
mechanical properties of the diamond crystal and can be mod-
elled using deformation potential theory [5].

The deformation potentials in diamond have not been in-
vestigated much compared to other group IV-semiconductors,
such as Si and Ge [6–10], neither through experiments, e.g.,
cyclotron resonance, nor through ab initio simulations. Be-
cause of this, most charge transport and device simulations
rely on a simple isotropic acoustic phonon deformation po-
tential model, instead of a more accurate description with an
anisotropic potential, as suggested by Herring and Vogt [5].
Due to the fact that the elastic anisotropy in diamond is large
[11], the anisotropic approach to phonon scattering is much
more appropriate for diamond. Hence, to achieve precise sim-
ulations of charge transport and to determine the deformation
potentials, it is essential to take the phonon anisotropy into
account.

In this work, we have measured electron drift velocity
using the time-of-flight (ToF) method which has proved to
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be an extremely sensitive technique for measurements at very
low carrier concentrations in highly resistive semiconductors
[12–16]. The experimental data from the ToF measurements
have been compared to Monte Carlo (MC) simulations, based
on Herring and Vogt’s work [5], to determine the deformation
potentials in diamond. The results and the model can be used
for an accurate description of electron transport in diamond.

II. EXPERIMENTAL TECHNIQUES

For this study, we selected a high purity single crystalline
diamond sample synthesized by Element Six Ltd. The sample
was grown along the [100] direction using the CVD method
with a nitrogen impurity concentration < 0.05 ppb and a low
surface roughness, Ra, below 5 nm. Titanium/aluminum/gold
contacts were formed on both the top and bottom surface by
means of physical vapor deposition. The top contact was made
semitransparent through standard lithography and wet chemi-
cal etching. The ToF technique [17–19] was used to measure
drift velocities for electrons through the sample in a weak
electric field which was generated along the [100] direction
by applying a negative bias voltage to the top contact. The
electric field was applied in 50 μs pulses, in order to minimize
polarization effects from charge build-up. The top surface
of the sample was illuminated, through the semitransparent
contact, by a quintupled 800 ps Nd:yttrium-aluminum-garnet
laser with a repetition rate of 300 Hz and a wavelength of
213 nm. The laser pulses were applied synchronized with the
electric pulses, as illustrated in Fig. 1. The sample is mounted
on a sample holder in a vacuum cryostat using liquid helium
as coolant. The experimental setup is shown in Fig. 1.

The photon energy of the laser (5.86 eV) is higher than
the bandgap in diamond and creates electron-hole pairs near
the illuminated surface. The penetration length is short,
approximately 3 μm, compared to the thickness of the sample.
The drift of free charges through the sample induces a current
that can be measured at the contacts as described by the
Shockley-Ramo theorem [20,21]. We measured the current
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FIG. 1. Schematics of the time-of-flight (ToF) system used in the
measurements, the cryostat is not shown. By applying a negative bias
voltage at the illuminated contact, electrons drift through the sample,
giving rise to a current that can be measured. The band structure and
the first Brillouin zone of diamond with the conduction band minima
(valleys) are depicted on the left.

for a set of temperatures and bias voltages and extracted the
electron mobility from the transient current.

Diamond has a siliconlike band structure with six equiva-
lent ellipsoidal energy minima in the conduction band. These
are located on the {100} axes, as illustrated in Fig. 1. The
effective mass in the valleys is described by the tensors:

meff〈100〉 =
⎛
⎝ml 0 0

0 mt 0
0 0 mt

⎞
⎠,

meff〈010〉 =
⎛
⎝mt 0 0

0 ml 0
0 0 mt

⎞
⎠,

meff〈001〉 =
⎛
⎝mt 0 0

0 mt 0
0 0 ml

⎞
⎠, (1)

where ml (1.56 m0) is the effective mass along the principal
axis of the valley and mt (0.28 m0) is the effective mass in
transversal directions. An electron will not scatter between
valleys during drift unless it interact with a phonon of suf-
ficient high energy and momentum. Because of the strong
covalent bonds in diamond, these phonon energies are ex-
ceptionally high, starting at 140 meV [22]. Consequently, the
scattering rate between valleys, at low temperatures and for
sufficiently low electric fields, is negligible. For the electrons
in the experiment and simulations in this article, the average
energy of electrons is well below 140 meV as indicated in
Fig. 2(b). Therefore, intervalley scattering can be neglected
for the discussions in this article.

In addition, because the electrons do not change valley
during transport, it is possible to observe valley polarization
effects [19]. One such effect is that electrons in four of the
six valleys perpendicular to the electric field along the [100]
direction respond with effective mass mt (fast electrons) and
electrons in the other two valleys, parallel with the [100]
respond with effective mass ml (slow electrons). Due to this
phenomenon, different electron velocities can be extracted
from the two step current traces observed in Fig. 2(a) [23].
Another effect is that acoustic phonon scattering affects the
electrons somewhat differently depending on which valley
they occupy [5].

III. SIMULATIONS

We assume a parabolic energy band with all six ellipsoidal
conduction band valleys explicitly included, see Supplemental
Material [24]. The energy band model is a good approx-
imation for low electric fields and temperatures. For high
quality samples, electron-phonon scattering is the dominating
scattering mechanism and all other mechanisms can be ne-
glected [25]. The interaction is treated inelastically. Hence, the
electrons change energy according to whether scattering was
caused by emission or absorption of a phonon. The scattering
probability that one electron will scatter from state k to state
k′ is [26]:

Pa,e
LA,TA(k, k′) = π

V ρuLA,TA
XLA,TA(�)q

(
NLA,TA,q + 1

2
∓ 1

2

)

× δ(ε(k′) − ε(k) ∓ h̄uLA,TAq), (2)

FIG. 2. (a) Example of current traces measured by the ToF technique at 80 K and an electric field of 7600 V/m, together with a MC
simulation of the current trace, where the uniaxial and dilatation deformation potential have been assumed to be 18.5 eV and (−)5.7 eV,
respectively. (b) Simulated electron average kinetic energy and velocity for different electric fields for a lattice temperature of 80 K.
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where, u is the velocity of sound, ρ is the crystal density, V
is the volume of the crystal, ε(k) is the energy of state k , and
NLA,TA,q is the Bose-Einstein-distribution occupation number
for a phonon with momentum q. In addition, the upper sign
refers to absorption (a) and the lower sign to emission (e) of
a phonon. LA stands for longitudinal acoustic phonon scat-

tering and TA for transversal acoustic phonon scattering. The
anisotropy of the transversal phonon scattering factor XTA(θ )
and longitudinal phonon scattering factor XLA(θ ) is expressed
through the dilatation and uniaxial deformation potentials, �d

and �u, and θ, is the angle between the phonon wave vector
and the principal axis of the valley [5]:

XLA(θ ) = (�d + cos2θ�u)
2

c12 + 2c44 + 3
5 c∗

[
1 − c∗(0.15 − 1.5cos2θ + 1.75cos4θ )

c12 + 2c44 + 3
5 c∗

]
, (3)

XTA(θ ) = �2
ucos2θsin2θ

[
3

c44 + 1
3 c∗ − 2

c44 + 1
2 c∗ + 6cos2θ

(
1

c44 + 1
2 c∗ − 1

c44 + 1
3 c∗

)]
. (4)

Here, ci j are the elastic constants for diamond and c∗ =
c11 − c12 − 2c44 is a measure of the elastic anisotropy in
the crystal [11]. XTA(θ ) includes the contributions from both
modes of transversal phonons. Table I shows the basic param-
eters used in the simulations.

IV. RESULTS AND DISCUSSIONS

We measure ToF on the SC diamond sample and extract
the transient time, for both fast and slow electrons, for tem-
peratures of 40, 50, 60, 70, and 80 K and electric fields in the
range 3000–10000 V/m. For each experimental temperature
and electric field combination, we simulate over 150 transients
using different values of the deformation potentials �u and
�d in the range -24 to 24 eV. The MC simulations consists
of 600 electrons, evenly distributed in the valleys drifting
across a 490 μm thick diamond sample, to closely mimic
the experimental situation. By comparing the simulated and
experimental results for both fast and slow electrons it is
possible find the combination of deformation potentials, �u

and �d , that yield the correct transient times.
Figure 3 illustrates this for 50 K and an electric field set

to 7600 V/m. The difference in transient time between the
MC simulations and the experiment for both fast and slow
electrons are plotted in the figure. The color represents the
difference in transient time for the slow electrons and the
black contour lines show the same for the fast electrons.
Furthermore, the white curve in Fig. 3 represents the deforma-
tion potentials for which experimental and simulated transient
time agree for slow electrons. Similarly, the zero deviation

TABLE I. Parameters used in the Monte Carlo simulations.

Parameter Value Source

Relative dielectric constant [1] 5.70 [27]
Crystal density [kg/m3] 3.51×103 [27]
Longitudinal effective mass ml [m0] 1.56 [28]
Transverse effective mass mt [m0] 0.28 [28]
Velocity of sound uLA [m/s] 17.52×103 [29]
Velocity of sound uTA [m/s] 12.82×103 [29]
Elastic constants c11 [N/m2] 10.79×1011 [11]
Elastic constants c12 [N/m2] 1.24×1011 [11]
Elastic constants c44 [N/m2] 5.78×1011 [11]

contour line for fast electrons. The intersection between these
two curves yield possible combinations of values for the de-
formation potentials. As can be seen in the figure, there are
four choices of deformation potentials for which the transient
time of the simulated fast and slow electrons agree with the ex-
periments. These are approximately �u = ±18.5 eV, �d = ∓
5.7 eV and �u = ±3.0 eV, �d = ±16.3 eV.

We conclude that �u = 18.5 eV and �d = −5.7 eV is the
correct combination by comparing our results with the defor-
mation potentials from silicon and germanium, which have
the same crystal structure as diamond [6]. Silicon also has a
band structure very similar to diamond, with the conduction
band minima located on the [100] axes as well. Both Si
and Ge exhibit large positive uniaxial deformation potentials
and much smaller (in absolute value) dilatation deforma-
tion potentials [6]. It can be assumed that diamond exhibits
the same behaviour. In addition, density functional theory
calculations of strained diamond indeed yield a positive value,
approximately 20 eV for �u [30].

To achieve higher resolution, another set of simulations
was performed in a narrow range around �u = 18.5 eV and
�d = −5.7 eV with steps of 0.25 eV and 0.2 eV, respectively,
see Fig. 4. There was no statistically significant change to

FIG. 3. The deviation in transient time between the measure-
ments and the simulations at a temperature of 50 K and an electric
field of 7600 V/m, for different values of the deformation potentials.
The color scale refers to the slow electrons and the black contour
lines refer to fast electrons. The possible deformation potentials
correspond to the four points where the deviation in transient time
is zero for both fast and slow electrons.
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FIG. 4. Top: The deviation in transient time between the measurements and the simulations for 50 K and an electric field of 7600 V/m
for different values of the deformation potentials. The slow electrons are shown with the color scale and fast electrons with the black contour
lines. Below: Three examples of the simulated (orange) together with the measured currents (blue) with different deformation potentials, used
to generate the above results. The arrows indicates the corresponding point in the above image the current traces generated.

the deformation potentials with a change in temperature. By
averaging the results from all temperatures and electric fields,
with the higher resolutions, the uniaxial and dilatation defor-
mation potentials were determined to 18.5 ± 0.2 eV and -5.7
± 0.3 eV, respectively. The remaining uncertainty originates
from a small difference between the measured and simulated
current traces (Fig. 4). This discrepancy arises from traps,
inhomogeneity in the sample, and the fact that the electric field
is not perfectly homogenous close to the sample edges. These
deviations were noticeable at the lowest temperatures but are
very small above 50 K.

V. CONCLUSIONS

We have measured the mobility of valley-polarized fast
and slow electrons using the time of flight method. We com-
pared the measurements with Monte Carlo simulations using
an anisotropic multivariable description of the electron and
acoustic phonon interaction. In doing so, we are able to
determine the deformation potentials to �u = 18.5 ± 0.2 eV

and �d = −5.7 ± 0.3 eV. Anisotropic deformation potential
theory has rarely been applied to diamond, compared to other
group-IV-semiconductors. By providing a more precise de-
scription of the anisotropy in acoustic deformation potential
scattering, our results can be used to gain a better under-
standing of electron transport and yield more reliable device
simulations, e.g. for diamond electronic devices and radiation
detectors.
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